首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

2.
Cytochromes P-450 with high activity toward benzo[a]pyrene were isolated from liver microsomes of rats treated with either β-naphthoflavone or 3-methylcholanthrene and examined for similarity using several physical and catalytic criteria. The β-naphthofla-vone-inducible cytochrome P-446 and the 3-methylcholanthrene-inducible cytochrome P-448 have the same subunit molecular weight (56,000 ± 1000) and electrophoretic mobility. Antibodies prepared to either form cross-react with each form without spurring in Ouchterlony double-diffusion experiments suggesting immunochemical identity. After proteolytic digestion with Staphylococcus aureus SV-8 protease and electrophoresis, both Cytochromes P-450 show the presence of the same bands. Both cytochromes have the same absorption maximum (446.5 ± 0.5 nm) in the CO-reduced absolute spectrum. The catalytic activity toward benzo[a]pyrene of cytochrome P-446 is somewhat greater than that of cytochrome P-448. Thus, all the physical evidence suggests identity of the two cytochromes. The significance of the difference in catalytic activity remains to be defined.  相似文献   

3.
When Bacillus megaterium ATCC 14581 is grown in the presence of barbiturates, a cytochrome P-450-dependent fatty acid monooxygenase (Mr 120 000) is induced (Kim, B.-H. and Fulco, A.J. (1983) Biochem. Biophys. Res. Commun. 116, 843–850). Gel filtration chromatography of a crude monooxygenase preparation from pentobarbital-induced B. megaterium indicated that not all of the induced cytochrome P-450 present in the extract was accounted for by this high-molecular-weight component. Further purification revealed the presence of two additional but smaller cytochrome P-450 species. The minor component, designated cytochrome P-450BM-2, had a molecular mass of about 46 kDa, but has not yet been completely purified or further characterized. The major component, designated cytochrome P-450BM-1, was obtained in pure form, exhibited fatty acid monooxygenase activity in the presence of iodosylbenzenediacetate, and has been extensively characterized. Its Mr of 38 000 makes it the smallest cytochrome P-450 yet purified to homogeneity. Although it is a soluble protein, a complete amino acid analysis indicated that it contains 42% hydrophobic residues. By the dansyl chloride procedure the NH2-terminal amino acid is proline; the penultimate NH2-terminal residue is alanine. The absolute absorption spectra of cytochrome P-450BM-1 show maxima in the same general regions as do P-450 cytochromes from mammalian or other bacterial sources, but they differ in detail. The oxidized form of P-450BM-1 has absorption maxima at 414, 533 and 567 nm, while the reduced form has peaks at 410 and 540 nm. The absorption maxima for the CO-reduced form of P-450BM-1 are found at 415, 448 and 550 nm. Antisera from rabbits immunized with pure P-450BM-1 strongly reacted with and precipitated this P-450, but showed no detectable affinity for either the 46 kDa P-450 or the 120 kDa fatty acid monooxygenase.  相似文献   

4.
The hydroxylation of N- and O-methyl drugs and polycyclic hydrocarbons has been demonstrated in microsomes prepared from colon mucosal cells. The hydroxylation of the drugs benzphetamine, ethylmorphine, p-nitroanisole, and p-nitrophenetole by colon microsomes is inducible two- to fourfold by pretreatment with phenobarbital/hydrocortisone. Colon microsomal benzo[α]pyrene hydroxylation is inducible 35-fold by pretreatment with β-naphthoflavone. Phenobarbital/hydrocortisone pretreatment also induces a fourfold increase in the specific content of colon microsomal cytochrome P-450, while β-naphthoflavone pretreatment causes a shift in the reduced CO difference spectrum peak to 448 nm and an eightfold increase in the specific content of this cytochrome. SKF 525-A inhibits the hydroxylation of the drug benzphetamine by colon microsomes or liver microsomes by 77% at a concentration of 2.0 mm. 7,8-Benzoflavone, on the other hand, inhibits the hydroxylation of the polycyclic hydrocarbon benzo[α]pyrene by colon microsomes by 76% and by liver microsomes by 44% at a concentration of 10 μm. Carbon monoxide, an inhibitor of oxygen interaction with cytochromes P-450 and P-448, inhibits benzphetamine hydroxylation and benzpyrene hydroxylation by colon microsomes 30 and 51%, respectively, at an oxygen to carbon monoxide ratio of 1:10. The Km values of colon microsomal cytochrome P-450 reductase for the artificial electron acceptors cytochrome c, dichloroindophenol, and ferricyanide (10–77 μm) are in agreement with those for purified rat liver cytochrome P-450 reductase. These data support the conclusions that hydroxylation of drugs and polycyclic hydrocarbons is catalyzed by colon mucosal microsomes and that the hydroxylation activity is attributable to a cytochrome P-450-dependent drug metabolism system similar to that found in liver microsomes.  相似文献   

5.
The effect of various pretreatments on the activities of several drug metabolizing enzymes was investigated in microsomes and postmicrosomal supernatant fractions isolated from whole body homogenates of Drosophila melanogaster larvae of different strains. Pretreatments of larvae with either phenobarbital (PB), β-naphthoflavone (BNF) or a mixture of polychlorinated biphenyls (Aroclor 1254, PCB) for 24 h increased microsomal benzo[a]pyrene (BP) monooxygenase activity 2- to 6-fold in all strains as compared to untreated larvae. A simultaneous increase in the contents of cytochrome P-450 occurred after pretreatment with PB and PCB. Comparison of the turnover rates of BP per molecule of cytochrome P-450 indicated that BP was a poor substrate for control cytochrome P-450 whereas BNF induced a most active hemoprotein for this metabolism. Marked differences in the qualitative pattern of BP metabolites were obtained between microsomes isolated from BNF-treated larvae or rat liver microsomes. 3-Hydroxy-BP (3-OH-BP) was the dominating metabolite with both preparations, while the BP dihydrodiols were formed in minor quantities in Drosophila as compared to rat liver. Metyrapone and SKF 525-A inhibited BP metabolism in microsomes isolated from untreated and BNF treated larvae of all strains. In contrast, α-naphthoflavone (ANF) stimulated the BP monooxygenase activity of microsomes isolated from untreated larvae approx. 3-fold but only slightly influenced the activity of microsomes from BNF treated larvae indicating that the latter species of cytochrome P-450 was less sensitive to ANF.In all strains, PCB and PB treatments approximately doubled microsomal epoxide hydrolase activity and increased cytosolic glutathione-S-transferase activity 25–60%, significant only in strain Berlin K after PB treatment. The activities of epoxide hydrolase and glutathione-S-transferase in control larvae were comparable in the different strains, whereas the content of cytochrome P-450 and BP monooxygenase activity was higher in the Hikone R strain. Variability in the induction response to the various pretreatment was observed among the three strains.  相似文献   

6.
Human liver cytochrome P-450 was isolated from autopsy samples using cholate extraction and chromatography on n-octylamino-Sepharose 4B, hydroxylapatite, and DEAE-cellulose gels. Purified preparations contained as much as 14 nmol cytochrome P-450 mg?1 protein, were free of other hemoproteins, and were active in the mixed-function oxidation of d-benzphetamine and 7-ethoxycoumarin when coupled with either rat or human liver NADPH-cytochrome P-450 reductase. Some of the preparations were apparently homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; apparent subunit Mrs estimated for several preparations were 53,000 or 55,500. The amino acid composition of one preparation was determined and found to resemble those of rat liver cytochromes P-450, although some variations were noted. Rabbit antibodies raised to phenobarbital-treated rat liver cytochrome P-450 were more effective in inhibiting d-benzphetamine N-demethylase activity in human liver microsomes than were antibodies raised to 3-methylcholanthrene-treated rat liver cytochrome P-450. These antibodies also inhibited benzo(a)pyrene hydroxylation in human liver microsomes, although the inhibition patterns did not follow a general pattern as in the case of benzphetamine demethylase activity. Microsomes prepared from three different human liver samples were more effective in eliciting complement fixation with antibodies raised to phenobarbitalthan to 3-methylcholanthrene-treated rat liver cytochrome P-450. Complement fixation in such systems appears to result from similarity of certain rat and human liver cytochrome P-450 antigenic determinants, as fixation could be inhibited by removal of cytochrome P-450-directed antibodies from the total immunoglobulin population and purified human cytochrome P-450 was more effective (on a protein basis) than liver microsomes in producing fixation. Human liver microsomes prepared from five different individuals all produced ≥ 90% complement fixation, but variations were observed in the fixation curves plotted either versus microsomal protein or versus spectrally detectable microsomal cytochrome P-450.These results indicate that human liver microsomal cytochromes P-450 can be isolated using modifications of techniques developed for laboratory animals and that human and rat liver cytochromes P-450 share certain features of structural, functional, and immunological similarity. The available data suggest the existence of multiple forms of human liver microsomal cytochrome P-450, but possible artifacts associated with the use of autopsy samples suggest caution in advancing such a conclusion.  相似文献   

7.
Microsomes from the diazinon-resistant Rutgers strain of housefly contain amounts of cytochrome P-450 that are larger than those reported for rat liver, but the specific activity expressed as nmole of cytochrome P-450 per mg protein is much lower. The hemoprotein shows that spectral changes type I, II and IV are essentially in the low-spin form as judged by the n-octylamine and ethyl isocyanide difference spectra, and is unstable at pH below 6.5 and above 8.0. Cytochrome P-420 is also produced with time when CO-difference spectra are recorded. This is accelerated at pH above 8.0. The presence of contaminating amounts of cytochrome P-420, due to denaturation during spectral analysis or to the method used to isolate the microsomes, makes questionable the practice of characterizing the hemoprotein on the basis of the 455 nm peak in the ethyl isocyanide spectra, since a 434 nm peak is produced with concomitant decrease of the 455 nm peak. Microsomes hydroxylate naphthalene, aminopyrine and aniline, but the activity when expressed as nmole of product per nmole of cytochrome P-450 is the same or lower than that reported for other resistant housefly strains.  相似文献   

8.
The hepatic microsomes of rat and mice were subfractionated by the procedure of Dallner. When a 1.3 M sucrose lower layer was used for the two-step discontinuous gradient, no differences in spectral characteristics were noted between subfractions, though the smooth fractions (SER) had higher oxidative activity towards the substrates tested. When lower layers of 1.05, 1.1 or 1.15 M sucrose were used, the SER isolated contained cytochrome P-450 with significantly different spectral characteristics from that of the rough fraction (RER). The SER cytochrome P-450 had a wavelength maximum in the carbon-monoxide reduced difference spectrum that was significantly lower (ca. 1.0 nm) than that in the RER. In addition, the type I:CO-reduced spectral ratio of these fractions is significantly elevated. These data indicate that liver microsomes from untreated rats and mice contain more than one cytochrome P-450 and that these cytochromes may be located in different parts of the endoplasmic reticulum.  相似文献   

9.
Two forms of a carbon monoxide-binding cytochrome were found to exist in CaCl2-precipitated microsomal subfractions of human placental homogenates at term. These exhibited absorption maxima at wavelengths of 450 nm and 421–432 nm. Conversion of P-450 to the degradation product could be prevented by resuspension of the microsomes in buffered solutions containing 20% glycerol and 10?4M dithiothreitol. Solubilization of such resuspended microsomes with sodium cholate could be effected with minimal degradation. The solubilized pigment then could be partially purified by differential fractionation with ammonium sulfate. The partially purified cytochromes did not appear to bind desmethylimpramine but did bind aniline and nicotinamide to yield atypical type II difference spectra with maxima at 435 nm and minima at 416 nm. A type I difference spectrum could be elicited with androstenedione and a spectral dissociation constant (KS) of 4.7×10?8M was obtained. Androstenedione also appeared to effectively prevent the binding of carbon monoxide to the cytochrome.  相似文献   

10.
Four isozymes of cytochrome P-450 were purified to varying degrees of homogeneity from liver microsomes of cod, a marine teleost fish. The cod were treated with β-naphthoflavone by intraperitoneal injection, and liver microsomes were prepared by calcium aggregation. After solubilization of cytochromes P-450 with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propansulfonate, chromatography on Phenyl-Sepharose CL-4B, and subsequently on DEAE-Sepharose, resulted in two cytochrome P-450 fractions. These were further resolved on hydroxyapatite into a total of four fractions containing different isozymes of cytochromes P-450. One fraction, designated cod cytochrome P-450c, was electrophoretically homogeneous, was recovered in the highest yield and constituted the major form of the isozymes. The relative molecular mass of this form (58 000) corresponds well with a protein band appearing in cod liver microsomes after treatment with β-naphthoflavone. Both cytochrome P-450c and a minor form called cytochrome P-450d (56 000) showed activity towards 7-ethoxyresorufin in a reconstituted system containing rat liver NADPH-cytochrome P-450 reductase and phospholipid. Differences between these two forms were observed in the rate and optimal pH for conversion of this substrate, and in optical properties. Rabbit antiserum to cod cytochrome P-450c did not show any cross-reactions with cod cytochrome P-450a (Mr 55 000) or cytochrome P-450d in Ouchterlony immunodiffusion, but gave a precipitin line of partial identify with cod cytochrome P-450b (Mr 54 000), possibly as a result of contaminating cytochrome P-450c in this fraction.  相似文献   

11.
Two constitutive forms of cytochrome P-450, designated P-450ib and P-450ic, were purified from intestinal mucosa microsomes of untreated rabbits. P-450ib and P-450ic have minimal molecular weights of 56 000 and 49 000, respectively, as determined by calibrated sodium dodecyl sulphate polyacrylamide gel electrophoresis. The CO-reduced difference spectral maximum of cytochrome P-450ib is at 450 nm and P-450ic is at 451 nm. Both the cytochromes preferentially demethylate aminopyrine, benzphetamine and N,N-dimethylaniline in the presence of NADPH-cytochrome P-450 reductase. Cytochrome P-450ib has absorption maxima at 417, 535 and 573 nm in the oxidized form, indicating that this cytochrome is in a low-spin state. Ouchterlony double-diffusion studies show that cytochrome P-450ib does not cross-react with antisera against liver cytochrome P-450LM2 purified from phenobarbital-treated rabbits, but P-450ic cross-reacts with spur formation. Unlike cytochrome P-450ib, P-450ic is very similar, if not identical, to liver cytochrome P-450LM2 on the basis of its molecular weight, spectral properties, catalytic activities and immunochemical properties.  相似文献   

12.
The nitrosoureas, CCNU (1-(2-chloroethyl)-3-(cyclohexyl)-1-nitrosourea) and BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) are representatives of a class of N-nitroso compounds which undergo denitrosation in the presence of NAD(P)H and deoxygenated hepatic microsomes from rats to yield nitric oxide (NO) and the denitrosated parent compound. Formation of NO during microsomal denitrosation of CCNU and BCNU was determined by three methods. With one procedure, NO was measured and concentration shown to increase over time in the head gas above microsomal incubations with BCNU. Two additional methods utilized NO binding to either ferrous cytochrome P-450 or hemoglobin to form distinct Soret maxima at 444 and 415 nm, respectively. Incubation of either BCNU or CCNU in the presence of NAD(P)H and deoxygenated microsomes resulted in the formation of identical cytochrome P-450 ferrous · NO optical difference spectra. Determination of the P-450 ferrous · NO extinction coefficient by the change in absorbance at 444 minus 500 nm allowed measurement of rates of denitrosation by monitoring the increase in absorbance at 444 nm. The rates of BCNU and CCNU denitrosation were determined to be 4.8 and 2.0 nmol NO/min/mg protein, respectively, for phenobarbital (PB) induced microsomes. For the purpose of comparison, the rate of [14C]CCNU (1-(2-[14C]chloroethyl)-3-(cyclohexyl)-1-nitrosourea turnover was examined by the isolation of [14C]CCU (1-(2-[14C] chloroethyl)-3-(cyclohexyl)-1-urea) from incubations that contained NADPH and deoxygenated PB-induced microsomes. These analyses showed stoichiometric amounts of NO and [14C]CCU being formed at a rate of 2.0 nmol/min/mg protein. Denitrosation catalysis by microsomes was enhanced by phenobarbital pretreatment and partially decreased by cytochrome P-450 inhibitors, SKF-525A, α-naphthoflavone (ANF), metyrapone, and CO, suggesting a cytochrome P-450-dependent denitrosation. However, in the presence of NADPH and purified NADPH cytochrome P-450 reductase reconstituted in dilauroylphosphatidylcholine, [14C]CCNU was shown to undergo denitrosation to [14C]CCU. Thus, NADPH cytochrome P-450 reductase could support denitrosation in the absence of cytochrome P-450.  相似文献   

13.
The interactions of rat liver epoxide hydrolase (EC 3.3.2.3) with itself and with cytochromes P-450 and NADPH-cytochrome P-450 reductase were investigated in microsomal preparations and in reconstituted systems in which all of the enzymes are functionally active. Hydrodynamic measurements indicated that purified epoxide hydrolase behaves as a single aggregate of approximately 16 monomeric units and that further aggregation of the protein only occurs in the presence of high concentrations of phospholipid. Neither guanidine-HCl nor the nonionic detergent Lubrol PX was able to completely dissociate the aggregate into monomers. The interactions of epoxide hydrolase with NADPH-cytochrome P-450 reductase and the major forms of cytochrome P-450 isolated from phenobarbital- and 5,6-benzoflavone-treated rats were studied by Soret difference spectroscopy, by perturbation of the fluorescence of NADPH-cytochrome P-450 reductase and fluorescein-labeled epoxide hydrolase, and by CD spectroscopy. The spectra provided evidence that binding of the proteins to each other occurs and some of the results suggest that affinity constants are on the order of 107, m?1. The spectral perturbations were not observed with other intrinsic membrane proteins. When microsomes were treated with the crosslinking reagent dimethylsuberimidate and solubilized with detergents, epoxide hydrolase could be precipitated with antibodies raised to cytochromes P-450 or NADPH-cytochrome P-450 reductase. Transient times were determined for the conversion of 1-octene to octene-1,2-dihydrodiol in a reconstituted enzyme system and for the conversion of naphthalene to naphthalene-1,2-dihydrodiol in rat liver microscomes and compared to the transient times predicted from the enzymatic rates of hydrolysis of the intermediate epoxides. In all cases the observed transient times were shorter than expected, in support of the view that coupling of epoxide hydrolase with cytochromes P-450 occurs. These results support the view that epoxide hydrolase couples with cytochrome P-450-containing mixed-function oxidase systems and may have relevance to the metabolism of potentially harmful xenobiotics by these enzymes.  相似文献   

14.
Cytochrome P-450, NADPH-cytochrome c reductase, biphenyl hydroxylase, and epoxide hydratase have been compared in intact rat liver and in primary hepatocyte cultures. After 10 days in culture, microsomal NADPH-cytochrome c reductase and epoxide hydratase activities declined to a third of the liver value, while cytochrome P-450 decreased to less than a tenth. Differences in the products of benzo[a]pyrene metabolism and gel electrophoresis of the microsomes indicated a change in the dominant form(s) of cytochrome P-450 in the cultured hepatocytes. Exposure of the cultured cells to phenobarbital for 5 days resulted in a threefold induction in NADPH-cytochrome c reductase and epoxide hydratase activities which was typical of liver induction of these enzymes. Exposure of the cells to 3-methylcholanthrene did not affect these activities. Cytochrome P-450 was induced over two times by phenobarbital and three to four times by 3-methylcholanthrene. The λmax of the reduced carbon monoxide complex (450.7 nm) and analysis of microsomes by gel electrophoresis showed that the phenobarbital-induced cytochrome P-450 was different from the species induced by 3-methylcholanthrene (reduced carbon monoxide λmax = 447.9 nm). However, metabolism of benzo[a]pyrene (specific activity and product distribution) was similar in microsomes of control and phenobarbital- and 3-methylcholan-threne-induced hepatocytes and the specific activity per nmole of cytochrome P-450 was higher than in liver microsomes. The activities for 2- and 4-hydroxylation of biphenyl were undetectable in all hepatocyte microsomes even though both activities were induced by 3-methylcholanthrene in the liver. Substrate-induced difference spectra and gel electrophoresis indicated an absence in phenobarbital-induced hepatocytes of most forms of cytochrome P-450 which were present in phenobarbital-induced rat liver microsomes. It is concluded that the control of cytochrome P-450 synthesis in these hepatocytes is considerably different from that found in whole liver, while other microsomal enzymes may be near to normal. Hormonal deficiencies in the culture medium and differential hormonal control of the various microsomal enzymes provide a likely explanation of these effects.  相似文献   

15.
Cytochrome P-450 substrate interactions were studied with cytochrome P-450 partially purified from livers of untreated, phenobarbital-treated, benzo[a]pyrene-treated and caffeine-treated rats. Partial inhibition of aminopyrine N-demethylase in presence of in vitro caffeine observed with intact microsomes was further investigated in a reconstituted system composed of partially purified cytochrome c reductase. Caffeine addition (in vitro) to partially purified cytochrome P-450 altered the hexobarbital, aniline and ethylisocyanide induced spectral change, and decreased NADPH oxidation in presence of substrates aminopyrine and acetanilide. NADPH oxidation was found to be increased in presence of aminopyrine and unaltered in presence of acetanilide in reconstituted system having partially purified cytochrome P-450 from caffeine-treated rats. Our studies suggest that caffeine acts as a true modifier of cytochrome P-450 and is possibly responsible for the formation of abortive complexes with aminopyrine.  相似文献   

16.
A method is described for isolation of the Rhodopseudomonas viridis reaction center complex free of altered, 685 nm absorbing pigment. This improved preparation contains two c-type cytochromes in the ratio P-960: cytochrome c-558: cytochrome c-553 of 1 : 2 : 2 to 3. The near infrared spectral forms of the reduced preparation are located at 790, 832, 846 and 987 nm at 77 K; the oxidized complex absorbs at 790, 808, 829 and approx. 1310 nm. The 790 nm band is attributed to bacteriophaeophytin b and the other absorbances to bacteriochlorophyll b. The visible absorption bands may be assigned to these pigments and to the cytochromes present and, probably, to a carotenoid. The presence of two bacteriochlorophyll b spectral forms in the P+-830 band suggests that exciton interactions occur among pigments in the oxidized, as well as the reduced, reaction center. Changes in the 790 and 544 nm bands upon illumination of the reaction center preparation at low redox potential may be indicative of a role for bacteriophaeophytin b in primary photochemical events.  相似文献   

17.
Complex formation between the phenobarbital-inducible form of rabbit liver microsomal cytochrome P-450 incorporated into phosphatidylcholine and detergent-solubilized cytochrome b5 is associated with a low-to-high spin transition of the former pigment. It is concluded that the proteins combine in a 1:1 molar ratio. CD spectral analysis in the far uv region reveals that interaction of the cytochromes results in a conformational change of one or both hemoproteins. Such a cytochrome b5-induced structural alteration of the reconstituted enzyme system is accompanied by an increase in affinity of 4-chloroaniline for cytochrome P-450, as measured in terms of cumene hydroperoxide-supported N-oxidation of the arylamine; the maximum velocity of the catalytic process remains unchanged. Similarly, incorporation into the assay media of cytochrome b5 decreases the apparent Kd values of both the amine substrate and the oxygen donor, as determined by optical titration. Stopped-flow spectrophotometric studies on the influence of cytochrome b5 on the kinetics of binding to cytochrome P-450 of 4-chloroaniline and/or cumene hydroperoxide show that the rates of formation and decay of the adducts change as the molar ratio of cytochrome b5 to cytochrome P-450 varies. Moreover, cytochrome b5 modifies the activation energies required for production of the substrate-bound oxy complex. These findings suggest that cytochrome b5, apart from its well-known role as an electron carrier, might exert an effector function in the cytochrome P-450 system.  相似文献   

18.
One of each constitutive form of cytochrome P-450 from liver microsomes of adult male and female rats was purified essentially following the same method to an apparent homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weights estimated by the electrophoresis were 52,000 and 50,000 for forms of cytochrome P-450, P-450-male, and P-450-female, purified from male and female rats, respectively. In addition, the purified preparations of P-450-male and P-450-female showed properties different from each other with respect to spectral characteristics and catalytic activities. In Ouchterlony double diffusion plates, partially purified rabbit immunoglobulin G (IgG) raised against P-450-male and P-450-female showed very weak or no cross-reactivity with P-450-female and P-450-male, respectively. From these results, P-450-male was confirmed to be a form distinct from P-450-female. The anti-P-450-male and anti-P-450-female antibodies, which had been further purified by immunoadsorption, did not form any apparent precipitation bands with liver microsomes from untreated female and male rats, respectively. Supporting this, radial immunodiffusion analysis for P-450-male and P-450-female with an agarose gel impregnated with the rabbit antibodies showed that P-450-male and P-450-female appear in liver microsomes rather specifically depending on the sex hormones. Based on these results, sex differences in drug metabolism in the rat were confirmed as explicable, at least in part, by the presence of distinct forms of cytochrome P-450 in microsomes of male and female rats.  相似文献   

19.
Benzo(α)pyrene treatment resulted in stimulation of only cytochrome P-450K and benzo(α)pyrene hydroxylase activity in rat kidney cortex microsomes. Spectral properties of cytochrome P-450K showed that the 452 nm peak of the reduced hemoprotein CO-complex was not shifted in benzo(α)pyrene-treated rats. The off-balance absolute spectrum of oxidized cytochrome P-450K displayed an absorption maximum at 414 nm, another band at 385 nm, and a distinct shoulder at 398 nm. Addition of benzo(α)pyrene to kidney microsomes resulted in a type I spectral change seen only in benzo(α)pyrene-treated rats. The addition of ethyl isocyanide to dithionitetreated microsomes from control rats gave rise to two Soret peaks, 432 nm and 458 nm. These peaks were proportionately increased in benzo(α)pyrene-treated rats; furthermore, the 458 nm peak was not shifted. The relative heights of the two peaks were in a pH-dependent equilibrium similar to that observed in liver; however, in contrast to liver, the pH, at which the ratio of the peak heights equals one, was the same for both benzo(α)pyrene-treated and control microsomes. These data indicate that the newly induced hemoprotein has spectral properties markedly different from those of the benzo(α)pyrene-induced liver hemoprotein, yet similar to those of the “noninduced” kidney hemoprotein. α-Naphthoflavone, an inhibitor of the aryl hydroxylase system, induced a type I spectral change, suggesting the mode of action of α-naphthoflavone to be its interaction with cytochrome P-450K probably at or near the active site. Finally, the rate of reduction of cytochrome P-450K was not affected by the presence of benzo(α)pyrene.  相似文献   

20.
Cytochrome P-450j has been purified to electrophoretic homogeneity from isoniazid-treated adult male rats; and this enzyme appears to be a major protein induced in hepatic microsomes after administration of isoniazid, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hemoprotein has a minimum molecular weight of approximately 51,500, and the ferrous-carbonyl complex of cytochrome P-450j has a Soret maximum at 451-452 nm. The oxidized heme iron appears to be predominately in the high spin state as deduced from the Soret maximum at 395 nm. Ethylisocyanide binds to ferrous cytochrome P-450j to yield spectral maxima at approximately 458 and 430 nm with a resultant 458/430 ratio of 0.7 at pH 7.4. Cytochrome P-450j has no measurable catalytic activity for the metabolism of benzo[a]pyrene (3- and 9-hydroxylation), hexobarbital, testosterone, and 5 alpha-androstane-3 alpha,17 beta-diol-3,17-disulfate. Low, but detectable, catalytic activity is obtained for the metabolism of 7-ethoxycoumarin, benzphetamine, p-nitroanisole, zoxazolamine, and 2-hydroxylation of 17 beta-estradiol. In contrast, cytochrome P-450j effectively catalyzes p-hydroxylation of aniline with a turnover of 12.7 nmol/min/nmol cytochrome P-450j. Hydroxyl radical scavengers, Fe-EDTA, superoxide dismutase, and catalase have no effect on aniline p-hydroxylation catalyzed by cytochrome P-450j. Cytochrome P-450j is distinct from nine other rat hepatic microsomal cytochromes P-450 (P-450a-P-450i) previously purified in this laboratory, as well as different isozymes described by other investigators, based on several parameters including minimum molecular weight, spectral properties, and catalytic activity. In Ouchterlony double diffusion plates, antibodies against cytochromes P-450a-P-450f show no cross-reaction with cytochrome P-450j. Structural differences among cytochromes P-450a-P-450j are apparent from the NH2-terminal sequence of cytochrome P-450j, as well as the electrophoretic profiles of proteolytic digests of the hemoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号