首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca(2+)-saturated calmodulin (CaM) directly associates with and activates CaM-dependent protein kinase I (CaMKI) through interactions with a short sequence in its regulatory domain. Using heteronuclear NMR (13)C-(15)N-(1)H correlation experiments, the backbone assignments were determined for CaM bound to a peptide (CaMKIp) corresponding to the CaM-binding sequence of CaMKI. A comparison of chemical shifts for free CaM with those of the CaM.CaMKIp complex indicate large differences throughout the CaM sequence. Using NMR techniques optimized for large proteins, backbone resonance assignments were also determined for CaM bound to the intact CaMKI enzyme. NMR spectra of CaM bound to either the CaMKI enzyme or peptide are virtually identical, indicating that calmodulin is structurally indistinguishable when complexed to the intact kinase or the peptide CaM-binding domain. Chemical shifts of CaM bound to a peptide (smMLCKp) corresponding to the calmodulin-binding domain of smooth muscle myosin light chain kinase are also compared with the CaM.CaMKI complexes. Chemical shifts can differentiate one complex from another, as well as bound versus free states of CaM. In this context, the observed similarity between CaM.CaMKI enzyme and peptide complexes is striking, indicating that the peptide is an excellent mimetic for interaction of calmodulin with the CaMKI enzyme.  相似文献   

2.
Many cellular Ca(2+)-dependent signaling cascades utilize calmodulin (CaM) as the intracellular Ca(2+) receptor. Ca(2+)/CaM binds and activates a plethora of enzymes, including CaM kinases (CaMKs). CaMKK2 is one of the most versatile of the CaMKs and will phosphorylate and activate CaMKI, CaMKIV, and AMP-activated protein kinase. Cell expression of CaMKK2 is limited, yet CaMKK2 is involved in regulating many important physiological and pathophysiological processes, including energy balance, adiposity, glucose homeostasis, hematopoiesis, inflammation, and cancer. Here, we explore known functions of CaMKK2 and discuss its potential as a target for therapeutic intervention.  相似文献   

3.
4.
Human Ca(2+)-calmodulin (CaM) dependent protein kinase I (CaMKI) encodes a 370 amino acid protein with a calculated M(r) of 41,337. The 1.5 kb CaMKI mRNA is expressed in many different human tissues and is the product of a single gene located on human chromosome 3. CaMKI 1-306, was unable to bind Ca(2+)-CaM and was completely inactive thereby defining an essential component of the CaM-binding domain to residues C-terminal to 306. CaMKI 1-294 did not bind CaM but was fully active in the absence of Ca(2+)-CaM, indicating that residues 295-306 are sufficient to maintain CaMKI in an auto-inhibited state. CaMKI was phosphorylated on Thr177 and its activity enhanced approximately 25-fold by CaMKI kinase in a Ca(2+)-CaM dependent manner. Replacement of Thr177 with Ala or Asp prevented both phosphorylation and activation by CaMKI kinase and the latter replacement also led to partial activation in the absence of CaMKI kinase. Whereas CaMKI 1-306 was unresponsive to CaMKI kinase, the 1-294 mutant was phosphorylated and activated by CaMKI kinase in both the presence and absence of Ca(2+)-CaM although at a faster rate in its presence. These results indicate that the auto-inhibitory domain in CaMKI gates, in a Ca(2+)-CaM dependent fashion, accessibility of both substrates to the substrate binding cleft and CaMKI kinase to Thr177. Additionally, CaMKI kinase responds directly to Ca(2+)-CaM with increased activity.  相似文献   

5.
Ma L  Liang S  Jones RL  Lu YT 《Plant physiology》2004,135(3):1280-1293
A cDNA encoding a calcium (Ca2+)/calmodulin (CaM)-dependent protein kinase (CaMK) from tobacco (Nicotiana tabacum), NtCaMK1, was isolated by protein-protein interaction-based screening of a cDNA expression library using 35S-labeled CaM as a probe. The genomic sequence is about 24.6 kb, with 21 exons, and the full-length cDNA is 4.8 kb, with an open reading frame for NtCaMK1 consisting of 1,415 amino acid residues. NtCaMK1 has all 11 subdomains of a kinase catalytic domain, lacks EF hands for Ca2+-binding, and is structurally similar to other CaMKs in mammal systems. Biochemical analyses have identified NtCaMK1 as a Ca2+/CaMK since NtCaMK1 phosphorylated itself and histone IIIs as substrate only in the presence of Ca2+/CaM with a Km of 44.5 microm and a Vmax of 416.2 nm min(-1) mg(-1). Kinetic analysis showed that the kinase not previously autophosphorylated had a Km for the synthetic peptide syntide-2 of 22.1 microm and a Vmax of 644.1 nm min(-1) mg(-1) when assayed in the presence of Ca2+/CaM. Once the autophosphorylation of NtCaMK1 was initiated, the phosphorylated form displayed Ca2+/CaM-independent behavior, as many other CaMKs do. Analysis of the CaM-binding domain (CaMBD) in NtCaMK1 with truncated and site-directed mutated forms defined a stretch of 20 amino acid residues at positions 913 to 932 as the CaMBD with high CaM affinity (Kd = 5 nm). This CaMBD was classified as a 1-8-14 motif. The activation of NtCaMK1 was differentially regulated by three tobacco CaM isoforms (NtCaM1, NtCaM3, and NtCaM13). While NtCaM1 and NtCaM13 activated NtCaMK1 effectively, NtCaM3 did not activate the kinase.  相似文献   

6.
Calmodulin-dependent protein kinase phosphatase (CaMKP) dephosphorylates and concomitantly deactivates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs), such as CaMKI, CaMKII, and CaMKIV. In the present study, a nuclear CaMKP-related protein, CaMKP-N, was identified. This protein consisted of 757 amino acid residues with a calculated molecular weight of 84,176. Recombinant CaMKP-N dephosphorylated CaMKIV. The activity of CaMKP-N requires Mn(2+) ions and is stimulated by polycations. Transiently expressed CaMKP-N in COS-7 cells was localized in the nucleus. This finding together with previous reports regarding localization of CaMKs indicates that CaMKP-N dephosphorylates CaMKIV and nuclear CaMKII, whereas CaMKP dephosphorylates CaMKI and cytosolic CaMKII.  相似文献   

7.
8.
Calcium-saturated calmodulin (CaM) directly activates CaM-dependent protein kinase I (CaMKI) by binding to a region in the C-terminal regulatory sequence of the enzyme to relieve autoinhibition. The structure of CaM in a high-affinity complex with a 25-residue peptide of CaMKI (residues 294-318) has been determined by X-ray crystallography at 1.7 A resolution. Upon complex formation, the CaMKI peptide adopts an alpha-helical conformation, while changes in the CaM domain linker enable both its N- and C-domains to wrap around the peptide helix. Target peptide residues Trp-303 (interacting with the CaM C-domain) and Met-316 (with the CaM N-domain) define the mode of binding as 1-14. In addition, two basic patches on the peptide form complementary charge interactions with CaM. The CaM-peptide affinity is approximately 1 pM, compared with 30 nM for the CaM-kinase complex, indicating that activation of autoinhibited CaMKI by CaM requires a costly energetic disruption of the interactions between the CaM-binding sequence and the rest of the enzyme. We present biochemical and structural evidence indicating the involvement of both CaM domains in the activation process: while the C-domain exhibits tight binding toward the regulatory sequence, the N-domain is necessary for activation. Our crystal structure also enables us to identify the full CaM-binding sequence. Residues Lys-296 and Phe-298 from the target peptide interact directly with CaM, demonstrating overlap between the autoinhibitory and CaM-binding sequences. Thus, the kinase activation mechanism involves the binding of CaM to residues associated with the inhibitory pseudosubstrate sequence.  相似文献   

9.
Elevated intracellular Ca(2+) triggers numerous signaling pathways including protein kinases such as the calmodulin-dependent kinases (CaMKs) and the extracellular signal-regulated kinases (ERKs). In the present study we examined Ca(2+)-dependent "cross-talk" between these two protein kinase families. Using a combination of pharmacological inhibitors and dominant-negative kinases (dnKinase), we identified a requirement for CaMKK acting through CaMKI in the stimulation of ERKs upon depolarization of the neuroblastoma cell line, NG108. Depolarization stimulated prolonged ERK and JNK activation that was blocked by the CaMKK inhibitor, STO-609; this inhibition of ERK activation by STO-609 was rescued by expression of a STO-609-insensitive mutant of CaMKK. However, activation of ERK by epidermal growth factor or carbachol were not suppressed by inhibition of CaMKK, indicating specificity for this "cross-talk." To identify the downstream target of CaMKK that mediated ERK activation upon depolarization, dnKinases were expressed. The dnCaMKI completely suppressed ERK2 activation whereas dnAKT/PKB or nuclear-targeted dnCaMKIV, other substrates for CaMKK, were not inhibitory. ERK activation upon depolarization or transfection with constitutively active (ca) CaMKI was blocked by dnRas. Additionally, depolarization of NG108 cells promoted neurite outgrowth, and this effect was blocked by inhibition of either CaMKK (STO-609) or ERK (UO126). Co-transfection with caCaMKK plus caCaMKI also stimulated neurite outgrowth that was blocked by inhibition of ERK (UO126). These data are the first to suggest that ERK activation and neurite outgrowth in response to depolarization are mediated by CaMKK activation of CaMKI.  相似文献   

10.
Nuclear Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) is an enzyme that dephosphorylates and downregulates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) as well as AMP-dependent protein kinase. In our previous study, we found that zebrafish CaMKP-N (zCaMKP-N) underwent proteolytic processing and translocated to cytosol in a proteasome inhibitor-sensitive manner. In the present study, we found that zCaMKP-N is regulated by phosphorylation at Ser-480. When zCaMKP-N was incubated with the activated CaMKI, time-dependent phosphorylation of the enzyme was observed. This phosphorylation was significantly reduced when Ser-480 was replaced by Ala, suggesting that CaMKI phosphorylates Ser-480 of zCaMKP-N. Phosphorylation-mimic mutants, S480D and S480E, showed higher phosphatase activities than those of wild type and S480A mutant in solution-based phosphatase assay using various substrates. Furthermore, autophosphorylation of CaMKII after ionomycin treatment was more severely attenuated in Neuro2a cells when CaMKII was cotransfected with the phosphorylation-mimic mutant of zCaMKP-N than with the wild-type or non-phosphorylatable zCaMKP-N. These results strongly suggest that phosphorylation of zCaMKP-N at Ser-480 by CaMKI activates CaMKP-N catalytic activity and thereby downregulates multifunctional CaMKs in the cytosol.  相似文献   

11.
We have isolated two genes from Saccharomyces cerevisiae that both encode a calmodulin-dependent protein kinase (CaM kinase). The CMK1 gene has been cloned by hybridization using an oligonucleotide probe synthesized on the basis of the peptide sequence of purified yeast CaM kinase (Londesborough, J. (1989) J. Gen. Microbiol. 135, 3373-3383). The other gene, CMK2, which is homologous to CMK1, has been isolated by screening at low stringency with a CMK1 fragment as a probe. The CMK2 product expressed in bacteria shows Ca(2+)- and CaM-dependent protein kinase activity, indicating that CMK2 also encodes a CaM kinase. The CMK1 and CMK2 products expressed in bacteria were found to have different biochemical properties in terms of autoregulatory activity and preference for yeast CaM or bovine CaM for maximal activity. Antibody raised against a peptide fragment of the CMK1 protein cross-reacts with the CMK2 product. Immunoblotting with this antibody indicated that the CMK1 and CMK2 products have apparent molecular masses of 56 and 50 kDa, respectively, in yeast cells. The predicted amino acid sequences of the two CMK products exhibit highest similarity with mammalian calmodulin-dependent multifunctional protein kinase II (CaM kinase II): the similarity within the N-terminal catalytic domain is about 40%, whereas that within the rest of the sequence is 25%. These data indicate that yeast has two kinds of genes encoding CaM kinase isozymes whose structural and functional properties are closely related to those of mammalian CaM kinase II. Another gene may be substituted for function of the CMK1 and CMK2 kinase in vivo, since elimination of both kinase genes is not lethal.  相似文献   

12.
In addition to physical properties (DeRemer, M. F., Saeli, R. J., and Edelman, A. M. (1992) J. Biol. Chem. 267, 13460-13465), enzymatic and regulatory characteristics indicate that calmodulin (CaM) kinase Ia and CaM kinase Ib are distinct entities. The Km values for ATP and site 1 peptide were similar between the two kinases, however, CaM kinase Ib is approximately 20-fold more sensitive to CaM than is CaM kinase Ia. The kinases also displayed differential sensitivities to divalent metal ions. For both kinases, site 1 peptide, synapsin I, and syntide-2 were highly preferred substrates relative to others tested. A 72-kDa protein from a heat-treated extract of rat pancreas was phosphorylated by CaM kinase Ib but not by CaM kinase Ia. CaM kinase Ia activity displayed a pronounced lag in its time course suggesting enzyme activation over time. Preincubation of CaM kinase Ia in the combined presence of Ca(2+)-CaM and MgATP led to a time-dependent increase in its site 1 peptide kinase activity of up to 15-fold. The extent of activation of CaM kinase Ia correlated with the extent of autophosphorylation. The enzyme retained full Ca(2+)-CaM dependence in the activated state which was rapidly reversible by treatment with protein phosphatase 2A catalytic subunit. Thus, the activation of CaM kinase Ia is a result of its Ca(2+)-CaM-dependent autophosphorylation. CaM kinase Ib was not activated by preincubation under autophosphorylating conditions yet lost approximately 90% of its activity toward either an exogenous substrate (site 1 peptide) or itself (autophosphorylation) after incubation with protein phosphatase 2A catalytic subunit. The deactivated state was not reversed by subsequent incubations under autophosphorylating conditions. Thus, CaM kinase Ib activity is dependent upon phosphorylation by a regulating kinase(s) which is resolved from CaM kinase Ib during purification of the latter.  相似文献   

13.
Eukaryotic elongation factor 2 kinase (eEF-2K) is an atypical protein kinase regulated by Ca(2+) and calmodulin (CaM). Its only known substrate is eukaryotic elongation factor 2 (eEF-2), whose phosphorylation by eEF-2K impedes global protein synthesis. To date, the mechanism of eEF-2K autophosphorylation has not been fully elucidated. To investigate the mechanism of autophosphorylation, human eEF-2K was coexpressed with λ-phosphatase and purified from bacteria in a three-step protocol using a CaM affinity column. Purified eEF-2K was induced to autophosphorylate by incubation with Ca(2+)/CaM in the presence of MgATP. Analyzing tryptic or chymotryptic peptides by mass spectrometry monitored the autophosphorylation over 0-180 min. The following five major autophosphorylation sites were identified: Thr-348, Thr-353, Ser-445, Ser-474, and Ser-500. In the presence of Ca(2+)/CaM, robust phosphorylation of Thr-348 occurs within seconds of addition of MgATP. Mutagenesis studies suggest that phosphorylation of Thr-348 is required for substrate (eEF-2 or a peptide substrate) phosphorylation, but not self-phosphorylation. Phosphorylation of Ser-500 lags behind the phosphorylation of Thr-348 and is associated with the Ca(2+)-independent activity of eEF-2K. Mutation of Ser-500 to Asp, but not Ala, renders eEF-2K Ca(2+)-independent. Surprisingly, this Ca(2+)-independent activity requires the presence of CaM.  相似文献   

14.
The microtubule (MT)-associated DCX protein plays an essential role in the development of the mammalian cerebral cortex. We report on the identification of a protein kinase, doublecortin kinase-2 (DCK2), with a domain (DC) highly homologous to DCX. DCK2 has MT binding activity associated with its DC domain and protein kinase activity mediated by a kinase domain, organized in a structure in which the two domains are functionally independent. Overexpression of DCK2 stabilizes the MT cytoskeleton against cold-induced depolymerization. Autophosphorylation of DCK2 strongly reduces its affinity for MTs. DCK2 and DCX mRNAs are nervous system-specific and are expressed during the period of cerebrocortical lamination. DCX is down-regulated postnatally, whereas DCK2 persists in abundance into adulthood, suggesting that the DC sequence has previously unrecognized functions in the mature nervous system. In sympathetic neurons, DCK2 is localized to the cell body and to the terminal segments of axons and dendrites. DCK2 may represent a phosphorylation-dependent switch for the reversible control of MT dynamics in the vicinity of neuronal growth cones.  相似文献   

15.
Gong D  Guo Y  Jagendorf AT  Zhu JK 《Plant physiology》2002,130(1):256-264
The Arabidopsis Salt Overly Sensitive 2 (SOS2) gene encodes a serine/threonine (Thr) protein kinase that has been shown to be a critical component of the salt stress signaling pathway. SOS2 contains a sucrose-non-fermenting protein kinase 1/AMP-activated protein kinase-like N-terminal catalytic domain with an activation loop and a unique C-terminal regulatory domain with an FISL motif that binds to the calcium sensor Salt Overly Sensitive 3. In this study, we examined some of the biochemical properties of the SOS2 in vitro. To determine its biochemical properties, we expressed and isolated a number of active and inactive SOS2 mutants as glutathione S-transferase fusion proteins in Escherichia coli. Three constitutively active mutants, SOS2T168D, SOS2T168D Delta F, and SOS2T168D Delta 308, were obtained previously, which contain either the Thr-168 to aspartic acid (Asp) mutation in the activation loop or combine the activation loop mutation with removal of the FISL motif or the entire regulatory domain. These active mutants exhibited a preference for Mn(2+) relative to Mg(2+) and could not use GTP as phosphate donor for either substrate phosphorylation or autophosphorylation. The three enzymes had similar peptide substrate specificity and catalytic efficiency. Salt overly sensitive 3 had little effect on the activity of the activation loop mutant SOS2T168D, either in the presence or absence of calcium. The active mutant SOS2T168D Delta 308 could not transphosphorylate an inactive protein (SOS2K40N), which indicates an intramolecular reaction mechanism of SOS2 autophosphorylation. Interestingly, SOS2 could be activated not only by the Thr-168 to Asp mutation but also by a serine-156 or tyrosine-175 to Asp mutation within the activation loop. Our results provide insights into the regulation and biochemical properties of SOS2 and the SOS2 subfamily of protein kinases.  相似文献   

16.
We utilized an expression screen to identify two novel Ca(2+)/calmodulin (CaM)-regulated protein kinases in Aspergillus nidulans. The two kinases, CMKB and CMKC, possess high sequence identity with mammalian CaM kinases (CaMKs) I/IV and CaMKKalpha/beta, respectively. In vitro CMKC phosphorylates and increases the activity of CMKB, indicating they are biochemical homologues of CaMKKalpha/beta and CaMKI/IV. The disruption of CMKB is lethal; however, when protein expression is postponed, the spores germinate with delayed kinetics. The observed lag corresponds to a delay in the G(1)-phase activation of the cyclin-dependent kinase NIMX(cdc2). Disruption of cmkC is not lethal, but spores lacking CMKC also germinate with delayed kinetics and a lag in the activation of NIMX(cdc2). Analysis of DeltacmkC suggests a role for CMKC in regulating the first and subsequent nuclear division cycles. We conclude that both CMKB and CMKC are required for the proper temporal activation of NIMX(cdc2) as spores enter the cell cycle from quiescence and suggest that this relationship exists during the G(1)/S transition of subsequent cell divisions.  相似文献   

17.
We recently demonstrated that the activation of ceramide kinase (CERK) and the formation of its product, ceramide 1-phosphate (C1P), are necessary for the degranulation pathway in mast cells and that the kinase activity of this enzyme is completely dependent on the intracellular concentration of Ca(2+) (Mitsutake, S., Kim, T.-J., Inagaki, Y., Kato, M., Yamashita, T., and Igarashi, Y. (2004) J. Biol. Chem. 279, 17570-17577). Despite the demonstrated importance of Ca(2+) as a regulator of CERK activity, there are no apparent binding domains in the enzyme and the regulatory mechanism has not been well understood. In the present study, we found that calmodulin (CaM) is involved in the Ca(2+)-dependent activation of CERK. The CaM antagonist W-7 decreased both CERK activity and intracellular C1P formation. Additionally, exogenously added CaM enhanced CERK activity even at low concentrations of Ca(2+). The CERK protein was co-immunoprecipitated with an anti-CaM antibody, indicating formation of intracellular CaM.CERK complexes. An in vitro CaM binding assay also demonstrated Ca(2+)-dependent binding of CaM to CERK. These results strongly suggest that CaM acts as a Ca(2+) sensor for CERK. Furthermore, a CaM binding assay using various mutants of CERK revealed that the binding site of CERK is located within amino acids 422-435. This region appears to include a type 1-8-14B CaM binding motif and is predicted to form an amphipathic helical wheel, which is utilized in CaM recognition. The expression of a deletion mutant of CERK that contained the CaM binding domain but lost CERK activity inhibited the Ca(2+)-dependent C1P formation. These results suggest that this domain could saturate the CaM and hence block Ca(2+)-dependent activation of CERK. Finally, we reveal that in mast cell degranulation CERK acts downstream of CaM, similar to CaM-dependent protein kinase II, which had been assumed to be the main target of CaM in mast cells.  相似文献   

18.
We isolated cDNA clones for novel protein kinases by expression screening of a cDNA library from the basidiomycetous mushroom Coprinus cinereus. One of the isolated clones was found to encode a calmodulin (CaM)-binding protein consisting of 488 amino acid residues with a predicted molecular weight of 53,906, which we designated CoPK12. The amino acid sequence of the catalytic domain of CoPK12 showed 46% identity with those of rat Ca2+/CaM-dependent protein kinase (CaMK) I and CaMKIV. However, a striking difference between these kinases is that the critical Thr residue in the activating phosphorylation site of CaMKI/IV is replaced by a Glu residue at the identical position in CoPK12. As predicted from its primary sequence, CoPK12 was found to behave like an activated form of CaMKI phosphorylated by an upstream CaMK kinase, indicating that CoPK12 is a unique CaMK with different properties from those of the well-characterized CaMKI, II, and IV. CoPK12 was abundantly expressed in actively growing mycelia and phosphorylated various proteins, including endogenous substrates, in the presence of Ca2+/CaM. Treatment of mycelia of C. cinereus with KN-93, which was found to inhibit CoPK12, resulted in a significant reduction in growth rate of mycelia. These results suggest that CoPK12 is a new type of multifunctional CaMK expressed in C. cinereus, and that it may play an important role in the mycelial growth.  相似文献   

19.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a unique protein phosphatase that specifically dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs). To clarify the physiological significance of CaMKP, we identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and fructose bisphosphate aldolase as major binding partners of CaMKP in a soluble fraction of rat brain using the two-dimensional far-Western blotting technique, in conjunction with peptide mass fingerprinting analysis. We analyzed the affinities of these interactions. Wild type CaMKP-glutathione S-transferase (GST) associated with GAPDH in a GST pull-down assay. Deletion analysis suggested that the N-terminal side of the catalytic domain of CaMKP was responsible for the binding to GAPDH. Further, anti-CaMKP antibody coimmunoprecipitated GAPDH in a rat brain extract. GAPDH was phosphorylated by CaMKI or CaMKIV in vitro; however, when CaMKP coexisted, the phosphorylation was markedly attenuated. Under these conditions, CaMKP significantly dephosphorylated CaMKI and CaMKIV, which had been phosphorylated by CaMK kinase, whereas it did not dephosphorylate the previously phosphorylated GAPDH. The results suggest that CaMKP regulates the phosphorylation level of GAPDH in the CaMKP-GAPDH complex by dephosphorylating and deactivating CaMKs that are responsible for the phosphorylation of GAPDH.  相似文献   

20.
We isolated cDNA clones for novel protein kinases by expression screening of a cDNA library from the basidiomycetous mushroom Coprinus cinereus. One of the isolated clones was found to encode a calmodulin (CaM)-binding protein consisting of 488 amino acid residues with a predicted molecular weight of 53,906, which we designated CoPK12. The amino acid sequence of the catalytic domain of CoPK12 showed 46% identity with those of rat Ca2+/CaM-dependent protein kinase (CaMK) I and CaMKIV. However, a striking difference between these kinases is that the critical Thr residue in the activating phosphorylation site of CaMKI/IV is replaced by a Glu residue at the identical position in CoPK12. As predicted from its primary sequence, CoPK12 was found to behave like an activated form of CaMKI phosphorylated by an upstream CaMK kinase, indicating that CoPK12 is a unique CaMK with different properties from those of the well-characterized CaMKI, II, and IV. CoPK12 was abundantly expressed in actively growing mycelia and phosphorylated various proteins, including endogenous substrates, in the presence of Ca2+/CaM. Treatment of mycelia of C. cinereus with KN-93, which was found to inhibit CoPK12, resulted in a significant reduction in growth rate of mycelia. These results suggest that CoPK12 is a new type of multifunctional CaMK expressed in C. cinereus, and that it may play an important role in the mycelial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号