首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A multifunctional Ca2+/calmodulin dependent protein kinase was purified approximately 650 fold from cytosolic extract of Candida albicans. The purified preparation gave a single band of 69 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis with its native molecular mass of 71 kDa suggesting that the enzyme is monomeric. Its activity was dependent on calcium, calmodulin and ATP when measured at saturating histone IIs concentration. The purified Ca2+/CaMPK was found to be autophosphorylated at serine residue(s) in the presence of Ca2+/calmodulin and enzyme stimulation was strongly inhibited by W-7 (CaM antagonist) and KN-62 (Ca2+/CaM dependent PK inhibitor). These results confirm that the purified enzyme is Ca2+/CaM dependent protein kinase of Candida albicans. The enzyme phosphorylated a number of exogenous and endogenous substrates in a Ca2+/calmodulin dependent manner suggesting that the enzyme is a multifunctional Ca2+/calmodulin-dependent protein kinase of Candida albicans.  相似文献   

2.
Jang DJ  Ban B  Lee JA 《Molecules and cells》2011,32(6):511-518
IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7–3) and IQ(3.5–4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7–3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5–4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7–3) was the main apoCaM binding domain and both IQ(2.7–3) and IQ(3.5–4.4) were required for Ca2+/CaM binding within IQ(1-2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner.  相似文献   

3.
Chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was cloned from developing anthers of lily (Lilium longiflorum Thumb. cv. Nellie White) and tobacco (Nicotiana tabacum L. cv. Xanthi). Previous biochemical characterization and structure/function studies had revealed that CCaMK has dual modes of regulation by Ca2+ and Ca2+/calmodulin. The unique structural features of CCaMK include a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca2+-binding domain. The existence of these three features in a single polypeptide distinguishes it from other kinases. Western analysis revealed that CCaMK is expressed in a stage-specific manner in developing anthers. Expression of CCaMK was first detected in pollen mother cells and continued to increase, reaching a peak around the tetrad stage of meiosis. Following microsporogenesis, CCaMK expression rapidly decreased and at later stages of microspore development, no expression was detected. A tobacco genomic clone of CCaMK was isolated and transgenic tobacco plants were produced carrying the CCaMK promoter fused to the β-glucuronidase reporter gene. Both CCaMK mRNA and protein were detected in the pollen sac and their localizations were restricted to the pollen mother cells and tapetal cells. Consistent results showing a stage-specific expression pattern were obtained by β-glucuronidase analysis, in-situ hybridization and immunolocalization. The stage- and tissue-specific appearance of CCaMK in anthers suggests that it could play a role in sensing transient changes in free Ca2+ concentration in target cells, thereby controlling developmental events in the anther. Received: 29 January 1999 / Accepted: 12 February 1999  相似文献   

4.
The single calmodulin gene (CaM) of the green alga Mougeotia scalaris (Hassall) was cloned, sequenced and the CDNA inserted into the prokaryotic expression vector pGEX-2T. The recombinant calmodulin protein (CAM) was expressed as a fusion product together with glutathione S-transferase and isolated on glutathione sepharose. After cleavage and purification, the CaM was characterized by Ca2+-dependent shift in SDS-PAGE, by activation of cyclic 3′,5′nucleotide phosphodiesterase (PDE) and sensitivity to the inhibitors trifluoperazine and calmidazolium, with native Mougeotia CaM as control. Using Ca2+ buffers in the PDE test, affinity to Ca2+ of Mougeotia CaM was found to be diminished fivefold compared to maize or bovine brain CaMs. There was also a 20-fold increase of half maximal activation (Kact) in the PDE test for Mougeotia CaM relative to maize CaM, while the Kact of maize CaM to that of bovine brain CaM was almost the same. The derived amino acid sequences of CaM from Mougeotia and Zea mays revealed three major conservative amino acid exchanges, including unique 105-Trp (Mougeotia) → Leu (maize). In Mougeotia CaM the 105-Trp, including the neighbouring side chains of 92-Phe and 141-Phe, putatively form a hydrophobic ring interaction, as revealed by molecular modelling.  相似文献   

5.
Phosphorylation of the cardiac ryanodine receptor (RyR2) is thought to be important not only for normal cardiac excitation-contraction coupling but also in exacerbating abnormalities in Ca2+ homeostasis in heart failure. Linking phosphorylation to specific changes in the single-channel function of RyR2 has proved very difficult, yielding much controversy within the field. We therefore investigated the mechanistic changes that take place at the single-channel level after phosphorylating RyR2 and, in particular, the idea that PKA-dependent phosphorylation increases RyR2 sensitivity to cytosolic Ca2+. We show that hyperphosphorylation by exogenous PKA increases open probability (P o) but, crucially, RyR2 becomes uncoupled from the influence of cytosolic Ca2+; lowering [Ca2+] to subactivating levels no longer closes the channels. Phosphatase (PP1) treatment reverses these gating changes, returning the channels to a Ca2+-sensitive mode of gating. We additionally found that cytosolic incubation with Mg2+/ATP in the absence of exogenously added kinase could phosphorylate RyR2 in approximately 50% of channels, thereby indicating that an endogenous kinase incorporates into the bilayer together with RyR2. Channels activated by the endogenous kinase exhibited identical changes in gating behavior to those activated by exogenous PKA, including uncoupling from the influence of cytosolic Ca2+. We show that the endogenous kinase is both Ca2+-dependent and sensitive to inhibitors of PKC. Moreover, the Ca2+-dependent, endogenous kinase–induced changes in RyR2 gating do not appear to be related to phosphorylation of serine-2809. Further work is required to investigate the identity and physiological role of this Ca2+-dependent endogenous kinase that can uncouple RyR2 gating from direct cytosolic Ca2+ regulation.  相似文献   

6.
Here we examined whether Ca2+/Calmodulin (CaM) is involved in abscisic acid (ABA)-induced antioxidant defense and the possible relationship between CaM and H2O2 in ABA signaling in leaves of maize (Zea mays L.) plants exposed to water stress. An ABA-deficient mutant vp5 and its wild type were used for the experimentation. We found that water stress enhanced significantly the contents of CaM and H2O2, and the activities of chloroplastic and cytosolic superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and the gene expressions of the CaM1, cAPX, GR1 and SOD4 in leaves of wild-type maize. However, the increases mentioned above were almost arrested in vp5 plants and in the wild-type plants pretreated with ABA biosynthesis inhibitor tungstate (T), suggesting that ABA is required for water stress-induced H2O2 production, the enhancement of CaM content and antioxidant defense. Besides, we showed that the up-regulation of water stress-induced antioxidant defense was almost completely blocked by pretreatment with Ca2+ inhibitors, CaM antagonists and reactive oxygen (ROS) manipulators. Moreover, the analysis of time course of CaM and H2O2 production under water stress showed that the increase in CaM content preceded that of H2O2. These results suggested that Ca2+/CaM and H2O2 were involved in the ABA-induced antioxidant defense under water stress, and the increases of Ca2+/CaM contents triggered H2O2 production, which inversely affected the contents of CaM. Thus, a cross-talk between Ca2+/CaM and H2O2 may play a pivotal role in the ABA signaling.  相似文献   

7.
Calcium and Ca2+/calmodulin‐dependent protein kinase (CCaMK) plays a critical role in the signaling pathway that establishes root nodule symbiosis and arbuscular mycorrhizal symbiosis. Calcium‐dependent autophosphorylation is central to the regulation of CCaMK, and this has been shown to promote calmodulin binding. Here, we report a regulatory mechanism of Medicago truncatula CCaMK (MtCCaMK) through autophosphorylation of S344 in the calmodulin‐binding/autoinhibitory domain. The phospho‐ablative mutation S344A did not have significant effect on its kinase activities, and supports root nodule symbiosis and arbuscular mycorrhizal symbiosis, indicating that phosphorylation at this position is not required for establishment of symbioses. The phospho‐mimic mutation S344D show drastically reduced calmodulin‐stimulated substrate phosphorylation, and this coincides with a compromised interaction with calmodulin and its interacting partner, IPD3. Functional complementation tests revealed that the S344D mutation blocked root nodule symbiosis and reduced the mycorrhizal association. Furthermore, S344D was shown to suppress the spontaneous nodulation associated with a gain‐of‐function mutant of MtCCaMK (T271A), revealing that phosphorylation at S344 of MtCCaMK is adequate for shutting down its activity, and is epistatic over previously identified T271 autophosphorylation. These results reveal a mechanism that enables CCaMK to ‘turn off’ its function through autophosphorylation.  相似文献   

8.
Our previous results have demonstrated that both nitric oxide (NO) and hydrogen peroxide (H2O2) are involved in the promotion of adventitious root development in marigold (Tagetes erecta L.). However, not much is known about the intricate molecular network of adventitious root development triggered by NO and H2O2. In this study, the involvement of calcium (Ca2+) and calmodulin (CaM) in NO- and H2O2-induced adventitious rooting in marigold was investigated. Exogenous Ca2+ was capable of promoting adventitious rooting, with a maximal biological response at 50 μM CaCl2. Ca2+ chelators and CaM antagonists prevented NO- and H2O2-induced adventitious rooting, indicating that both endogenous Ca2+ and CaM may play crucial roles in the adventitious rooting induced by NO and H2O2. NO and H2O2 treatments increased the endogenous content of Ca2+ and CaM, suggesting that NO and H2O2 enhanced adventitious rooting by stimulating the endogenous Ca2+ and CaM levels. Moreover, treatment with Ca2+ enhanced the endogenous levels of NO and H2O2. Additionally, Ca2+ might be involved as an upstream signaling molecule for CaM during NO- and H2O2-induced rooting. Altogether, the results suggest that both Ca2+ and CaM are two downstream signaling molecules in adventitious rooting induced by NO and H2O2.  相似文献   

9.
Antibodies AB60–72 and AB80–92 against two immune-dominant epitopes of photoreceptor Ca2+-binding protein recoverin, 60-DPKAYAQHVFRSF-72 and 80-LDFKEYVIALHMT-92, which can be exposed in a Ca2+-dependent manner, were obtained. The presence of AB60–72 or AB80–92 results in a slight increase in Ca2+-affinity of recoverin and does not affect significantly a Ca2+-myristoyl switch mechanism of the protein. However in the presence of AB60–72 or AB80–92 recoverin loses its ability to interact with rhodopsin kinase and consequently to perform a function of Ca2+-sensitive inhibitor of rhodopsin phosphorylation in photoreceptor cells.  相似文献   

10.
The 5′-adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of the cellular energy metabolism and may induce either cell survival or death. We previously reported that in SH-SY5Y human neuroblastoma cells stimulation of muscarinic acetylcholine receptors (mAChRs) activate AMPK by triggering store-operated Ca2+ entry (SOCE). However, whether mAChRs may control AMPK activity by regulating additional mechanisms beyond SOCE remains to be investigated. In the present study we examined the effects of mAChRs on AMPK when SOCE was induced by the sarco–endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. We found that in SH-SY5Y cells depleted of Ca2+ by thapsigargin, the re-addition Ca2+ to the medium stimulated AMPK phosphorylation at Thr172, which is required for full kinase activity. This response occurred through SOCE, as it was blocked by either the SOCE modulator 2-aminoethoxydiphephenyl borate, knockdown of the SOCE molecular component STIM1, or inhibition of Ca2+/calmodulin (CaM)-dependent protein kinase kinase β (CaMKKβ). In thapsigargin-pretreated cells, stimulation of pharmacologically defined M3 mAChRs potentiated SOCE-induced AMPK activation. This potentiation did not involve an increased Ca2+ influx, but was associated with CaM mobilization from membrane to cytosol, increased CaM/CaMKKβ interaction, and enhanced CaMKK stimulation by thapsigargin-induced SOCE. In thapsigargin-pretreated cells Ca2+ re-addition stimulated glucose uptake and increased the membrane expression of the glucose transporter GLUT1. Both responses were significantly potentiated by mAChRs. These data indicate that in human neuroblastoma cells mAChRs up-regulate AMPK and the downstream glucose uptake by triggering not only SOCE but also CaM translocation and enhanced formation of active CaM/CaMKKβ complexes.  相似文献   

11.
Ca2+ enhanced the transformation frequency of Thermoactinomyces vulgaris (stock no. 1278) of an auxotrophic strain by the chromosomal DNA isolated from a prototrophic strain (stock no. 1227). The number of transformants showed a marked increase with increasing concentration of CaCl2 upto 0.05 mM; and above this concentration, the transformation frequency decreased significantly. Antipsychotic drugs that are potent calmodulin inhibitors, like trifluoperazine and chlorpromazine, when applied in the concentration range of 0.01–0.04 mM along with optimal CaCl2 concentration to the cultures of the recipient cells, resulted in a significant inhibition in the frequency of Ca2+-stimulated transformation. The results of present investigation suggest the involvement of a Ca2+-dependent protein activator in the development of Ca2+-mediated competence, which could have played an important role in the enhancement of genetic transformation in this aerobic spore forming thermophilic actinomycete. Received: 21 May 2002 / Accepted: 21 June 2002  相似文献   

12.
The calcium-sensitive forms of adenylyl cyclases (AC) have been revealed in the majority of vertebrate and invertebrate animals, as well as in several representatives of unicellular organisms, including infusoria. We have found for the first time that the AC activity in the infusorian Tetrahymena pyriformis changes in the presence of calcium ions. Calcium ions at concentrations of 0.2–20 μM stimulated the activity of this enzyme, with the maximum of the stimulatory effect being observed at 2 μM Ca2+. At a concentration of 100 μM and higher, the calcium cations inhibited the AC activity. Antagonists of calmodulin W-5 and W-7 at concentrations of 20–100 μM decreased the stimulatory effect of 5 μM Ca2+, while at the higher concentrations inhibited it completely. Another calmodulin antagonist, chloropromazine, decreased the Ca2+-stimulated AC activity only at concentrations of 200–1000 μM. The stimulatory effect of serotonin, EGF, and cAMP on AC activity was enhanced in the presence of 5 μM Ca2+. The stimulatory effect of EGF, cAMP, and insulin on AC was decreased in the presence of 100 μM Ca2+, while the effect of cAMP was also observed in the presence of calmodulin antagonists (500 μM). At the same time, stimulatory effect of D-glucose did not change in the presence of Ca2+ and calmodulin antagonists. The obtained data indicate that, in the infusorian T. pyriformis, there are calcium-sensitive forms of AC that can be stimulated by EGF, cAMP, insulin, and serotonin.  相似文献   

13.
The plasma membrane Ca2+-ATPase (PMCA) removes Ca2+ from the cytosol into the extracellular space. Its catalytic activity can be stimulated by calmodulin (CaM) or by limited proteolysis. We evaluated the effect of chlorpromazine (CPZ) and dimethyl sulfoxide (DMSO) over the hydrolytic activity of PMCA. Activity was monitored in three different forms: native, CaM-activated and proteolyzed by trypsin. CPZ appears to inhibit PMCA without directly interfering with the C-terminal site, since it is affected by CaM and proteolysis. Although the treatment of PMCA with trypsin and CaM produces an activation, it also produces an enzymatic form that is more sensitive to inhibition by CPZ. The same case was observed in the DMSO inhibition experiments. In the absence of CPZ, DMSO produces a progressive loss of activity, but in the presence of CPZ the profile of activity against DMSO changes and produces a recovery of activity, indicating a possible partition of CPZ by the solvent. Increasing Ca2+ concentrations indicated that CPZ interacts with PMCA rather than with CaM. This observation is supported by docking analysis that suggests that the CPZ-PMCA interaction is non-competitive. We propose that CPZ interacts with the state of lower affinity for Ca2 +.  相似文献   

14.
Protein–protein interactions play central roles in physiological and pathological processes. The bases of the mechanisms of drug action are relevant to the discovery of new therapeutic targets. This work focuses on understanding the interactions in protein–protein–ligands complexes, using proteins calmodulin (CaM), human calcium/calmodulin‐dependent 3′,5′‐cyclic nucleotide phosphodiesterase 1A active human (PDE1A), and myosin light chain kinase (MLCK) and ligands αII–spectrin peptide (αII–spec), and two inhibitors of CaM (chlorpromazine (CPZ) and malbrancheamide (MBC)). The interaction was monitored with a fluorescent biosensor of CaM (hCaM M124C–mBBr). The results showed changes in the affinity of CPZ and MBC depending on the CaM–protein complex under analysis. For the Ca2+–CaM, Ca2+–CaM–PDE1A, and Ca2+–CaM–MLCK complexes, CPZ apparent dissociation constants (Kds) were 1.11, 0.28, and 0.55 μM, respectively; and for MBC Kds were 1.43, 1.10, and 0.61 μM, respectively. In competition experiments the addition of calmodulin binding peptide 1 (αII–spec) to Ca2+hCaM M124C–mBBr quenched the fluorescence (Kd = 2.55 ± 1.75 pM) and the later addition of MBC (up to 16 μM) did not affect the fluorescent signal. Instead, the additions of αII–spec to a preformed Ca2+hCaM M124C–mBBr–MBC complex modified the fluorescent signal. However, MBC was able to displace the PDE1A and MLCK from its complex with Ca2+–CaM. In addition, docking studies were performed for all complexes with both ligands showing an excellent correlation with experimental data. These experiments may help to explain why in vivo many CaM drugs target prefer only a subset of the Ca2+–CaM regulated proteins and adds to the understanding of molecular interactions between protein complexes and small ligands. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A hallmark feature of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) regulation is the generation of Ca2+-independent autonomous activity by Thr-286 autophosphorylation. CaMKII autonomy has been regarded a form of molecular memory and is indeed important in neuronal plasticity and learning/memory. Thr-286-phosphorylated CaMKII is thought to be essentially fully active (∼70–100%), implicating that it is no longer regulated and that its dramatically increased Ca2+/CaM affinity is of minor functional importance. However, this study shows that autonomy greater than 15–25% was the exception, not the rule, and required a special mechanism (T-site binding; by the T-substrates AC2 or NR2B). Autonomous activity toward regular R-substrates (including tyrosine hydroxylase and GluR1) was significantly further stimulated by Ca2+/CaM, both in vitro and within cells. Altered Km and Vmax made autonomy also substrate- (and ATP) concentration-dependent, but only over a narrow range, with remarkable stability at physiological concentrations. Such regulation still allows molecular memory of previous Ca2+ signals, but prevents complete uncoupling from subsequent cellular stimulation.  相似文献   

16.
GTPases of the Ras-related RGK family are negative regulators of high voltage-activated (HVA) Ca2+ channel activity. In this study, we examined the role of calmodulin (CaM) association in Rem-mediated Ca2+ channel inhibition. We found that the Rem/CaM interaction is Ca2+-dependent, and that truncation of the Rem C-terminus before position 277 prevents CaM binding. Serial mutagenesis of the Rem C-terminus between residues 265 and 276 to alanine generated two mutants (RemL271A and RemL274A) that displayed reduced CaM binding, and a subset of these mutants displayed significantly lower cell periphery localization than RemWT. However, reductions in CaM association or membrane trafficking did not affect function, as all Rem mutants could completely inhibit Ca2+ channels. The Rem1–275 truncation mutant partially inhibited Ca2+ channel activity despite its inability to bind CaM. Taken together, these studies indicate that CaM association is not essential for either Rem-mediated Ca2+ channel inhibition or plasma membrane localization. Jonathan Satin is an established investigator of the American Heart Association.  相似文献   

17.
Im CS  Beale SI 《Planta》2000,210(6):999-1005
 Light-induced expression of the Gsa gene encoding the heme and chlorophyll biosynthetic enzyme glutamate 1-semialdehyde aminotransferase in Chlamydomonas reinhardtii was previously shown to involve Ca2+ and calmodulin (CaM) (C. lm et al. 1996, Plant Cell 8: 2245–2253). To further analyze the signal transduction pathway for light-induced Gsa expression, the effects of several pharmacological agents were examined. Treatment of light-dark synchronized cells with the heterotrimeric G-protein agonist Mas-7 caused partial induction of Gsa in the dark. The phospholipase C inhibitor U73122 inhibited light induction of Gsa. Exposure of cells to light caused a sustained 3-fold increase in cellular d-inositol 1,4,5-trisphosphate (InsP3) concentration. KN-93, a specific inhibitor of Ca2+/CaM-dependent protein kinase II, inhibited light induction of Gsa. In contrast, cyclosporin A, a specific inhibitor of the Ca2+/CaM-dependent phosphoprotein phosphatase calcineurin, did not affect light induction of Gsa. These results, together with the earlier results, suggest the involvement of a canonical signal transduction pathway for light-regulated Gsa expression that involves a heterotrimeric G-protein activation, phospholipase C-catalyzed InsP3 formation, InsP3-dependent Ca2+ release, and activation of a downstream signaling pathway through a Ca2+/CaM-dependent protein kinase. Received: 21 October 1999 / Accepted: 3 December 1999  相似文献   

18.
Adhesion of tumor cells to endothelial cells is known to be involved in the hematogenous metastasis of cancer, which is regulated by hypoxia. Hypoxia is able to induce a significant increase in free intracellular Ca2+ levels in both tumor cells and endothelial cells. Here, we investigate the regulatory effects of calmodulin (CaM), an intracellular calcium mediator, on tumor cell–endothelial cell adhesion under hypoxic conditions. Hypoxia facilitates HeLa cell–ECV304 endothelial cell adhesion, and results in actin cytoskeleton rearrangement in both endothelial cells and tumor cells. Suppression of CaM activation by CaM inhibitor W-7 disrupts actin cytoskeleton organization and CaM distribution in the cell–cell contact region, and thus inhibits cell–cell adhesion. CaM inhibitor also downregulates hypoxia-induced HIF-1-dependent gene expression. These results suggest that the Ca2+-CaM signaling pathway might be involved in tumor cell-endothelial cell adhesion, and that co-localization of CaM and actin at cell–cell contact regions might be essential for this process under hypoxic stress. W.-G. Shen and W.-X. Peng Contributed to this paper equally  相似文献   

19.
Multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) is a prominent mediator of neurotransmitters which elevate Ca2+. It coordinates cellular responses to external stimuli by phosphorylating proteins involved in neurotransmitter synthesis, neurotransmitter release, carbohydrate metabolism, ion flux and neuronal plasticity. Structure/function studies of CaM kinase have provided insights into how it decodes Ca2+ signals. The kinase is kept relatively inactive in its basal state by the presence of an autoinhibitory domain. Binding of Ca2+/calmodulin eliminates this inhibitory constraint and allows the kinase to phosphorylate its substrates, as well as itself. This autophosphorylation significantly slows dissociation of calmodulin, thereby trapping calmodulin even when Ca2+ levels are subthreshold. The kinase may respond particularly wel to multiple Ca2+ spikes since trapping may enable a spike frequency-dependent recruitment of calmodulin with each successive Ca2+ spike leading to increased activation of the kinase. Once calmodulin dissociates, CaM kinase remains partially active until it is dephosphorylated, providing for an additional period in which its response to brief Ca2+ transients is potentiated.Special issue dedicated to Dr. Paul Greengard.  相似文献   

20.
Hsieh WL  Pierce WS  Sze H 《Plant physiology》1991,97(4):1535-1544
Ca2+-ATPases keep cytoplasmic [Ca2+] low by pumping Ca2+ into intracellular compartments or out of the cell. The transport properties of Ca2+-pumping ATPases from carrot (Daucus carota cv Danvers) tissue culture cells were studied. ATP-dependent Ca2+ transport in vesicles that comigrated with an endoplasmic reticulum marker, was stimulated three- to fourfold by calmodulin. Cyclopiazonic acid (a specific inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) partially inhibited oxalate-stimulated Ca2+ transport activity; however, it had no effect on calmodulin-stimulated Ca2+ uptake driven by ATP or GTP. The results would suggest the presence of two types of Ca2+-ATPases, an endoplasmic reticulum- and a plasma membrane-type. Interestingly, incubation of membranes with [gamma32P]ATP resulted in the formation of a single acyl [32P]phosphoprotein of 120 kilodaltons. Formation of this phosphoprotein was dependent on Ca2+, but independent of Mg2+. Its enhancement by La3+ is characteristic of a phosphorylated enzyme intermediate of a plasma membrane-type Ca-ATPase. Calmodulin stimulated Ca2+ transport was decreased by W-7 (a calmodulin antagonist), ML-7 (myosin light chain kinase inhibitor) or thyroxine. Acidic phospholipids, like phosphatidylserine, stimulated Ca2+ transport, similar to their effect on the erythrocyte plasma membrane Ca2+-ATPase. These results would indicate that the calmodulin-stimulated Ca2+ transport originated in large part from a plasma membrane-type Ca2+ pump of 120 kilodaltons. The possibility of calmodulin-stimulated Ca2+-ATPases on endomembranes, such as the endoplasmic reticulum and secretory vesicles, as well as the plasma membrane is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号