首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Pathogen resistance and genetic variation at MHC loci   总被引:14,自引:0,他引:14  
Abstract.— Balancing selection in the form of heterozygote advantage, frequency-dependent selection, or selection that varies in time and/or space, has been proposed to explain the high variation at major histocompatibility complex (MHC) genes. Here the effect of variation of the presence and absence of pathogens over time on genetic variation at multiallelic loci is examined. In the basic model, resistance to each pathogen is conferred by a given allele, and this allele is assumed to be dominant. Given that s is the selective disadvantage for homozygotes (and heterozygotes) without the resistance allele and the proportion of generations, which a pathogen is present, is e , fitnesses for homozygotes become (1 — s )(n-1)e and the fitnesses for heterozygotes become (1 — s )(n-2)e, where n is the number of alleles. In this situation, the conditions for a stable, multiallelic polymorphism are met even though there is no intrinsic heterozygote advantage. The distribution of allele frequencies and consequently heterozygosity are a function of the autocorrelation of the presence of the pathogen in subsequent generations. When there is a positive autocorrelation over generations, the observed heterozygosity is reduced. In addition, the effects of lower levels of selection and dominance and the influence of genetic drift were examined. These effects were compared to the observed heterozygosity for two MHC genes in several South American Indian samples. Overall, resistance conferred by specific alleles to temporally variable pathogens may contribute to the observed polymorphism at MHC genes and other similar host defense loci.  相似文献   

2.
Cutrera AP  Lacey EA 《Immunogenetics》2007,59(12):937-948
Balancing selection acting over the evolutionary history of a lineage can result in the retention of alleles among species for longer than expected under neutral evolution. The associated pattern of trans-species polymorphism, in which similar or even identical alleles are shared among species, is often used to infer that balancing selection has occurred. The genes of the major histocompatibility complex (MHC) are thought to be subject to balancing selection that maintains alleles associated with response to specific pathogens. To explore the role of balancing selection in shaping MHC diversity in ctenomyid rodents, we examined allelic variability at the class II DRB and DQA loci in 18 species in the genus Ctenomys. Previous studies of four of these species had revealed significant within-population evidence of positive selection on MHC loci. The current study expands upon these analyses to (1) evaluate among-species evidence of positive selection and (2) explore the potential for balancing selection on MHC genes. Interspecific nucleotide sequence variation revealed significant evidence of positive selection on the DRB and DQA loci. At the same time, comparisons of phylogenetic trees for these MHC loci with a putative species tree based on mitochondrial sequence data revealed multiple examples of trans-specific polymorphism, including sharing of identical DRB and DQA alleles among distantly related species of Ctenomys. These findings suggest that MHC genes in these animals have historically been subject to balancing selection and yield new insights into the complex suite of forces shaping MHC diversity in free-living vertebrates.  相似文献   

3.
Certain major-histocompatibility-complex (MHC) loci are highly polymorphic, and the mechanism of maintenance of this polymorphism remains controversial. Recent studies of the pattern of nucleotide substitution at MHC loci have produced strong evidence that this polymorphism is maintained mainly by positive Darwinian selection that operates on the antigen recognition site (ARS) of the MHC molecule. The ARS of the class I MHC consists of three subregions: (1) the binding cleft, (2) T-cell-receptor-directed residues, and (3) outward-directed residues. Here we report that the rate of nonsynonymous nucleotide substitution is much higher in the binding cleft than in the other ARS subregions. Furthermore, nonsynonymous nucleotide substitutions that result in a change of residue side-chain charge occur significantly more frequently than expected by chance. We conclude that the main target of positive selection on the class I MHC molecules is the binding cleft of the ARS and that this selection acts primarily to promote diversity among alleles with respect to the pattern of residue side-chain charges (charge profile) in the binding cleft. These results provide additional support for the hypothesis that MHC polymorphism is maintained by overdominant selection relating to antigen-binding capacity and thus to disease resistance.  相似文献   

4.
The major histocompatibility complex (MHC) contains the most variable genes in vertebrates, but despite extensive research, the mechanisms maintaining this polymorphism are still unresolved. One hypothesis is that MHC polymorphism is a result of balancing selection operating by overdominance, but convincing evidence for overdominant selection in natural populations has been lacking. We present strong evidence consistent with MHC-specific overdominance in a free-living population of Arctic charr (Salvelinus alpinus) in northernmost Europe. In this population, where just two MHC alleles were observed, MHC heterozygous fish had a lower parasite load, were in better condition (as estimated by a fatness indicator) and had higher survival under stress than either of the homozygotes. Conversely, there was no consistent association between these fitness measures and assumedly neutral microsatellite variability, indicating an MHC-specific effect. Our results provide convincing empirical evidence consistent with the notion that overdominance can be an important evolutionary mechanism contributing to MHC polymorphism in wild animal populations. They also support a recent simulation study indicating that the number of alleles expected to be maintained at an MHC loci can be low, even under strong heterozygote advantage.  相似文献   

5.
Major histocompatibility complex (MHC) antigen-presenting genes are the most variable loci in vertebrate genomes. Host-parasite co-evolution is assumed to maintain the excessive polymorphism in the MHC loci. However, the molecular mechanisms underlying the striking diversity in the MHC remain contentious. The extent to which recombination contributes to the diversity at MHC loci in natural populations is still controversial, and there have been only few comparative studies that make quantitative estimates of recombination rates. In this study, we performed a comparative analysis for 15 different ungulates species to estimate the population recombination rate, and to quantify levels of selection. As expected for all species, we observed signatures of strong positive selection, and identified individual residues experiencing selection that were congruent with those constituting the peptide-binding region of the human DRB gene. However, in addition for each species, we also observed recombination rates that were significantly different from zero on the basis of likelihood-permutation tests, and in other non-quantitative analyses. Patterns of synonymous and non-synonymous sequence diversity were consistent with differing demographic histories between species, but recent simulation studies by other authors suggest inference of selection and recombination is likely to be robust to such deviations from standard models. If high rates of recombination are common in MHC genes of other taxa, re-evaluation of many inference-based phylogenetic analyses of MHC loci, such as estimates of the divergence time of alleles and trans-specific polymorphism, may be required.  相似文献   

6.
Wiuf C  Zhao K  Innan H  Nordborg M 《Genetics》2004,168(4):2363-2372
Balancing selection may result in trans-specific polymorphism: the maintenance of allelic classes that transcend species boundaries by virtue of being more ancient than the species themselves. At the selected site, gene genealogies are expected not to reflect the species tree. Because of linkage, the same will be true for part of the surrounding chromosomal region. Here we obtain various approximations for the distribution of the length of this region and discuss the practical implications of our results. Our main finding is that the trans-specific region surrounding a single-locus balanced polymorphism is expected to be quite short, probably too short to be readily detectable. Thus lack of obvious trans-specific polymorphism should not be taken as evidence against balancing selection. When trans-specific polymorphism is obvious, on the other hand, it may be reasonable to argue that selection must be acting on multiple sites or that recombination is suppressed in the surrounding region.  相似文献   

7.
Li WH 《Genetics》1978,90(2):349-382
Formulae are developed for the distribution of allele frequencies (the frequency spectrum), the mean number of alleles in a sample, and the mean and variance of heterozygosity under mutation pressure and under either genic or recessive selection. Numerical computations are carried out by using these formulae and Watterson's (1977) formula for the distribution of allele frequencies under overdominant selection. The following properties are observed: (1) The effect of selection on the distribution of allele frequencies is slight when 4Ns 相似文献   

8.
The major histocompatibility complex is one of the best studied systems in vertebrates providing evidence for the long-term action of selection. Here, we examined the intra- and inter-population genetic diversity of the MHC class II DRB locus in European brown hare (Lepus europaeus) and correlated the results with genetic variability already estimated from the MHC DQA locus and from maternally (mitochondrial DNA (mtDNA)) and biparentally (allozymes, microsatellites) inherited loci. L. europaeus showed remarkable genetic polymorphism in both DQA and DRB1 loci. The Anatolian populations exhibited the highest genetic polymorphism for both loci. Balancing selection has established increased variability in the European populations despite the founder effects after the last glaciation. Different evolutionary rates were traced for DRB1 and DQA loci, as evidenced by the higher number of common DRB1 than DQA alleles and the greater differences between DRB1 alleles with common origin in comparison with DQA alleles. The high number of rare alleles with low frequencies detected implies that frequency-dependent selection drives MHC evolution in the brown hare through the advantage of rare alleles. Both loci were under the influence of positive selection within the peptide-binding region. The functional polymorphism, recorded as amino acid substitutions within the binding pockets, fell also within distinct geographic patterns, yet it was much narrower than the genetic polymorphism. We hypothesize that certain structural and functional characteristics of the binding pockets set limitations to the actual shape of genetic polymorphism in MHC.  相似文献   

9.
Maruyama T  Nei M 《Genetics》1981,98(2):441-459
Mathematical properties of the overdominance model with mutation and random genetic drift are studied by using the method of stochastic differential equations (Itô and McKean 1974). It is shown that overdominant selection is very powerful in increasing the mean heterozygosity as compared with neutral mutations, and if 2Ns (N = effective population size; s = selective disadvantage for homozygotes) is larger than 10, a very low mutation rate is sufficient to explain the observed level of allozyme polymorphism. The distribution of heterozygosity for overdominant genes is considerably different from that of neutral mutations, and if the ratio of selection coefficient (s) to mutation rate (ν) is large and the mean heterozygosity (h) is lower than 0.2, single-locus heterozygosity is either approximately 0 or 0.5. If h increases further, however, heterozygosity shows a multiple-peak distribution. Reflecting this type of distribution, the relationship between the mean and variance of heterozygosity is considerably different from that for neutral genes. When s/v is large, the proportion of polymorphic loci increases approximately linearly with mean heterozygosity. The distribution of allele frequencies is also drastically different from that of neutral genes, and generally shows a peak at the intermediate gene frequency. Implications of these results on the maintenance of allozyme polymorphism are discussed.  相似文献   

10.
Ohashi J  Tokunaga K 《Genetics》2000,155(2):921-927
The sojourn times until fixation of an overdominant allele were investigated based on the diffusion equation. Furthermore, the rate of accumulation of mutations, or the substitution rate, was predicted from the mean extinction time of a common overdominant allele. The substitution rate calculated theoretically agreed well with that determined by computer simulation. Overdominant selection enhances the polymorphism at linked loci, while its effect on the sojourn times and the substitution rate at linked loci has not been studied yet. To solve these problems, a model that assumed two linked loci, each with infinite alleles, was examined by computer simulation. A decrease in the recombination rate between two loci markedly changed the distribution of sojourn times of a neutral allele. Although overdominant selection obviously increased the sojourn times and the polymorphism at a linked locus, the rate of nucleotide substitution at the neutral locus was not influenced significantly even if complete linkage was assumed. These results suggest that, in regions containing overdominant genes, linked neutral loci will exhibit elevated levels of polymorphism, but their rate of molecular evolution remains that predicted by neutral theory.  相似文献   

11.
Two hundred and ninety second chromosomes extracted from a natural population of Drosophila melanogaster were analyzed to estimate the genetic variance of viability and its components by means of a partial diallel cross (Design II of Comstock and Robinson 1952). The additive and dominance variances are estimated to be 0.009 and 0.0012. Using the dominance variance and the inbreeding depression, the effective number of overdominant loci contributing to the variance in viability is estimated to be very small, a dozen or less. Either the actual number of loci is small, or the distribution of viabilities is strongly skewed with a large majority of very weakly selected loci. The additive variance in viability appears to be too large to be accounted for by recurrent harmful mutants or by overdominant loci at equilibrium with various genetic parameters estimated independently. The excess might be due to frequency-dependent selection, to negative correlations between viability and fertility, or possibly to the presence of a mutator. The selection for viability and fertility, or possibly to the presence of a mutator. The selection for viability at the average polymorphic locus must be very slight, of the order of 10(-3) or less.  相似文献   

12.
Sequence variability at three major histocompatibility complex (MHC) genes (DQB, DRA, and MHC-I) of cetaceans was investigated in order to get an overall understanding of cetacean MHC evolution. Little sequence variation was detected at the DRA locus, while extensive and considerable variability were found at the MHC-I and DQB loci. Phylogenetic reconstruction and sequence comparison revealed extensive sharing of identical MHC alleles among different species at the three MHC loci examined. Comparisons of phylogenetic trees for these MHC loci with the trees reconstructed only based on non-PBR sites revealed that allelic similarity/identity possibly reflected common ancestry and were not due to adaptive convergence. At the same time, trans-species evolution was also evidenced that the allelic diversity of the three MHC loci clearly pre-dated species divergence events according to the relaxed molecular clock. It may be the forces of balancing selection acting to maintain the high sequence variability and identical alleles in trans-specific manner at the MHC-I and DQB loci.  相似文献   

13.
Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite‐mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection (“trans‐species polymorphism”), or alternatively favouring the independent emergence of functionally similar alleles post‐speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut–parasite communities in four sympatric lemurs. We tested for parasite‐MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co‐ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC‐parasite co‐evolution should be envisaged at the community level. We further show that balancing selection maintaining trans‐species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.  相似文献   

14.
It is often suggested that heterozygosity at major histocompatibility complex (MHC) loci confers enhanced resistance to infectious diseases (heterozygote advantage, HA, hypothesis), and overdominant selection should contribute to the evolution of these highly polymorphic genes. The evidence for the HA hypothesis is mixed and mainly from laboratory studies on inbred congenic mice, leaving the importance of MHC heterozygosity for natural populations unclear. We tested the HA hypothesis by infecting mice, produced by crossbreeding congenic C57BL/10 with wild ones, with different strains of Salmonella, both in laboratory and in large population enclosures. In the laboratory, we found that MHC influenced resistance, despite interacting wild-derived background loci. Surprisingly, resistance was mostly recessive rather than dominant, unlike in most inbred mouse strains, and it was never overdominant. In the enclosures, heterozygotes did not show better resistance, survival, or reproductive success compared to homozygotes. On the contrary, infected heterozygous females produced significantly fewer pups than homozygotes. Our results show that MHC effects are not masked on an outbred genetic background, and that MHC heterozygosity provides no immunological benefits when resistance is recessive, and can actually reduce fitness. These findings challenge the HA hypothesis and emphasize the need for studies on wild, genetically diverse species.  相似文献   

15.
Selection on MHC-linked microsatellite loci in sheep populations   总被引:2,自引:0,他引:2  
Microsatellites within the major histocompatibility complex (MHC) region have received increasing attention as proxy measures of the level of polymorphism at the Mhc genes themselves. We assessed the diversity of microsatellite loci within or in close proximity of the Mhc genes in several breeds of domestic sheep (Ovis aries) and the wild Mouflon (Ovis orientalis musimon). This was compared to variation at other microsatellite loci scattered throughout the sheep genome. Significantly higher number of alleles were observed at the MHC microsatellites. The sheep breeds studied fell into high- and low-diversity group. This grouping is not related to the agricultural use of the breeds, whether for milk, meat or wool. It is, however, correlated with the geographic origins of the breeds. Southern breeds are genetically more diverse than northern breeds. The observed heterozygosity was in most cases lower than Hardy-Weinberg expectations. The potential impact of selective breeding by man on this is discussed. Neutrality tests indicated that for most of the breeds, the distribution of alleles at the MHC-linked microsatellites are more even than would be expected if the genes were neutral and sampled from populations under drift-mutation equilibrium. Hitchhiking due to tight linkage with alleles at the MHC loci that are under balancing selection is proposed as a possible explanation for this pattern.  相似文献   

16.
Major histocompatibility complex (MHC) variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygous advantage or frequency-dependent selection. However, empirical support for these hypotheses under natural conditions is rare. In this study, we investigated the genetic constitution of the functionally important MHC class II gene (DRB exon 2) and the parasite load in a population of the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Fifty-eight individuals were genetically examined and the endoparasite load was quantified by counting fecal helminth eggs by using a modified McMaster technique. Thirty-four animals (58.6%) were infected. We identified 20 different MHC alleles with high levels of sequence divergence between alleles. Particularly, the antigen-binding sites revealed a significant higher rate of nonsynonymous substitutions (d(N)) than synonymous substitutions (d(S)), giving strong evidence of balancing selection. Heterozygosity did influence the infection status (being infected or not) and the individual fecal egg count (FEC) value with significantly higher values observed in homozygous individuals. Furthermore, a positive relationship was found between specific alleles and parasite load. The allele Rhpu-DRB*1 significantly occurred more frequently in infected individuals and in individuals with high FEC values (high parasite load). Individuals with the allele Rhpu-DRB*1 had a 1.5-fold higher chance of being infected than individuals without this allele (odds ratio test, P < 0.05). Contrarily, the allele Rhpu-DRB*8 significantly occurred more frequent in individuals with low FEC values. Our results support the hypotheses that MHC polymorphism in R. pumilio is maintained through pathogen-driven selection acting by both heterozygosity advantage and frequency-dependent selection.  相似文献   

17.
Genetic polymorphism and differentiation in wild and cultured sea bream samples were studied after amplification, cloning, and partial sequence of the major histocompatibility complex (MHC) class II alpha antigen. Forty-one alleles were detected from 43 unrelated individuals and sequence alignment of the obtained alleles revealed 28 polymorphic sites. High heterozygosity values and allelic richness were unveiled for both wild and cultured populations. The substitution pattern (dN /dS = 0.7) is not consistent with the effect of diversifying selection, indicating lower selection pressure on the a2 domain, as well as that too few advantageous non-synonymous mutations have accumulated as substrate for the diversifying selection to act. Comparison with previously published results on microsatellite markers suggests that balancing selection in MHC genes reduces the genetic drift and bottleneck effects that are common in aquaculture and which are known to reduce genetic variation at neutral markers. The present study stresses that both coding and non-coding loci should be analyzed for designing proper management strategies.  相似文献   

18.
Ohashi J  Tokunaga K 《Hereditas》2000,133(1):25-28
A high degree of polymorphism has been reported at the major histocompatibility class I chain-related gene A (MICA) locus, which is located 46 kb away from HLA-Bin the human major histocompatibility complex (MHC) class I region. Although it is known that the polymorphisms at the conventional MHC class I loci have been maintained by balancing selection, it is unclear whether positive natural selection is also operative in maintaining the polymorphism at the MICA locus. In order to explain the degree of polymorphism at the MICA locus, a computer simulation study was carried out. The high degree of polymorphism at the MICA locus (heterozygosity and number of polymorphic residues) could not be explained solely by balancing selection at the HLA-B locus even if no recombination was assumed between MICA and HLA-B. Although there is no definite evidence indicating that balancing selection is operative at the MICA locus, our results suggest that the MICA gene is subject to weak balancing selection.  相似文献   

19.
To understand the evolution of the class II major histocompatibility complex (MHC) DQB1 locus in primates, the second exons of seven DQB1 alleles from five non-human primate species were amplified by polymerase chain reaction. Comparisons of these and other primate sequences show that no between-species diversity is greater than within-species diversity, suggesting maintenance of DQB1 alleles through the history of Old-World primates. There is a preponderance of nonsynonymous nucleotide substitutions at antigen-binding-site codons; this pattern is in marked contrast to what is seen at the closely related, presumably nonfunctional DQB2 gene. The results support the hypothesis that DQB1 polymorphism is maintained by overdominant selection relating to antigen presentation.  相似文献   

20.
The major histocompatibility complex (MHC) genes are extremely polymorphic and this variation is assumed to be maintained by balancing selection. Cyclic interactions between pathogens and their hosts could generate such selection, and specific MHC alleles or heterozygosity at certain MHC loci have been shown to confer resistance against particular pathogens. Here we compare the temporal variation in allele frequencies of 23 MHC class I alleles with that of 23 neutral microsatellite markers in adult great reed warblers (a passerine bird) in nine successive cohorts. Overall, the MHC alleles showed a significantly higher variation in allele frequencies between cohorts than the microsatellite alleles, using a multi-variate genetic analysis (amova). The frequency of two specific MHC alleles, A3e (P = 0.046) and B4b (P = 0.0018), varied more between cohorts than expected from random, whereas none of the microsatellite alleles showed fluctuations exceeding the expectation from stochastic variation. These results imply that the variation in MHC allele frequencies between cohorts is not a result of demographic events, but rather an effect of selection favouring different MHC alleles in different years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号