首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Factor IX Niigata is a mutant factor IX responsible for the moderately severe hemophilia B in a patient who has a normal level of factor IX antigen with reduced clotting activity (1-4% of normal). We reported previously that the purified mutant protein could be converted to the factor IXa beta form by factor XIa/Ca2+ at a rate similar to that in the case of normal factor IX, but the resulting mutant factor IXa beta could not activate factor X in the presence of factor VIII, Ca2+, and phospholipids (Yoshioka, A. et al. (1986) Thromb. Res. 42, 595-604). In the present study, we analyzed factor IX Niigata at the structural level to elucidate the molecular abnormality responsible for the loss of clotting activity. Amino acid sequence analysis of a peptide obtained on lysyl endopeptidase digestion, coupled with subsequent SP-V8 digestion, demonstrated that the alanine at position 390 was substituted by valine in the catalytic domain of the factor IX Niigata molecule.  相似文献   

2.
Previously, from the plasma of unrelated haemophilia-B patients, we isolated two non-functional Factor IX variants, namely Los Angeles (IXLA) and Long Beach (IXLB). Both variants could be cleaved to yield Factor IXa-like molecules, but were defective in catalysing the cleavage of Factor X (macromolecular substrate) and in binding to antithrombin III (macromolecular inhibitor). In the present study we have identified the mutation of IXLA by amplifying the exons (including flanking regions) as well as the 5' end of the gene by polymerase-chain-reaction (PCR) method and sequencing the amplified DNA by the dideoxy chain-termination method. Comparison of the normal IX and IXLA sequences revealed only one base substitution (T----C) in exon VIII of IXLA, with a predicted replacement of Ile-397 to Thr in the mature protein. This mutation is the same as found recently for IXLB. The observation that IXLB and IXLA have the same mutation is an unexpected finding, since, on the basis of their ox brain prothrombin time (PT, a test that measures the ability of the variant Factor IX molecules to inhibit the activation of Factor X by Factor VIIa-tissue factor complex), these variants have been classified into two different groups and were thought to be genetically different. Our observation thus suggests that the ox brain PT does not reflect the locus of mutation in the coding region of the variant molecules. However, our analysis suggests that the ox brain PT is related to Factor IX antigen concentration in the patient's plasma. Importantly, although the mutation in IXLA or IXLB protein is in the catalytic domain, purified IXaLA and IXaLB hydrolyse L-tosylarginine methyl ester at rates very similar to that of normal IXa. These data, in conjunction with our recent data on Factor IXBm Lake Elsinore (Ala-390----Val mutant), strengthen a conclusion that the peptide region containing residues 390-397 of normal Factor IXa plays an essential role in macromolecular substrate catalysis and inhibitor binding. However, the two mutations noted thus far in this region do not distort S1 binding site in the Factor IXa enzyme.  相似文献   

3.
Factor IX Alabama is a factor IX variant in which a glycine has been substituted for Asp47 in the first epidermal growth factor (EGF) domain. The structural defect in factor IX Alabama results in a molecule with 10% of normal coagulant activity. The interactions of immunoaffinity-purified factor IX Alabama with its activator, cofactors, and substrate have been investigated to determine the functional defect in the variant. Factor IX Alabama is activated by factor XIa/calcium at near normal rates. Calcium fluorescence-quenching experiments indicate that high affinity calcium binding in the first EGF domain is not altered in factor IX Alabama. The active site of factor IXa Alabama is fully competent to activate factor X in the absence of calcium when using polylysine as a surface to catalyze the reaction. Factor IXa Alabama has only 64% of normal factor IXa activity in the presence of 300 microM CaCl2 in the polylysine-catalyzed system although apparent high affinity calcium binding constants are similar. Factor IXa Alabama has 52-60% of normal activity in a calcium/phospholipid vesicle system. The addition of factor VIIIa to the phospholipid vesicle system decreases the relative rate of factor IXa Alabama to 18-19% of normal. Three-dimensional computer-aided models of the first EGF domain of normal factor IX and factor IX Alabama indicate no major structural alterations resulting from the glycine substitution for Asp47. The model of the first EGF domain of normal factor IX predicts a calcium-binding site involving Asp47, Asp49, Asp64, and Asp65. Our binding data, however, indicate that Asp47 is not necessary to form the high affinity binding site. We conclude that Asp47 in normal factor IX coordinates to the bound calcium, inducing a conformational change in the molecule essential for proper interaction with factor X and factor VIIIa.  相似文献   

4.
Factor IX Amagasaki (AMG) is a naturally occurring mutant of factor IX having essentially no coagulant activity, even though normal levels of antigen are detected in plasma. Factor IX AMG was purified from the patient's plasma by immunoaffinity chromatography with an anti-factor IX monoclonal antibody column. Factor IX AMG was cleaved normally by factor VIIa-tissue factor complex, yielding a two-chain factor IXa. Amino acid composition and sequence analysis of one of the tryptic peptides isolated from factor IX AMG revealed that Gly-311 had been replaced by Glu. We identified a one-base substitution of guanine to adenine in exon VIII by amplifying exon VIII using the polymerase chain reaction method and sequencing the product. This base mutation also supported the replacement of Gly-311 by Glu. In the purified system, factor IXa AMG did not activate factor X in the presence of factor VIII, phospholipids, and Ca2+, and no esterase activity toward Z-Arg-p-nitrobenzyl ester was observed. The model building of the serine protease domain of factor IXa suggests that the Gly-311----Glu exchange would disrupt the specific conformational state in the active site environment, resulting in the substrate binding site not forming properly. This is the first report to show the experimental evidence for importance of a highly conserved Gly-142 (chymotrypsinogen numbering) located in the catalytic site of mammalian serine proteases so far known.  相似文献   

5.
Factor IX is the zymogen of the serine protease factor IXa involved in blood coagulation. In addition to a catalytic domain homologous to the chymotrypsin family, it has Ca2+, phospholipid, and factor VIIIa binding regions needed for full biologic activity. We isolated a nonfunctional factor IX protein designated factor IXEagle Rock (IXER) from a patient with hemophilia B. The variant protein is indistinguishable from normal factor IX (IXN) in its migration on sodium dodecyl sulfate-gel electrophoresis, isoelectric point in urea, carbohydrate content and distribution, number of gamma-carboxyglutamic acid residues, and beta-OH aspartic acid content, and in its binding to an anti-IXN monoclonal antibody which has been shown previously to inhibit the interaction of factor VIIIa with factor IXaN. Further, IXER is cleaved to yield a factor IXa-like molecule by factor XIa/Ca2+ at a rate similar to that observed for IXN. However, in contrast to IXaN, IXaER does not bind to antithrombin-III (specific inhibitor of IXaN) and does not catalyze the activation of factor X (substrate) to factor Xa. To identify the mutation in IXER, all eight exons of IXN and IXER gene were amplified by the polymerase chain reaction technique and cloned. A single point mutation (G----T) which results in the replacement of Val for Gly363 in the catalytic domain of IXER was identified. Gly363 in factor IXa corresponds to the universally conserved Gly193 in the active site sequence of the chymotrypsin serine protease family. X-ray crystallographic data in the literature demonstrate a critical role of this Gly in stabilizing the active conformation of chymotrypsin/trypsin in two major ways: 1) in the formation of the substrate binding site; and 2) in the development of the oxyanion hole. Our computer structural data support a concept that the Gly363----Val change prevents the development of the active site conformation in factor IXa such that the substrate binding site and the oxyanion hole are not formed in the mutated enzyme.  相似文献   

6.
The three-dimensional structure of activated factor IX comprises multiple contacts between the two epidermal growth factor (EGF)-like domains. One of these is a salt bridge between Glu(78) and Arg(94), which is essential for binding of factor IXa to its cofactor factor VIII and for factor VIII-dependent factor X activation (Christophe, O. D., Lenting, P. J., Kolkman, J. A., Brownlee, G. G., and Mertens, K. (1998) J. Biol. Chem. 273, 222-227). We now addressed the putative hydrophobic contact at the interface between the EGF-like domains. Recombinant factor IX chimeras were constructed in which hydrophobic regions Phe(75)-Phe(77) and Lys(106)-Val(108) were replaced by the corresponding sites of factor X and factor VII. Activated factor IX/factor X chimeras were indistinguishable from normal factor IXa with respect to factor IXa enzymatic activity. In contrast, factor IXa(75-77)/factor VII displayed approximately 2-fold increased factor X activation in the presence of factor VIII, suggesting that residues 75-77 contribute to cofactor-dependent factor X activation. Activation of factor X by factor IX(106-108)/factor VII was strongly decreased, both in the absence and presence of factor VIII. Activity could be restored by simultaneous substitution of the hydrophobic sites in both EGF-like domains for factor VII residues. These data suggest that factor IXa enzymatic activity requires hydrophobic contact between the two EGF-like domains.  相似文献   

7.
We have recently shown that thrombin-stimulated human platelets have specific, saturable receptors for factor IXa, occupancy of which promotes factor X activation (Ahmad, S. S., Rawala-Sheikh, R., and Walsh, P. N. (1989) J. Biol. Chem. 264: 3244-3251, 20012-20016; Rawala-Sheikh, R., Ahmad, S. S., and Walsh, P. N. (1990) Biochemistry 29, 2606-2611). To study the structural requirements for factor IXa binding to platelets, equilibrium binding studies and kinetic studies of factor X activation were carried out with normal factor IXa and with two variant proteins: factor IXaAlabama (FIXaAL; Asp47----Gly substitution) and factor IXaChapel Hill (FIXaCH; Arg145----His substitution). In the absence of factors VIIIa and X, there were 331 binding sites/platelet for FIXaCH (Kdapp = 2.8 nM), and 540 sites/platelet for FIXaAL (Kdapp = 3.2 nM), compared with 540 sites/platelet (Kdapp = 2.3 nM) for normal factor IXa. The addition of factors VIIIa and X, both at saturating concentrations, had no effect on the number of binding sites for either normal or variant factor IXa, resulted in a decrease in the Kd for normal factor IXa to 0.67 nM, resulted in a suboptimal decrease in Kd for FIXaAL (1.4 nM), and had no effect on the Kd for FIXaCH. Kinetic studies of factor X activation at variable factor IXa concentration confirmed these values of Kd in the presence of factors VIIIa and X. Determination of rates of factor X activation at variable substrate concentrations yielded normal values of catalytic efficiency (kcat/Km) for the variant proteins, thereby indicating that the abnormally low rates of factor X activation obtained were a consequence of the low affinity binding of FIXaAL and FIXaCH to thrombin-activated platelets in the presence of factors VIIIa and X. These studies suggest that the presence of Asp47 and the cleavage of factor IX at Arg145-Ala146 are important structural features required for specific, high affinity factor IXa binding to platelets in the presence of factors VIIIa and X.  相似文献   

8.
A genomic phage library was constructed using lymphocyte DNA from a patient with cross-reacting material-positive, moderately severe hemophilia B. The library was screened by using a full-length factor IX cDNA as a hybridization probe. DNA sequence analysis of the factor IX exons and intron/exon junctions revealed a single point mutation at nucleotide 31,311 of the gene. This mutation occurs in the protease domain of factor IXa and changes the codon for isoleucine 397 (ATA) to a threonine codon (ACA). The resulting abnormal protein has been named factor IXVancouver. Factor IXVancouver was isolated from the patient's plasma by barium citrate adsorption, affinity chromatography on a Ca2+-dependent antibody bound to agarose, and anion-exchange chromatography. On gel electrophoresis, the purified protein exhibited a normal molecular weight and a normal pattern of activation cleavages with bovine factor XIa. Kinetic studies on the purified protein indicated that the Km of factor IXaVancouver for human factor X was 3.4 times higher than that of normal factor IXa. The kcat of factor IXaVancouver was 12.5% of the kcat of normal factor IXa. Structural models of the protease domain of human factor IXa and of factor IXaVancouver were constructed, based on the homology of factor IXa with related serine proteases of known structure. The factor IXaVancouver model suggests that hydrogen bonding between the side chain hydroxyl group of threonine 397 and the carbonyl oxygen of tryptophan 385 reduces the ability of factor IXaVancouver to bind factor X in a configuration favoring catalysis.  相似文献   

9.
In factor IX residues 199-204 encompass one of six surface loops bordering its substrate-binding groove. To investigate the contribution of this loop to human factor IX function, a series of chimeric factor IX variants was constructed, in which residues 199-204 were replaced by the corresponding sequence of factor VII, factor X, or prothrombin. The immunopurified and activated chimeras were indistinguishable from normal factor IXa in hydrolyzing a small synthetic substrate, indicating that this region is not involved in the interaction with substrate residues on the N-terminal side of the scissile bond. In contrast, replacement of loop 199-204 resulted in a 5-25-fold reduction in reactivity toward the macromolecular substrate factor X. This reduction was due to a combination of increased K(m) and reduced k(cat). In the presence of factor VIIIa the impaired reactivity toward factor X was largely restored for all factor IXa variants, resulting in a more pronounced stimulation by factor VIIIa compared with normal factor IXa (3 to 5 x 10(4)-fold versus 5 x 10(3)-fold). Inhibition by antithrombin was only slightly affected for the factor IXa variant with the prothrombin loop sequence, whereas factor IXa variants containing the analogous residues of factor VII or factor X were virtually insensitive to antithrombin inhibition. In the presence of heparin, however, all chimeric factor IXa variants formed complexes with antithrombin. Thus the cofactors heparin and factor VIIIa have in common that they both alleviate the deleterious effects of mutations in the factor IX loop 199-204. Collectively, our data demonstrate that loop 199-204 plays an important role in the interaction of factor IXa with macromolecular substrates.  相似文献   

10.
M Y Wong  J A Gurr  P N Walsh 《Biochemistry》1999,38(28):8948-8960
Factor IXa binding to the activated platelet surface is required for efficient catalysis of factor X activation. Platelets possess a specific binding site for factor IXa, occupancy of which has been correlated with rates of factor X activation. However, the specific regions of the factor IXa molecule that are critical to this interaction have not yet been fully elucidated. To assess the importance of the second epidermal growth factor (EGF2) domain of factor IXa for platelet binding and catalysis, a chimeric protein (factor IXa(Xegf2)) was created by replacement of the EGF2 domain of factor IX with that of factor X. Competition binding experiments showed 2 different binding sites on activated platelets (approximately 250 each/platelet): (1) a specific factor IXa binding site requiring the intact EGF2 domain; and (2) a shared factor IX/IXa binding site mediated by residues G(4)-Q(11) within the Gla domain. In kinetic studies, the decreased V(max) of factor IXa(Xegf2) activation of factor X on the platelet surface (V(max) 2. 90 +/- 0.37 pM/min) versus normal factor IXa (37.6 +/- 0.15 pM/min) was due to its decreased affinity for the platelet surface (K(d) 64.7 +/- 3.9 nM) versus normal factor IXa (K(d) 1.21 +/- 0.07 nM), resulting in less bound enzyme (functional complex) under experimental conditions. The hypothesis that the binding defects of factor IXa(Xegf2) are the cause of the kinetic perturbations is further supported by the normal k(cat) of bound factor IXa(Xegf2) (1701 min(-)(1)) indicating (1) an intact catalytic site and (2) the normal behavior of bound factor IXa(Xegf2). The EGF2 domain is not a cofactor binding site since the mutant shows a normal rate enhancement upon the addition of cofactor. Thus, the intact EGF2 domain of factor IXa is critical for the formation of the factor X activating complex on the surface of activated platelets.  相似文献   

11.
To investigate the function of the gamma-carboxyglutamic acid (Gla) residues of factor IXa in the activation of factor X, a new species of bovine factor IXa, designated "factor IXa beta'," and its corresponding Gla-domainless form, designated "Gla-domainless factor IXa beta'," were prepared under controlled conditions and characterized. First, bovine factor IXa alpha was converted by alpha-chymotrypsin in the presence of calcium ions to factor IXa beta' (Mr 47,000). Compared with factor IXa beta, factor IXa beta' had essentially identical activities towards a synthetic substrate, benzoyl-L-arginine ethylester (BAEE), towards an active site titrant, p-nitrophenyl-p'-guanidinobenzoate, and towards protein substrate, namely, factor X. Next, the Gla-rich region (residues 1-41) of the light chain was removed from factor IXa beta' by additional selective cleavage by alpha-chymotrypsin in the absence of calcium ions. Gla-domainless factor IXa beta' was purified to homogeneity on a column of DEAE-Sepharose CL-6B. The heavy chain was not altered by either chymotryptic digestion. Functional comparisons of the three activated forms, namely, factor IXa alpha, factor IXa beta', and Gla-domainless factor IXa beta', with factor IXa beta revealed that all four activated forms of factor IX had one active-site residue per molecule and essentially identical specific esterase activity towards BAEE. However, the clotting activity of Gla-domainless factor IXa beta' was less than 0.5% of that of factor IXa beta'.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A murine monoclonal antibody (IgG1k, Kd approximately 10(-8) M) specific for an epitope located on the heavy chain of human factor IXa was used to study structure-function relationships of factor IX. The antibody inhibited factor IX clotting activity but did not impair activation of factor IX either by factor XIa/calcium or by factor VIIa/tissue factor/calcium. The antibody also did not impair the binding of factor IXa to antithrombin III. Moreover, the antibody did not prevent calcium and phospholipid (PL) from inhibiting the binding of factor IXa to antithrombin III. The antibody also failed to impair activation of factor VII by factor IXa/calcium/PL. Furthermore, the antibody did not interfere with the very slow activation of factor X by factor IXa/calcium/PL. In contrast, the antibody did interfere with factor X activation when reaction mixtures also contained factor VIII:Ca/von Willebrand factor. The marked acceleration of factor X activation observed in control mixtures was not observed in mixtures containing the antibody. Similar results were obtained in reaction mixtures containing the Fab portion of the antibody and factor VIII:Ca free of von Willebrand factor. In additional experiments, factor VIII:Ca/von Willebrand factor was found to inhibit the binding of the antibody to 125I-factor IXa as determined using an immunosorbent assay. Moreover, the antibody displaced factor VIII:Ca from the factor X activator complex (IXa/calcium/PL/VIII:Ca) as evidenced by an altered elution pattern on gel filtration chromatography. From these observations, we conclude that the antibody impairs the clotting activity of factor IXa through interference with its binding of factor VIII:Ca. This suggests a significant role for the heavy chain (residues of 181-415) of factor IXa in binding factor VIII:Ca.  相似文献   

13.
When blood coagulation factor IX is converted to activated factor IX (factor IXa), it develops enzymatic activity and exposes the binding sites for both activated factor VIII and the endocytic receptor low density lipoprotein receptor-related protein (LRP). In the present study we investigated the interaction between factor IXa and LRP in more detail, using an affinity-purified soluble form of LRP (sLRP). Purified sLRP and full-length LRP displayed similar binding to factor IXa. An anti-factor IX monoclonal antibody CLB-FIX 13 inhibited factor IXa.sLRP complex formation. Both the antibody and a soluble recombinant fragment of LRP (i.e. cluster IV) interfered with factor IXa amidolytic activity, suggesting that the antibody and LRP share similar binding regions near the active site of factor IXa. Next, a panel of recombinant factor IXa variants with amino acid replacements in the surface loops bordering the active site was tested for binding to antibody CLB-FIX 13 and sLRP in a solid phase binding assay. Factor IXa variants with mutations in the region Phe(342)-Asn(346), located between the active site of factor IXa and factor VIII binding helix, showed reduced binding to both antibody CLB-FIX 13 and sLRP. Surface plasmon resonance analysis revealed that the variant with Asn(346) replaced by Asp displayed slower association to sLRP, whereas the variant with residues Phe(342)-Tyr(345) replaced by the corresponding residues of thrombin showed faster dissociation. Recombinant soluble LRP fragment cluster IV inhibited factor IXa-mediated activation of factor X with IC(50) values of 5 and 40 nm in the presence and absence of factor VIII, respectively. This inhibition thus seems to occur via two mechanisms: by interference with factor IXa.factor VIIIa complex assembly and by direct inhibition of factor IXa enzymatic activity. Accordingly, we propose that LRP may function as a regulator of blood coagulation.  相似文献   

14.
Blostein MD  Rigby AC  Furie BC  Furie B  Gilbert GE 《Biochemistry》2000,39(39):12000-12006
Blood coagulation factor IXa gains proteolytic efficiency upon binding to a phospholipid membrane. We have found that an amphipathic, membrane-binding peptide from the C2 domain of factor VIII, fVIII(2303)(-23), enhances proteolytic efficiency of factor IXa in the absence of phospholipid membranes. This enhancement is the result of a reduction in the K(M) for the substrate, factor X, with little effect on the k(cat). Enhanced function requires interaction of the gamma-carboxyglutamic acid (Gla) domains of factor IXa and factor X since (i) a synthetic peptide comprising the Gla domain of factor IXa and antibodies directed to the Gla domain of factor IXa inhibit this acceleration, (ii) the acceleration is Ca(II) dependent, and (iii) conversion of Gla-domainless factor X is not affected by the presence of fVIII(2303)(-23). The effect of fVIII(2303)(-23) on factor IXa parallels the enhanced function produced by phosphatidylserine-containing bilayers, and fVIII(2303)(-23) does not further enhance function of factor IXa when phospholipid vesicles are present. The critical feature of fVIII(2303)(-23) is apparently its amphipathic helix-forming structure [Gilbert, G. E., and Baleja, J. D. (1995) Biochemistry 34, 3022-3031] because other alpha-helical peptides such as a homologous peptide from the C2 domain of factor V and melittin have similar effects. Diastereomeric analogues of fVIII(2303)(-23) and melittin, which have reduced helical content, do not support factor IXa activity. A truncated peptide of fVIII(2303)(-23) with three C-terminal residues deleted retains alpha-helical content but loses capacity to enhance factor X cleavage, suggesting that a minimum length of alpha-helix is required. Although these results probably do not illuminate the physiologic function of the factor VIII peptide corresponding to fVIII(2303)(-23), they demonstrate a novel, membrane-mimetic role of amphipathic helical peptides in supporting function of factor IXa.  相似文献   

15.
The binding of factor IX to cultured bovine endothelial cells was characterized using isolated domains of bovine factor IX. An NH2-terminal fragment that consists of the gamma-carboxyglutamic acid (Gla) region linked to the two epidermal growth factor (EGF)-like domains bound to the endothelial cells with the same affinity as intact factor IX, indicating that the serine protease part of factor IX is not involved in binding. This fragment also inhibited the factor IXa beta'-induced clotting of plasma at a concentration that would suggest a competition for phospholipid binding sites. However, after proteolytic removal of the Gla region from the fragment, the two EGF-like domains inhibited clotting almost as effectively, suggesting a direct interaction between this part of the molecule and the cofactor, factor VIIIa. Using affinity-purified Fab fragments against the Gla region, the EGF-like domains, and the serine protease part, it was observed that the serine protease part of the molecule undergoes a large conformational change upon activation, whereas the Gla region and the EGF-like domains appear to be unaffected. All three classes of Fab fragments were equally efficient as inhibitors of the factor IXa beta'-induced clotting reaction. Part of factor Va and factor VIIIa have significant sequence homology to a lectin. We therefore investigated the effect on in vitro clotting of the recently identified unique disaccharide Xyl alpha 1-3Glc, that is O-linked to a serine residue in the NH2-terminal EGF-like domain of human factor IX (Hase, S., Nishimura, H., Kawabata, S.-I., Iwanaga, S., and Ikenaka, T. (1990) J. Biol. Chem. 265, 1858-1861). However, no effect on blood clotting was observed in the assay system used. Our results are compatible with a model in which the serine protease part provides the specificity of the binding of factor IXa to factor VIIIa-phospholipid, but that the EGF-like domain(s) also contributes to the interaction of the enzyme with its cofactor.  相似文献   

16.
Comparative interactions of factor IX and factor IXa with human platelets   总被引:10,自引:0,他引:10  
Both factor IX and factor IXa were bound to gel filtered platelets in the presence of CaCl2 (2-20 mM) and human alpha-thrombin (0.06-0.2 units/ml) with maximal binding occurring in 10-20 min at 37 degrees C, and rapid reversibility was observed when unlabeled ligands were added in 100-fold molar excess. Competition studies with various coagulation proteins revealed that neither factor XI nor high molecular weight kininogen, at 300-fold molar excess, could compete with 125I-labeled factor IXa for binding sites on thrombin-activated platelets, whereas prothrombin and factor X, in 450-fold molar excess, could displace approximately 15 and 35%, respectively, of bound factor IXa in the absence of added factor VIII. Analysis of saturation binding data in the presence of CaCl2 and thrombin without factors VIII and X indicated the presence of 306 (+/- 57) binding sites per platelet for factor IX (Kd(app) = 2.68 +/- 0.25 nM) and 515 (+/- 39) sites per platelet for factor IXa (Kd = 2.57 +/- 0.14 nM). In the presence of thrombin-activated factor VIII (1-5 units/ml) and factor X (0.15-1.5 microM), the number of sites for factor IX was 316 (+/- 50) with Kd = 2.44 (+/- 0.30) nM and for factor IXa 551 (+/- 48) sites per platelet (Kd = 0.56 +/- 0.05 nM). Studies of competition for bound factor IXa by excess unlabeled factor IX or factor IXa, and direct 125I-labeled factor IXa binding studies in the presence of large molar excesses of factor IX, confirmed the conclusion from these studies that factor IX and factor IXa share approximately 300 low-affinity binding sites per thrombin-activated platelet in the presence of Ca2+ and in the absence of factor VIII and factor X, with an additional 200-250 sites for factor IXa with Kd(app) similar to that for factor IX. The presence of factor VIII and factor X increases by 5-fold the affinity of receptors on thrombin-activated platelets for factor IXa that participate in factor X activation.  相似文献   

17.
Kolkman JA  Mertens K 《Biochemistry》2000,39(25):7398-7405
Insertions in surface loops bordering the substrate-binding groove have been shown to play a major role in the interaction of serine proteases with their cognate inhibitors and substrates. In the present study, we investigated the functional role of factor IX insertion loop 256-268, and in particular of residues Asn(264) and Lys(265) therein. To this end, the purified and activated mutants des-(N264,K265)-FIX and FIX-K265A were compared to normal factor IXa with regard to a number of functional properties. The catalytic efficiency of des-(N264,K265)-FIXa and FIXa-K265A toward the amide substrate CH(3)SO(2)-Leu-Gly-Arg-pNA was 2-3-fold increased relative to that of normal factor IXa. Comparison of the activities of normal and mutant factor IXa toward a series of closely related amide substrates indicates that mutation of residues Asn(264)-Lys(265) influences the interactions in the S2-binding site. The mutations in loop 256-268 also increased the susceptibility of factor IXa to antithrombin inhibition by approximately 3-fold. Factor X activation experiments in the absence of factor VIIIa revealed that the catalytic efficiency of des-(N264,K265)-FIXa and FIXa-K265A was about 20 times higher than that of normal factor IXa. In the presence of factor VIIIa, however, the activity toward factor X was similar to that of normal factor IXa. The reduced sensitivity of the factor IXa mutants to factor VIIIa was neither due to an increase in factor IXa-dependent inactivation of factor VIIIa, nor to a lower affinity for this cofactor. Overall, these data demonstrate that loop 256-268 restricts the activity of factor IXa toward both synthetic and natural substrates. Complex formation with factor VIIIa alleviates the inhibitory effect of this insertion loop on the activation of FX.  相似文献   

18.
The light chain of activated factor IX comprises multiple interactions between both epidermal growth factor-like domains that contribute to enzymatic activity and binding of factor IXa to its cofactor factor VIIIa. To investigate the association between factor IXa-specific properties and surface-exposed structure elements, chimeras were constructed in which the interconnection between the modules Leu(84)-Thr(87) and the factor IX-specific loop Asn(89)-Lys(91) were exchanged for corresponding regions of factor X and factor VII. In absence of factor VIIIa, all chimeras displayed normal enzymatic activity. In the presence of factor VIIIa, replacement of loop Asn(89)-Lys(91) resulted in a minor reduction in factor IXa activity. However, chimeras with substitutions or insertions in the spacer between the epidermal growth factor-like domains showed a major defect in response to factor VIIIa. Of these chimeras, some displayed a normal response to isolated factor VIII A2 domain as a cofactor in factor X activation. Surprisingly, chimeras containing elongated inter-domain spacers from factor X or VII displayed reduced response to both complete factor VIIIa and the isolated A2 domain. Moreover, these chimeras still displayed effective association with immobilized A2 domain as assessed by surface plasmon resonance. We conclude that both sequence and length of the junction Leu(84)-Thr(87) between both epidermal growth factor-like domains contribute to the enhancement of factor IXa enzymatic activity that occurs upon assembly with factor VIIIa.  相似文献   

19.
The abilities of normal and three abnormal factor IXa molecules to activate factor X and to bind to phospholipid membranes have been compared to define the contributions of protein-lipid interactions and factor IXa light chain-heavy chain interactions to the functioning of this protein. The abnormal proteins studied had altered amino acid residues in their light chains. The heavy-chain regions, containing the active site serine and histidine residues, were normal in the abnormal proteins on the basis of titration by antithrombin III. The binding constants (Kd) for normal (N), variant [Chapel Hill (CH) and Alabama (AL)], and gamma-carboxyglutamic acid (Gla) modified (MOD) factors IX and IXa to phosphatidylserine (PS)/phosphatidylcholine (PC) small, unilamellar vesicles (SUV) were measured by 90 degrees light scattering. The Kd values for factor IXN binding were quite sensitive to the PS content of the membrane but less sensitive to Ca2+ concentrations between 0.5 and 10 mM. The zymogen and activated forms of both normal and abnormal factor IX bound with similar affinities to PS/PC (30/70) SUV. In the cases of factor IXaN and factor IXaAL, but not factor IXaCH or factor IXaMOD, irreversible changes in scattering intensity suggested protein-induced vesicle fusion. Since the activation peptide is not released from factor IXaCH, the normal interaction of factor IXa with a membrane must require the release of the activation peptide and the presence of intact Gla residues. The rate of factor X activation by normal and abnormal factor IXa was obtained by using a chromogenic substrate for factor Xa in the presence of PS/PC (30/70) SUV and 5 mM Ca2+.  相似文献   

20.
Studies of the mechanisms of blood coagulation zymogen activation demonstrate that exosites (sites on the activating complex distinct from the protease active site) play key roles in macromolecular substrate recognition. We investigated the importance of exosite interactions in recognition of factor IX by the protease factor XIa. Factor XIa cleavage of the tripeptide substrate S2366 was inhibited by the active site inhibitors p-aminobenzamidine (Ki 28 +/- 2 microM) and aprotinin (Ki 1.13 +/- 0.07 microM) in a classical competitive manner, indicating that substrate and inhibitor binding to the active site was mutually exclusive. In contrast, inhibition of factor XIa cleavage of S2366 by factor IX (Ki 224 +/- 32 nM) was characterized by hyperbolic mixed-type inhibition, indicating that factor IX binds to free and S2366-bound factor XIa at exosites. Consistent with this premise, inhibition of factor XIa activation of factor IX by aprotinin (Ki 0.89 +/- 0.52 microM) was non-competitive, whereas inhibition by active site-inhibited factor IXa beta was competitive (Ki 0.33 +/- 0.05 microM). S2366 cleavage by isolated factor XIa catalytic domain was competitively inhibited by p-aminobenzamidine (Ki 38 +/- 14 microM) but was not inhibited by factor IX, consistent with loss of factor IX-binding exosites on the non-catalytic factor XI heavy chain. The results support a model in which factor IX binds initially to exosites on the factor XIa heavy chain, followed by interaction at the active site with subsequent bond cleavage, and support a growing body of evidence that exosite interactions are critical determinants of substrate affinity and specificity in blood coagulation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号