首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To understand the expression pattern of theS RNase gene in the floral tissues associated with self-incompatibility (SI), promoter region of S11 RNase gene was serially deleted and fused GUS. Five chimeric constructs containing a deleted promoter region of the S11 RNase gene were constructed, and introduced intoNicotiana tabacum using Agrobacterium-mediated transformation. Northern blot analysis revealed that the GUS gene was expressed in the style, anther, and developing pollen of all stages in each transgenic tobacco plant The developing pollen expressed the same amount of GUS mRNA in all stages in transgenic tobacco plants. In addition, histochemical analysis showed GUS gene expression in vascular bundle, endothecium, stomium, and tapetum cells during pollen development in transgenic plants. From these results, it is speculated that SI ofLycopersicon peruvianum may occur through the interaction ofS RNase expressed in both style and pollen tissues.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
PSG076 is a pollen-specific gene isolated from wheat. The 1.4-kb promoter upstream of the ATG start codon was isolated by inverse-PCR (IPCR). To determine its activity, the PSG076 promoter was fused with the ??-glucuronidase (GUS) reporter gene and introduced into tobacco. Histochemical analysis in transgenic tobacco showed that GUS activity was detected in late bicellular pollen grains and increased rapidly in mature pollen. GUS activity was also detected in pollen tubes of transgenic tobacco. No GUS activity was found in other floral and vegetable tissues. These results indicate that the PSG076 promoter directs pollen-specific activity at late stages of pollen development and pollen tube growth. Deletion analysis showed that a 0.4?kb fragment of the promoter was enough to confer pollen-specific expression.  相似文献   

12.
13.
Globulins are the most abundant seed storage proteins in cotton and, therefore, their regulatory sequences could potentially provide a good source of seed-specific promoters. We isolated the putative promoter region of cotton -globulin B gene by gene walking using the primers designed from a cotton staged embryo cDNA clone. PCR amplified fragment of 1108 bp upstream sequences was fused to gusA gene in the binary vector pBI101.3 to create the test construct. This was used to study the expression pattern of the putative promoter region in transgenic cotton, Arabidopsis, and tobacco. Histochemical GUS analysis revealed that the promoter began to express during the torpedo stage of seed development in tobacco and Arabidopsis, and during cotyledon expansion stage in cotton. The activity quickly increased until embryo maturation in all three species. Fluorometric GUS analysis showed that the promoter expression started at 12 and 15 dpa in tobacco and cotton, respectively, and increased through seed maturation. The strength of the promoter expression, as reflected by average GUS activity in the seeds from primary transgenic plants, was vastly different amongst the three species tested. In Arabidopsis, the activity was 16.7% and in tobacco it was less than 1% of the levels detected in cotton seeds. In germinating seedlings of tobacco and Arabidopsis, GUS activity diminished until it was completely absent 10 days post imbibition. In addition, absence of detectable level of GUS expression in stem, leaf, root, pollen, and floral bud of transgenic cotton confirmed that the promoter is highly seed-specific. Analysis of GUS activity at individual seed level in cotton showed a gene dose effect reflecting their homozygous or hemizygous status. Our results show that this promoter is highly tissue-specific and it can be used to control transgene expression in dicot seeds.  相似文献   

14.
15.
Regulatory promoter regions responsible for the enhanced expression in anthers and pollen are defined in detail for three nuclear encoded mitochondrial Complex I (nCI) genes from Arabidopsis thaliana. Specific regulatory elements were found conserved in the 5′ upstream regions between three different genes encoding the 22 kDa (PSST), 55 kDa NADH binding (55 kDa) and 28 kDa (TYKY) subunits, respectively. Northern blot analysis and transgenic Arabidopsis plants carrying progressive deletions of the promoters fused to the β-glucuronidase (GUS) reporter gene by histochemical and fluorimetric methods showed that all three promoters drive enhanced expression of GUS specifically in anther tissues and in pollen grains. In at least two of these promoters the –200/–100 regions actively convey the pollen/anther-specific expression in gain of function experiments using CaMV 35S as a minimal promoter. These nCI promoters thus contain a specific regulatory region responding to the physiological demands on mitochondrial function during pollen maturation. Pollen-specific motifs located in these regions appear to consist of as little as seven nucleotides in the respective promoter context.  相似文献   

16.
17.
Twelve independent lines were transformed by particle bombardment of soybean embryogenic suspension cultures with the tobacco anthranilate synthase (ASA2) promoter driving the uidA (beta-glucuronidase, GUS) reporter gene. ASA2 appears to be expressed in a tissue culture specific manner in tobacco (Song H-S, Brotherton JE, Gonzales RA, Widholm JM. Tissue culture specific expression of a naturally occurring tobacco feedback-insensitive anthranilate synthase. Plant Physiol 1998;117:533-43). The transgenic lines also contained the hygromycin phosphotransferase (hpt) gene and were selected using hygromycin. All the selected cultures or the embryos that were induced from these cultures expressed GUS measured histochemically. However, no histochemical GUS expression could be found in leaves, stems, roots, pods and root nodules of the plants formed from the embryos and their progeny. Pollen from some of the plants and immature and mature seeds and embryogenic cultures initiated from immature cotyledons did show GUS activity. Quantitative 4-methylumbelliferyl-glucuronide (MUG) assays of the GUS activity in various tissues showed that all with observable histochemical GUS activity contained easily measurable activities and leaves and stems that showed no observable histochemical GUS staining did contain very low but measurable MUG activity above that of the untransformed control but orders of magnitude lower than the constitutive 35S-uidA controls used. Low but clearly above background levels of boiling sensitive GUS activity could be observed in the untransformed control immature seeds and embryogenic cultures using the MUG assay. Thus in soybean the ASA2 promoter drives readily observable GUS expression in tissue cultures, pollen and seeds, with only extremely low levels seen in vegetative tissues of the plants. The ASA2 driven expression seen in mature seed was, however, much lower than that seen with the constitutive 35S promoter; less than 2% in seed coats and less than 0.13% in cotyledons and embryo axes. The predominate tissue culture specific expression pattern of the ASA2 promoter may be useful for genetic transformation of crops.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号