首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the presence of 10-4 M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating.  相似文献   

2.
Gigaohm recordings have been made from glutamate receptor channels in excised, outside-out patches of collagenase-treated locust muscle membrane. The channels in the excised patches exhibit the kinetic state switching first seen in megaohm recordings from intact muscle fibers. Analysis of channel dwell time distributions reveals that the gating mechanism contains at least four open states and at least four closed states. Dwell time autocorrelation function analysis shows that there are at least three gateways linking the open states of the channel with the closed states. A maximum likelihood procedure has been used to fit six different gating models to the single channel data. Of these models, a cooperative model yields the best fit, and accurately predicts most features of the observed channel gating kinetics.  相似文献   

3.
The derivation of cross-correlation functions from single-channel dwell (open and closed) times is described. Simulation of single-channel data for simple gating models, alongside theoretical treatment, is used to demonstrate the relationship of cross-correlation functions to underlying gating mechanisms. It is shown that time irreversibility of gating kinetics may be revealed in cross-correlation functions. Application of cross-correlation function analysis to data derived from the locust muscle glutamate receptor-channel provides evidence for multiple gateway states and time reversibility of gating. A model for the gating of this channel is used to show the effect of omission of brief channel events on cross-correlation functions.  相似文献   

4.
An assumption usually made when developing kinetic models for the gating of ion channels is that the transitions among the various states involved in the gating obey microscopic reversibility. If this assumption is incorrect, then the models and estimated rate constants made with the assumption would be in error. This paper examines whether the gating of a large conductance Ca-activated K+ channel in skeletal muscle is consistent with microscopic reversibility. If microscopic reversibility is obeyed, then the number of forward and backward transitions per unit time for each individual reaction step will, on average, be identical and, consequently, the gating must show time reversibility. To look for time reversibility, two-dimensional dwell-time distributions of the durations of open and closed intervals were obtained from single-channel current records analyzed in the forward and in the backward directions. Two-dimensional dwell-time distributions of pairs of open intervals and of pairs of closed intervals were also analyzed to extend the resolution of the method to special circumstances in which intervals from different closed (or open) states might have similar durations. No significant differences were observed between the forward and backward analysis of the two-dimensional dwell-time distributions, suggesting time reversibility. Thus, we find no evidence to indicate that the gating of the maxi K+ channel violates microscopic reversibility.  相似文献   

5.
Xenopus oocytes express mechanosensitive (MS(XO)) channels that can be studied in excised patches of membrane with the patch-clamp technique. This study examines the steady-state kinetic gating properties of MS(XO) channels using detailed single-channel analysis. The open and closed one-dimensional dwell-time distributions were described by the sums of 2-3 open and 5-7 closed exponential components, respectively, indicating that the channels enter at least 2-3 open and 5-7 closed kinetic states during gating. Dependency plots revealed that the durations of adjacent open and closed intervals were correlated, indicating two or more gateway states in the gating mechanism for MS channels. Maximum likelihood fitting of two-dimensional dwell-time distributions to both generic and specific models was used to examine gating mechanism and rank models. A kinetic scheme with five closed and five open states, in which each closed state could make a direct transition to an open state (two-tiered model) could account for the major features of the single-channel data. Two-tiered models that allowed direct transitions to subconductance open states in addition to the fully open state were also consistent with multiple gateway states. Thus, the gating mechanism of MS(XO) channels differs from the sequential (linear) gating mechanisms considered for MS channels in bacteria, chick skeletal muscle, and Necturus proximal tubule.  相似文献   

6.
Identification of the minimum number of ways in which open and closed states communicate is a crucial step in defining the gating kinetics of multistate channels. We used certain correlation functions to extract information about the pathways connecting the open and closed states of the cation channel of the purified nicotinic acetylcholine receptor and of the chloride channel of Torpedo californica electroplax membranes. Single channel currents were recorded from planar lipid bilayers containing the membrane channel proteins under investigation. The correlation functions are conveniently computed from single channel current records and yield information on E, the minimum number of entry/exit states into the open or closed aggregates. E gives a lower limit on the numbers of transition pathways between open and closed states. For the acetylcholine receptor, the autocorrelation analysis shows that there are at least two entry/exit states through which the open and closed aggregates communicate. The chloride channel fluctuates between three conductance substates, here indentified as C, M, and H for closed, intermediate, and high conductance, respectively. Correlation analysis shows that E is greater than or equal to 2 for the M aggregate, indicating that there are at least two distinct entry/exit states in the M aggregate. In contrast, there is no evidence for the existence of more than one entry/exit state in the C or H aggregates. Thus, these correlation functions provide a simple and general strategy to extract information on channel gating kinetics.  相似文献   

7.
Models for the gating of ion channels usually assume that the rate constants for leaving any given kinetic state are independent of previous channel activity. Although such discrete Markov models have been successful in describing channel gating, there is little direct evidence for the Markov assumption of time-invariant rate constants for constant conditions. This paper tests the Markov assumption by determining whether the single-channel kinetics of the large conductance Ca-activated K channel in cultured rat skeletal muscle are independent of previous single-channel activity. The experimental approach is to examine dwell-time distributions conditional on adjacent interval durations. The time constants of the exponential components describing the distributions are found to be independent of adjacent interval duration, and hence, previous channel activity. In contrast, the areas of the different components can change. Since the observed time constants are a function of the underlying rate constants for transitions among the kinetic states, the observation of time constants independent of previous channel activity suggests that the rate constants are also independent of previous channel activity. Thus, the channel kinetics are consistent with Markov gating. An observed dependent (inverse) relationship between durations of adjacent open and shut intervals together with Markov gating indicates that there are two or more independent transition pathways connecting open and shut states. Finally, no evidence is found to suggest that gating is not at thermodynamic equilibrium: the inverse relationship was independent of the time direction of analysis.  相似文献   

8.
The Ca2+-dependent gating mechanism of large-conductance calcium-activated K+ (BK) channels from cultured rat skeletal muscle was examined from low (4 μM) to high (1,024 μM) intracellular concentrations of calcium (Ca2+ i) using single-channel recording. Open probability (P o) increased with increasing Ca2+ i (K 0.5 11.2 ± 0.3 μM at +30 mV, Hill coefficient of 3.5 ± 0.3), reaching a maximum of ∼0.97 for Ca2+ i ∼ 100 μM. Increasing Ca2+ i further to 1,024 μM had little additional effect on either P o or the single-channel kinetics. The channels gated among at least three to four open and four to five closed states at high levels of Ca2+ i (>100 μM), compared with three to four open and five to seven closed states at lower Ca2+ i. The ability of kinetic schemes to account for the single-channel kinetics was examined with simultaneous maximum likelihood fitting of two-dimensional (2-D) dwell-time distributions obtained from low to high Ca2+ i. Kinetic schemes drawn from the 10-state Monod-Wyman-Changeux model could not describe the dwell-time distributions from low to high Ca2+ i. Kinetic schemes drawn from Eigen''s general model for a ligand-activated tetrameric protein could approximate the dwell-time distributions but not the dependency (correlations) between adjacent intervals at high Ca2+ i. However, models drawn from a general 50 state two-tiered scheme, in which there were 25 closed states on the upper tier and 25 open states on the lower tier, could approximate both the dwell-time distributions and the dependency from low to high Ca2+ i. In the two-tiered model, the BK channel can open directly from each closed state, and a minimum of five open and five closed states are available for gating at any given Ca2+ i. A model that assumed that the apparent Ca2+-binding steps can reach a maximum rate at high Ca2+ i could also approximate the gating from low to high Ca2+ i. The considered models can serve as working hypotheses for the gating of BK channels.  相似文献   

9.
For ion channels that are opened by neurotransmitters, analysis of current noise has given valuable information on the kinetics of synaptic channel gating. In depolarizing bipolar cells of the vertebrate retina, we have recently characterized a synaptic current for which the neurotransmitter glutamate closes channels, and for which the channel open probability is low even in the absence of glutamate. We present here predictions for the current noise spectrum expected for various models of glutamate's action on the ion channels. Comparison of these theoretical predictions with experimental data allows us to rule out several simple kinetic schemes for the action of glutamate, and to conclude that the channels closed by glutamate must be able to exist in at least four different states.  相似文献   

10.
The gating kinetics of batrachotoxin-modified Na+ channels were studied in outside-out patches of axolemma from the squid giant axon by means of the cut-open axon technique. Single channel kinetics were characterized at different membrane voltages and temperatures. The probability of channel opening (Po) as a function of voltage was well described by a Boltzmann distribution with an equivalent number of gating particles of 3.58. The voltage at which the channel was open 50% of the time was a function of [Na+] and temperature. A decrease in the internal [Na+] induced a shift to the right of the Po vs. V curve, suggesting the presence of an integral negative fixed charge near the activation gate. An increase in temperature decreased Po, indicating a stabilization of the closed configuration of the channel and also a decrease in entropy upon channel opening. Probability density analysis of dwell times in the closed and open states of the channel at 0 degrees C revealed the presence of three closed and three open states. The slowest open kinetic component constituted only a small fraction of the total number of transitions and became negligible at voltages greater than -65 mV. Adjacent interval analysis showed that there is no correlation in the duration of successive open and closed events. Consistent with this analysis, maximum likelihood estimation of the rate constants for nine different single-channel models produced a preferred model (model 1) having a linear sequence of closed states and two open states emerging from the last closed state. The effect of temperature on the rate constants of model 1 was studied. An increase in temperature increased all rate constants; the shift in Po would be the result of an increase in the closing rates predominant over the change in the opening rates. The temperature study also provided the basis for building an energy diagram for the transitions between channel states.  相似文献   

11.
The modal gating behavior of single sheep cardiac sarcoplasmic reticulum (SR) Ca2+-release/ryanodine receptor (RyR) channels was assessed. We find that the gating of RyR channels spontaneously shifts between high (H) and low (L) levels of activity and inactive periods where no channel openings are detected (I). Moreover, we find that there is evidence for multiple gating modes within H activity, which we term H1 and H2 mode. Our results demonstrate that the underlying mechanisms regulating gating are similar in native and purified channels. Dwell-time distributions of L activity were best fitted by three open and five closed significant exponential components whereas dwell-time distributions of H1 activity were best fitted by two to three open and four closed significant exponential components. Increases in cytosolic [Ca2+] cause an increase in open probability (Po) within L activity and an increase in the probability of occurrence of H activity. Open lifetime distributions within L activity were Ca2+ independent whereas open lifetime distributions within H activity were Ca2+ dependent. This study is the first attempt to estimate RyR single-channel kinetic parameters from sequences of idealized dwell-times and to develop kinetic models of RyR gating using the criterion of maximum likelihood. We propose distinct kinetic schemes for L, H1, and H2 activity that describe the major features of sheep cardiac RyR channel gating at these levels of activity.  相似文献   

12.
The determination of rate constants from single-channel data can be very difficult, in part because the single-channel lifetime distributions commonly analyzed by experimenters often have a complicated mathematical relation to the channel gating mechanism. The standard treatment of channel gating as a Markov process leads to the prediction that lifetime distributions are exponential functions. As the number of states of a channel gating scheme increases, the number of exponential terms in the lifetime distribution increases, and the weights and decay constants of the lifetime distributions become progressively more complicated functions of the underlying rate constants. In the present study a mathematical strategy for inverting these functions is introduced in order to determine rate constants from single-channel lifetime distributions. This inversion is easy for channel gating schemes with two or fewer states of a given conductance, so the present study focuses on schemes with more states. The procedure is to derive explicit equations relating the parameters of the lifetime distribution to the rate constants of the scheme. Such equations can be derived using the equality between symmetric functions of eigenvalues of a matrix and sums over principle minors, as well as expressions for the moments, derivatives, and weights of a lifetime distribution. The rate constants are then obtained as roots to this system of equations. For a gating scheme with three sequential closed states and a single gateway state, exact analytical expressions were found for each rate constant in terms of the parameters of the three-exponential closed-time distribution. For several other gating schemes, systems of equations were found that could be solved numerically to obtain the rate constants. Lifetime distributions were shown to specify a unique set of real rate constants in sequential gating schemes with up to five closed or five open states. For kinetic schemes with multiple gating pathways, the analysis of simulated data revealed multiple solutions. These multiple solutions could be distinguished by examining two-dimensional probability density functions. The utility of the methods introduced here are demonstrated by analyzing published data on nicotinic acetylcholine receptors, GABA(A) receptors, and NMDA receptors.  相似文献   

13.
14.
15.
Single channel recordings from the locust muscle D-glutamate receptor channel were obtained using glutamate concentrations ranging from 10-6 to 10-2 M. Channel kinetics were analyzed to aid in the development of a model for the gating mechanism. Analysis of channel dwell time histograms demonstrated that the channel possessed multiple open and closed states at concentrations of glutamate between 10-5 and 10-2 M. Correlations between successive dwell times showed that the gating mechanism was nonlinear (i.e., branched or cyclic) over the same glutamate concentration range. The glutamate concentration dependence of the channel open probability, and of the event frequency, was used to explore two possible allosteric gating mechanisms in more detail.  相似文献   

16.
Discrete state Markov models have proven useful for describing the gating of single ion channels. Such models predict that the dwell-time distributions of open and closed interval durations are described by mixtures of exponential components, with the number of exponential components equal to the number of states in the kinetic gating mechanism. Although the exponential components are readily calculated (Colquhoun and Hawkes, 1982, Phil. Trans. R. Soc. Lond. B. 300:1-59), there is little practical understanding of the relationship between components and states, as every rate constant in the gating mechanism contributes to each exponential component. We now resolve this problem for simple models. As a tutorial we first illustrate how the dwell-time distribution of all closed intervals arises from the sum of constituent distributions, each arising from a specific gating sequence. The contribution of constituent distributions to the exponential components is then determined, giving the relationship between components and states. Finally, the relationship between components and states is quantified by defining and calculating the linkage of components to states. The relationship between components and states is found to be both intuitive and paradoxical, depending on the ratios of the state lifetimes. Nevertheless, both the intuitive and paradoxical observations can be described within a consistent framework. The approach used here allows the exponential components to be interpreted in terms of underlying states for all possible values of the rate constants, something not previously possible.  相似文献   

17.
Kinetic diversity of Na+ channel bursts in frog skeletal muscle   总被引:4,自引:2,他引:2       下载免费PDF全文
Individual Na+ channels of dissociated frog skeletal muscle cells at 10 degrees C fail to inactivate in 0.02% of depolarizing pulses, thus producing bursts of openings lasting hundreds of milliseconds. We present here a kinetic analysis of 87 such bursts that were recorded in multi-channel patches at four pulse potentials. We used standard dwell-time histograms as well as fluctuation analysis to analyze the gating kinetics of the bursting channels. Since each burst contained only 75-150 openings, detailed characterization of the kinetics from single bursts was not possible. Nevertheless, at this low kinetic resolution, the open and closed times could be well fitted by single exponentials (or Lorentzians for the power spectra). The best estimates of both the open and closed time constants produced by either technique were much more broadly dispersed then expected from experimental or analytical variability, with values varying by as much as an order of magnitude. Furthermore, the values of the open and closed time constants were not significantly correlated with one another from burst to burst. The bursts thus expressed diverse kinetic behaviors, all of which appear to be manifestations of a single type of Na+ channel. Although the opening and closing rates were dispersed, their average values were close to those of alpha m and 2 beta m derived from fits to the early transient Na+ currents over the same voltage range. We propose a model in which the channel has both primary states (e.g., open, closed, and inactivated), as well as "modes" that are associated with independent alterations in the rate constants for transition between each of these primary states.  相似文献   

18.
Gating kinetics of human ether-a-go-go (eag)-related gene (HERG) K+ channel expressed in Xenopus oocytes was studied using non-inactivating channel variants carrying different structural modifications in the amino terminus. A kinetics model was elaborated to describe the behavior of full-length channels, that includes at least three open states besides the three closed states previously proposed. Deletion of the HERG-specific proximal domain (HERG D138-373) accelerated all individual forward transitions between closed states. Whereas relatively large amplitude depolarizations were required to drive full-length HERG channels to more distal open states, these were reached more easily in channels without proximal domain. Alteration of the initial eag/PAS domain by introduction of a short amino-acid sequence at the beginning of the amino terminus did not alter transitions between closed states, but prevented the channels from reaching the farthest open states that determine slower deactivation rates. This indicates that the presence of specific amino-terminal structures can be correlated with the occurrence of distinctive molecular transitions. It also demonstrates that both proximal and eag/PAS domains in the amino terminus contribute to set the gating characteristics of HERG channels.  相似文献   

19.
The kinetics of ion channels have been widely modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and kinetic rate constants connecting these states are constant. To study the gating kinetics of voltage-dependent K(+) channel in rat dorsal root ganglion neurons, K(+) channel current were recorded using cell-attached patch-clamp technique. The K(+) channel characteristic of kinetics were found to be statistically self-similar at different time scales as predicted by the fractal model. The fractal dimension D for the closed times and for the open times depend on the pipette potential. For the open and closed times of kinetic setpoint, it was found dependent on the applied pipette potential, which indicated that the ion channel gating kinetics had nonlinear kinetic properties. Thus, the open and closed durations, which had the voltage dependence of the gating of this ion channel, were well described by the fractal model.  相似文献   

20.
In a previous study we identified an extensive gating network within the inwardly rectifying Kir1.1 (ROMK) channel by combining systematic scanning mutagenesis and functional analysis with structural models of the channel in the closed, pre-open and open states. This extensive network appeared to stabilize the open and pre-open states, but the network fragmented upon channel closure. In this study we have analyzed the gating kinetics of different mutations within key parts of this gating network. These results suggest that the structure of the transition state (TS), which connects the pre-open and closed states of the channel, more closely resembles the structure of the pre-open state. Furthermore, the G-loop, which occurs at the center of this extensive gating network, appears to become unstructured in the TS because mutations within this region have a ‘catalytic’ effect upon the channel gating kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号