首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Incorporation of N-lignoceroyldihydrolactocerebroside (lactosylceramide) enhanced liver uptake of small unilamellar liposomes consisting of dipalmitoylphosphatidylcholine, cholesterol and dicetyl phosphate (molar ratio, 4:5:1). The increase in liver uptake was mostly accounted for by an enhanced uptake into the parenchymal cells. The enhancing effects of lactosylceramide on uptake of the liposomes into liver in vivo and into isolated parenchymal cells in vitro were greater with dipalmitoylphosphatidylcholine-based liposomes than with dimyristoylphosphatidylcholine-based ones. In contrast, addition of lactosylceramide had no significant effect on egg phosphatidylcholine vesicle uptake. The stimulated uptake of lactosylceramide liposomes by parenchymal cells was counteracted by added asialofetuin. These observations suggest that transfer of the targeted liposomes via a galactose-specific receptor into parenchymal cells may be controlled by the membrane fluidity of the liposomes.  相似文献   

2.
Monosialoganglioside liposomes are rapidly taken up by the liver as compared to dicetylphosphate, phosphatidic acid or neutral liposomes. Asialoganglioside GM 1 liposomes are taken up with the same avidity as ganglioside GM 1 liposomes. Competition experiments with asialofetuin suggest that this uptake is mediated by specific recognition of the terminal galactose residues of the glyco-lipid liposomes by the receptor present on the plasma membrane of the parenchymal cells of liver. Thus liposomes containing glycolipids with terminal beta-galactosyl residues should provide an approach for specifically directing biologically active molecules to liver parenchymal cells.  相似文献   

3.
We investigated the intrahepatic distribution of small unilamellar liposomes injected intravenously into rats at a dose of 0.10 mmol of lipid per kg body weight. Sonicated liposomes consisting of cholesterol/sphingomyelin (1:1), (A); cholesterol/egg phosphatidylcholine (1:1), (B); cholesterol/sphingomyelin/phosphatidylserine (5:4:1), (C) or cholesterol/egg-phosphatidylcholine/phosphatidylserine (5:4:1), (D) were labeled by encapsulation of [3H]inulin. The observed differences in rate of blood elimination and hepatic accumulation (A much less than B approximately equal to C less than D) confirmed earlier observations and reflected the rates of uptake of the four liposome formulations by isolated liver macrophages in monolayer culture. Fractionation of the liver into a parenchymal and a non-parenchymal cell fraction revealed that 80-90% of the slowly clearing type-A liposomes were taken up by the parenchymal cells while of the more rapidly eliminated type-B liposomes even more than 95% was associated with the parenchymal cells. Incorporation of phosphatidylserine into the sphingomyelin-based liposomes caused a significant increase in hepatocyte uptake but a much more substantial increase in non-parenchymal cell uptake, resulting in a major shift of the intrahepatic distribution towards the non-parenchymal cell fraction. For the phosphatidylcholine-based liposomes incorporation of phosphatidylserine did not increase the already high uptake by the parenchymal cells while uptake by the non-parenchymal cells was only moderately elevated; this resulted in only a small shift in distribution towards the non-parenchymal cells. The phosphatidylserine-induced increase in liposome uptake by non-parenchymal liver cells was paralleled by an increase in uptake by the spleen. Fractionation of the non-parenchymal liver cells in a Kupffer cell fraction and an endothelial cell fraction showed that even for the slowly eliminated liposomes of type A endothelial cells do not participate to a measurable extent in the elimination process, thus excluding involvement of fluid-phase pinocytosis in the uptake process.  相似文献   

4.
Intravenously administered gadolinium chloride caused only a slight decrease in the rate of elimination of small unilamellar liposomes from the blood and had no influence on the total hepatic uptake of these vesicles, but did alter their intrahepatic distribution substantially. Uptake by the non-parenchymal cells was substantially decreased, whereas uptake by the parenchymal cells showed a concomitant increase. Our earlier observations (Roerdink et al. (1981) Biochim. Biophys. Acta 677, 79-89) on the effect of lanthanides on the in vivo distribution of multilamellar liposomes have been extended, in that we demonstrate, in addition to the drop in elimination rate from the blood and in the over-all hepatic uptake, a shift of liposome distribution within the Kupffer cell population. While the larger Kupffer cells, which normally take up a major fraction of an injected liposome dose, were strongly inhibited in liposome uptake, the more numerous small macrophages showed a 3-4-fold increase in uptake.  相似文献   

5.
Specific direction of liposomes bearing an asialofetuin sugar chain (AFSC) to liver parenchymal cells was examined both in vivo and in vitro. The AFSC-bearing liposomes were preferentially recovered in the liver within several minutes after an intravenous injection into mice and were found to be predominantly localized in mitochondrial-lysosomal fraction. The massive distribution of the AFSC-liposomes in this fraction was also confirmed by using a lysosomal protease inhibitor, E-64-d. In isolated rat hepatocytes, the uptake of AFSC-liposomes was increased 2-3-fold as compared with the control liposomes without AFSC. Thus liposomes bearing AFSC would be useful to target enzymes to liver lysosomes.  相似文献   

6.
The blood clearance and tissue distribution of liposomes have been studied in mice subjected to reticuloendothelial blockade with dextran sulphate or carbon. The liposomes have been labelled in the lipid membranes with [3H]-cholesterol, [14C]phosphatidylcholine and/or 99mTc and the content with [14C]inulin. Reticuloendothelial blockade has been shown to slow the rate of clearance of neutral, positively and negatively charged liposomes and of both small unilamellar vesicles and large multilamellar vesicles. In normal animals, the liver uptake accounted for only 20-55% of the total injected radioactivity, the amount varying with the charge and size of the liposomes. Following blockade, the liver uptake of charged and neutral multilamellar liposomes was depressed. This was also true for negatively charged small unilamellar vesicles. The degree of depression of hepatic uptake was between 25-50%, which contrasts with the 80-90% reduction in uptake of a wholly phagocytosed particle (sheep red cells). This difference suggests that mechanisms other than Kupffer cell phagocytosis are also responsible for the normal uptake of liposomes into the liver. In the case of neutral and positively charged small unilamellar vesicles, delayed clearance due to blockade was not associated with 'depressed' hepatic uptake. The site of action of blockading agents for these preparations is not clear. With all preparations of liposomes, blockade produced a slight and variable increase in uptake in the lung and spleen. The alteration of distribution of liposomes by reticuloendothelial blockade is therefore not great and the value of the technique in modifying the tissue distribution of substances within liposomes may be limited.  相似文献   

7.
Incorporation of 8 mol% lactosylceramide in small unilamellar vesicles consisting of cholesterol, dimyristoylphosphatidylcholine and phosphatidylserine in a molar ratio of 5:4:1 and containing [3H]inulin as an aqueous-space marker resulted in a 3-fold decreased half-life of the vesicles in blood and a corresponding increase in liver uptake after intracardial injection into rats. The increase in liver uptake was mostly accounted for by an enhanced uptake in the parenchymal cells, while the uptake by the non-parenchymal cells was only slightly increased. The uptake of both the control and the glycolipid-containing vesicles by the non-parenchymal cell fraction could be attributed completely to the Kupffer cells; no radioactivity was found in the endothelial cells. The effect of lactosylceramide on liver uptake and blood disappearance of the liposomes was effectively counteracted by desialylated fetuin, injected shortly before the liposome dose. This observation supports the notion that a galactose-specific receptor is involved in the liver uptake of lactosylceramide liposomes.  相似文献   

8.
We studied the kinetics of hepatic uptake of liposomes during serum-free recirculating perfusion of rat livers. Liposomes consisted of phosphatidylcholine, cholesterol and phosphatidylserine in a 6:4:0 or a 3:4:3 molar ratio and were radiolabelled with [3H]cholesteryl oleyl ether. The negatively charged liposomes were taken up to a 10-fold higher extent than the neutral ones. Hepatic uptake of fluorescently labelled liposomes was examined by fluorescence microscopy. The neutral liposomes displayed a typical Kupffer cell distribution pattern, in addition to weak diffuse staining of the parenchyma, while the negatively charged liposomes showed a characteristic sinusoidal lining pattern, consistent with an endothelial localization. In addition, scattered Kupffer cell staining was distinguished as well as diffuse parenchymal fluorescence. The mainly endothelial localisation of the negatively charged liposomes was confirmed by determining radioactivity in endothelial and Kupffer cells isolated following a 1-h perfusion. Perfusion in the presence of polyinosinic acid, an inhibitor of scavenger receptor activity, reduced the rate of uptake of the negatively charged liposomes twofold, indicating the involvement of this receptor in the elimination mechanism. These results are compatible with earlier in vitro studies on liposome uptake by isolated endothelial cells and Kupffer cells, which showed that in the absence of serum also endothelial cells in situ are able to take up massive amounts of negatively charged liposomes. The present results emphasize that the high in vitro endothelial cell uptake in the absence of serum from earlier observations was not an artifact induced by the cell isolation procedure.  相似文献   

9.
Using liposomes differing in size and lipid composition, we have studied the uptake characteristics of the liver parenchymal and Kupffer cells. Desferal labeled with iron-59 was chosen as a radiomarker for the liposomal content, because Desferal in its free form does not cross cellular membranes. At various time intervals after an intravenous injection of liposomes into mice, the liver was perfused with collagenase, and the cells were separated in a Percoll gradient. It was found that large multilamellar liposomes (diameter of about 0.5 μm) were mainly taken up by the Kupffer cells. For these large liposomes, the rate of uptake by Kupffer cells was rapid, with maximum uptake at around 2 hours after liposome injection. Unexpectedly, small unilamellar liposomes (diameter of about 0.08 μm) were less effectively taken up by Kupffer cells, and the rate of uptake was slow, with a maximum uptake at about 10 hours after liposome injection. In contrast, parenchymal cells were more effective in taking up small liposomes and the uptake of large liposomes was negligible. In addition, liposomes made with a galactolipid as part of the lipid constituents appeared to have higher affinity to parenchymal cells than liposomes made without the galactolipid. These findings should be of importance in designing suitable liposomes for drug targeting.  相似文献   

10.
We studied the kinetics of hepatic uptake of liposomes during serum-free recirculating perfusion of rat livers. Liposomes consisted of phosphatidylcholine, cholesterol and phosphatidylserine in a 6:4:0 or a 3:4:3 molar ratio and were radiolabelled with [3H]cholesteryl oleyl ether. The negatively charged liposomes were taken up to a 10-fold higher extent than the neutral ones. Hepatic uptake of fluorescently labelled liposomes was examined by fluorescence microscopy. The neutral liposomes displayed a typical Kupffer cell distribution pattern, in addition to weak diffuse staining of the parenchyma, while the negatively charged liposomes showed a characteristic sinusoidal lining pattern, consistent with an endothelial localization. In addition, scattered Kupffer cell staining was distinguished as well as diffuse parenchymal fluorescence. The mainly endothelial localisation of the negatively charged liposomes was confirmed by determining radioactivity in endothelial and Kupffer cells isolated following a 1-h perfusion. Perfusion in the presence of polyinosinic acid, an inhibitor of scavenger receptor activity, reduced the rate of uptake of the negatively charged liposomes twofold, indicating the involvement of this receptor in the elimination mechanism. These results are compatible with earlier in vitro studies on liposome uptake by isolated endothelial cells and Kupffer cells, which showed that in the absence of serum also endothelial cells in situ are able to take up massive amounts of negatively charged liposomes. The present results emphasize that the high in vitro endothelial cell uptake in the absence of serum from earlier observations was not an artifact induced by the cell isolation procedure.  相似文献   

11.
Monosialogangliosde liposomes are rapidly taken up by the liver as compared to dicetylphosphate, phosphatidic acid or neutral liposomes. Asialoganglioside GM 1 liposomes are taken up with the same avidity as ganglioside GM 1 liposomes. Competition experiments with asialofetuin suggest that this uptake is mediated by specific recognition of the terminal galactose residues of the glycolipid liposomes by the receptor present on the plasma membrane of the parenchymal cells of liver. Thus liposomes containing glycolipids with terminal β-galactosyl residues should provide an approach for specifically directing biologically active molecules to liver parenchymal cells.  相似文献   

12.
Incorporation of 8 mol percent lactosylceramide into small unilamellar vesicles consisting of cholesterol and sphingomyelin in an equimolar ratio and containing [3H]inulin as a marker resulted in an increase in total liver uptake and a drastic change in intrahepatic distribution of the liposomes after intravenous injection into rats. The control vesicles without glycolipid accumulated predominantly in the hepatocytes, but incorporation of the glycolipid resulted in a larger stimulation of Kupffer-cell uptake (3.2-fold) than of hepatocyte uptake (1.2-fold). Liposome preparations both with and without lactosylceramide in which part of the sphingomyelin was replaced by phosphatidylserine, resulting in a net negative charge of the vesicles, were cleared much more rapidly from the blood and taken up by the liver to higher extents. The negative charge had, however, no influence on the intrahepatic distributions. The fast hepatic uptake of the negatively charged liposomes allowed competition experiments with substrates for the galactose receptors on liver cells. Inhibition of blood clearance and liver uptake of lactosylceramide-containing liposomes by N-acetyl-d-galactosamine indicated the involvement of specific recognition sites for the liposomal galactose residues. This inhibitory effect of N-acetyl-d-galactosamine was shown to be mainly the result of a decreased liposome uptake by the Kupffer cells, compatible with the reported presence of a galactose specific receptor on this cell type (Kolb-Bachofen et al. (1982) Cell 29, 859–866). The difference between the results on sphingomyelin-based liposomes as described in this paper and those on phosphatidylcholine-based liposomes as published previously (Spanjer and Scherphof (1983) Biochim. Biophys. Acta 734, 40–47) are discussed.  相似文献   

13.
Delivery of liposome-encapsulated simian virus 40 (SV40) DNA to African green monkey Related to been used as a probe to study liposome--cell interactions and to determine conditions which favor the intracellular delivery of liposome contents to cells. The efficiency of DNA delivery by various liposome preparations (monitored by infectivity assays) was found to be dependent both on the magnitude of vesicle binding to cells and on the resistance of liposomes to cell-induced leakage of contents. Acidic phospholipids were much more effective in both binding and delivery, and phosphatidylserine (PS) was the best in both aspects. The inclusion of 50 mol % cholesterol in liposomes reduces the cell-induced leakage of vesicle contents (2--5-fold) and substantially enhances the delivery of DNA to cells (2--10-fold). Following incubation of cells with negatively charged liposomes containing SV40 DNA, infectivity can be enhanced greatly by brief exposure of the cells to glycerol solutions. In contrast, only slight enhancement by glycerol was observed for SV40 DNA encapsulated in neutral or positively charged liposomes. The results of competition experiments between empty phosphatidylcholine liposomes and DNA-containing PS liposomes also suggest possible differences in the interaction of neutral and negatively charged liposome preparations with cells. Morphological studies indicate that the glycerol treatment stimulates membrane ruffling and vacuolization and suggest that the enhanced uptake of liposomes occurs by an endocytosis-like process. Results obtained with metabolic inhibitors are also consistent with the interpretation that the enhancement of liposome delivery in glycerol-treated cells occurs via an energy-dependent endocytotic pathway. Pretreatment of cells with chloroquine, a drug which alters lysosomal activity, further enhanced infectivity in glycerol-treated cells (4-fold). This observation suggests the involvement of a lysosomal processing step at some point in the expression of liposome-encapsulated DNA and, more importantly, illustrates the possibility of altering cellular mechanism to engineer more efficient delivery by liposomes. Under optimal conditions determined in this study, the efficiency of liposome-mediated SV40 DNA delivery was increased more than 1000-fold over that obtained by simply incubating cells with liposomes. It is also demonstrated that these conditions enhance delivery of other molecules, besides DNA, which are encapsulated in liposomes.  相似文献   

14.
For the electron microscopic identification of asialo GM1-positive cells, fresh-frozen sections fixed with cold acetone and PLP-fixed vibratome sections of adult rat livers were prepared immunocytochemically using the avidin-biotin-peroxidase complex method. Asialo GM1-positive cells were located mainly in the sinusoids, and rarely in Glisson's sheath and portal veins. In the sinusoids, most pit cells, showing the ultrastructural characteristics of large granular lymphocytes (LGL), were positive for asialo GM1 but a few pit cells were asialo GM1-negative. There were several, morphological differences between asialo GM1-positive and -negative pit cells. The asialo GM1-negative pit cells were smaller and had less-developed cell organelles and fewer dense granules, suggesting a more immature stage of development. Almost all the monocytes, segmented neutrophils and eosinophils, and small or large lymphocytes in the sinusoids also showed positive reaction for asialo GM1. In Glisson's sheath, in addition to pit cells and lymphocytes, mast cells were also positive for asialo GM1. In contrast, fixed cells such as liver parenchymal cells, endothelial cells, Kupffer cells and Ito cells within the liver lobules, as well as biliary epithelial cells, smooth muscle cells, fibroblasts, endothelial cells and pericytes in Glisson's sheath were all negative for asialo GM1. Thus, cell surface asialo GM1 expression is not specific for pit cells (LGL) in the rat liver.  相似文献   

15.
Liposomes are taken up as intact vesicles by mouse peritoneal macrophages in a process which is temperature sensitive and is affected by inhibitors of glycolytic metabolism and of microfilament activity. Macrophages take up negatively charged vesicles more readily than positively charged vesicles (2-fold) or neutral vesicles (4-fold). Macrophages take up similar amounts of multilamellar liposomes, reversed phase liposomes and small unilamellar liposomes in terms of lipid, however this corresponds to vastly different numbers of particles and amounts of trapped volume. Coating the liposomes with macromolecular ligands capable of interacting with macrophage surface receptors can markedly promote liposome uptake. Thus, formation of an IgG-antigen complex on the liposome surface results in a 102-fold enhancement of liposome uptake, while coating the vesicles with fibronectin results in a 10-fold augmentation of uptake. Uptake via IgG-mediated and fibronectin-mediated processes seem to be independent since excess unlabelled, IgG-coated liposomes will inhibit the uptake of radioactively-labelled IgG-coated liposomes much more effectively than the uptake of radioactively-labelled fibronectin-coated liposomes. Cell-bound liposomes can readily be visualized on and inside of the macrophages using fluorescence microscopy techniques.  相似文献   

16.
When the water-soluble cholesterol derivative, N-[tris [(beta-D-galactopyranosyloxy)methyl]methyl]-N alpha-[4-(5-cholesten-3 beta-yloxy)succinyl]glycinamide (tris-gal-chol) (Kempen et al. (1984) J. Medicin. Chem. 27, 1306-1312) is added as an aqueous micellar solution to a dispersion of small unilamellar phospholipid vesicles it rapidly associates with the vesicles, without causing significant leakage of liposome contents. Incorporation of 10 mol% tris-gal-chol in the liposomal membrane caused a substantial increase in the rate and extent of rat liver uptake and a shift in intrahepatic distribution of an intravenously administered dose of liposomes. For neutral liposomes composed of equimolar amounts of cholesterol and sphingomyelin incorporation of tris-gal-chol led to a 7-fold increase in total liver uptake, which was mainly accounted for by an increase in uptake by the Kupffer cells (12-fold) and by only a small increase in uptake by the hepatocytes (1.4-fold). The increased liver uptake is blocked by preinjection of N-acetyl-D-galactosamine and not affected by preinjection of N-acetyl-D-glucosamine. This indicates that the increased interaction of liposomes as a result of tris-gal-chol incorporation is mediated by galactose-specific recognition sites on both Kupffer cells and hepatocytes. Targeting of liposomes to the asialoglycoprotein receptor of the hepatocytes is thus frustrated by the highly active galactose-specific receptor on Kupffer cells. Comparable results on lactosylceramide incorporation into liposomes were recently reported by us (Spanjer et al. (1984) Biochim. Biophys. Acta 774, 49-55).  相似文献   

17.
Abstract

We investigated the intrahepatic distribution in rats of liposomes of 85 or 130 nm diameter, which were sterically stabilized with a polyethylene glycol) derivative of phosphatidylethanolamine (PEG-PE) so as to increase their circulation time in blood. Various times after intravenous injection of radiolabeled ([3H-]cholesterylether) liposomes, parenchymal and non-parenchymal cells of the liver were isolated and their radioactivity content was determined. Control liposomes of 85 nm without PEG-PE distributed in an approximately 80:20 ratio to hepatocytes (H) and macrophages (M), respectively; the 130-nm control liposomes showed a 50:50 H/M distribution. Incorporation of PEG-PE reduced the rate of total liver uptake about 4-fold for liposomes of either size and shifted the H/M ratio to 60:40 for the smaller vesicles and to 40:60 for the larger ones. For both liposome sizes, PEG-PE apparently causes a shift in intrahepatic distribution in favor of the macrophages. It is concluded that PEG-PE has a stronger inhibitory effect on liposome uptake by hepatocytes than on uptake by macrophages. Attempts to shift liposome uptake more in favor of hepatocytes, by incorporation of lactosylceramide, failed. This compound, although causing an increase in hepatic uptake, particularly for the 130-nm liposomes, shifted the H/M ratio further towards the macrophages. We conclude that the galactose moiety of the glycolipid is sufficiently exposed on the surface of (PEG-PE)-containing liposomes to allow interaction with the galactose-binding lectin at the surface of the liver macrophage and that the extent of exposure is dependent on vesicle size.  相似文献   

18.
We studied the interaction of large unilamellar liposomes carrying different surface charges with rat Kupffer cells in maintenance culture. In addition to 14C-labeled phosphatidylcholine, all liposome preparations contained either 3H-labeled inulin or 125I-labeled bovine serum albumin as a non-degradable or a degradable aqueous space marker, respectively. With vesicles carrying no net charge, intracellular processing of internalized liposomes caused nearly complete release of protein label into the medium in acid-soluble form, while phospholipid label was predominantly retained by the cells, only about one third being released. The presence of the lysosomotropic agent, ammonia, inhibited the release of both labels from the cells. At 4 degrees C, the association and degradation of the vesicles were strongly reduced. These results are very similar to what we reported on negatively charged liposomes (Dijkstra, J., Van Galen, W.J.M., Hulstaert, C.E., Kalicharan, D., Roerdink, F.H. and Scherphof, G.L. (1984) Exp. Cell Res. 150, 161-176). The interaction of both types of vesicles apparently proceeds by adsorption to the cell surface followed by virtually complete internalization by endocytosis. Similar experiments with positively charged vesicles indicated that only about half of the liposomes were taken up by the endocytic route, the other half remaining adsorbed to the cell-surface. Attachment of all types of liposomes to the cells was strongly dependent on the presence of divalent cations; Ca2+ appeared to be required for optimal binding. Neutral liposomes only slightly competed with the uptake of negatively charged vesicles, both at 4 degrees and 37 degrees C, whereas negatively charged small unilamellar vesicles and negatively charged latex beads were found to compete very effectively with the large negatively charged liposomes. Neutral vesicles competed effectively for uptake with positively charged ones. These results suggest that neutral and positively charged liposomes are largely bound by the same cell-surface binding sites, while negatively charged vesicles attach mainly to other binding sites.  相似文献   

19.
Multilameller liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distributions of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome preparation. Liver uptake up encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides, regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

20.
Adsorption of serum proteins to the liposomal surface plays a critical role in liposome clearance from the blood. The aim of this study was to investigate the role of liposome-adsorbed serum proteins in the interaction of liposomes with hepatocytes. We analyzed the serum proteins adsorbing to the surface of differently composed small unilamellar liposomes during incubation with human or rat serum, and found that one protein, with a molecular weight of around 55 kDa, adsorbed in a large amount to negatively charged liposomes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). The binding was dependent on the liposomal charge density. The approximately 55-kDa protein was identified as beta2-glycoprotein I (beta2GPI) by Western blotting. Despite the high affinity of beta2GPI for strongly negatively charged liposomes, in vitro uptake and binding experiments with isolated rat hepatocytes, Kupffer cells or liver endothelial cells, and with HepG2 cells showed no enhancing effect of this protein on the association of negatively charged liposomes with any of these cells. On the contrary, an inhibitory effect was observed. We conclude that despite abundant adsorption to negatively charged liposomes, beta2GP1 inhibits, rather than enhances, liposome uptake by liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号