首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Summary The Carboniferous, particularly during the Serpukhovian and Bashkirian time, was a period of scarce shallow-water calcimicrobial-microbialite reef growth. Organic frameworks developed on high-rising platforms are, however, recorded in the Precaspian Basin subsurface, Kazakhstan, Russia, Japan and Spain and represent uncommon occurrences within the general trend of low accumulation rates and scarcity of shallow-water reefs. Sierra del Cuera (Cantabrian Mountains, N Spain) is a well-exposed high-rising carbonate platform of Late Carboniferous (Bashkirian-Moscovian) age with a microbial boundstone-dominated slope dipping from 20° up to 45°. Kilometer-scale continuous exposures allow the detailed documentation of slope geometry and lithofacies spatial distribution. This study aims to develop a depositional model of steep-margined Late Paleozoic platforms built by microbial carbonates and to contribute to the understanding of the controlling factors on lithofacies characteristics, stacking patterns, accumulation rates and evolution of the depositional architecture of systems, which differ from light-dependent coralgal platform margins. From the platform break to depths of nearly 300 m, the slope is dominated by massive cement-rich boundstone, which accumulated through the biologically induced precipitation of micrite. Boundstone facies (type A) with peloidal carbonate mud, fenestellid and fistuliporid bryozoans, sponge-like molds and primary cavities filled by radiaxial fibrous cement occurs all over the slope but dominates the deeper settings. Type B boundstone consists of globose centimeter-scale laminated accretionary structures, which commonly host botryoidal cement in growth cavities. The laminae nucleate around fenestellid bryozoans, sponges, Renalcis and Girvanella-like filaments. Type B boundstone typically occurs at depths between 20–150 m to locally more than 300 m and forms the bulk of the Bashkirian prograding slope. The uppermost slope boundstone (type C; between 0 and 20–100 m depth) includes peloidal micrite, radiaxial fibrous cement, bryozoans, sponge molds, Donezella, Renalcis, Girvanella, Ortonella, calcareous algae and calcitornellid foraminifers. From depths of 80–200 m to 450 m, 1–30 m thick lenses of crinoidal packstone, spiculitic wackestone, and bryozoan biocementstone with red-stained micrite matrix are episodically intercalated with boundstone and breccias. These layers increase in number from the uppermost Bashkirian to the Moscovian in parallel with the change from a rapidly prograding to an aggrading architecture. The red-stained strata share comparable features with Lower Carboniferous deeper-water mud-mound facies and were deposited during relative rises of sea level and pauses in boundstone production. Rapid relative sea-level rises might have been associated with changes in oceanographic conditions not favourable for thecalcimicrobial boundstone growth, such as upwelling of colder, nutrient-rich waters lifting the thermocline to depths of 80–200 m. Downslope of 150–300 m, boundstones interfinger with layers of matrix-free breccias, lenses of matrix-rich breccias, platform- and slope-derived grainstone and crinoidal packstone. Clast-supported breccias bound by radiaxial cement are produced by rock falls and avalanches coeval to boundstone growth. Matrix-rich breccias are debris flow deposits triggered by the accumulation of red-stained layers. Debris flows develop following the relative sea-level rises, which favour the deposition of micrite-rich lithofacies on the slope rather than being related to relative sea-level falls and subaerial exposures. The steep slope angles are the result of in situ growth and rapid stabilization by marine cement in the uppermost part, passing into a detrital talus, which rests at the angle of repose of noncohesive material. In the Moscovian, the aggradational architecture and steeper clinoforms are the result of increased accommodation space due to tectonic subsidence and due to a reduction of slope accumulation rates (from 240±45−605±35 m/My to 130±5 m/My). The increasing number of red-stained layers and the decrease of boundstone productivity are attributed to environmental changes in the adjacent basin, in particular during relative rises of sea level and to possible cooling due to icehouse conditions. The geometry of the depositional system appears to be controlled by boundstone growth rates. During the Bashkirian, the boundstone growth potential is at least 10 times greater than average values for ancient carbonate systems. The slope progradation rates (nearly 400–1000 m/My) are similar to the highest values deduced for the Holocene Bahamian prograding platform margin. The fundamental differences with modern systems are that progradation of the microbial-boundstone dominated steep slope is primarily controlled by boundstone growth rates rather than by highstand shedding from the platform top and that boundstone growth is largely independent from light and controlled by the physicochemical characteristics of seawater.  相似文献   

2.
Dr. Gregory E. Weeb 《Facies》1999,41(1):111-139
Summary Although skeletal organisms have received most of the emphasis in studies on Phanerozoic roef history, the roles of non-skeletal (non-enzymatic) carbonates (e.g., synsedimentary cements, automicrite, microbialite, etc.) in reef framework construction are becoming increasingly better understood. One problem in understanding the role of non-enzymatic carbonates in reef construction has been the difficulty in recognizing them in reef facies. Whereas skeletal organisms commonly can be recognized and documented in the field, non-enzymatic carbonates may be recognizable only in thin section. This paper describes the application of a new sampling technique that allows the quantitative comparison of skeletal macrofauna and flora with associated non-enzymatic carbonates and other microfaunal/microfloral constituents. The technique involves the point counting of thin sections made from small diameter cores that are systematically recovered from grids and line transects that cover a reasonable area (m2) of reef facies. Small, shallow-water patch reefs are abundant in scattered oolitic intervals in the Lower Carboniferous strata of eastern Australia. The youngest known Carboniferous reefs in eastern Australia occur in uppermost Visean strata (limestone FC5) near the top of the Rockhampton Group, approximately 50 km west-northwest of Rockhampton, Queensland. The largest sampled reef was 15 m thick and 42 m in diameter, with synsedimentary relief above the sea floor of at least 2 m during the primary growth phase. The reef occurs within bioclasticoolitic grainstones representing a shallow shelf setting and consists of eight common framework microfacies: 1) coral boundstone; 2) bryozoan boundstone; 3) mixed crinoid-bryozoan boundstone; 4) tubular problematica boundstone; 5) sponge-automicrite boundstone; 6) encrusted thrombolite boundstone; 7) mixed automicrite boundstone; and 8) thrombolitic wackestone-packstone. Reef growth was initiated by automicrite-producing biofilms, sponges and a tubular problematic organism. Primary relief building was accomplished by automicrite-dominated frameworks and lithistid sponges, crinoids, and corals. Large cerioidAphrophyllum coral colonies had a heterogeneous distribution through the reef. The framework of the main relief-bearing portion of the reef consists on average of 44.4% automicrite and automicrite-bound detritus, excluding automicrite-bound sponge body fossils, and at most 19.6% skeletal organisms in growth position (minimum of 7.2%). If sponge body fossils are included as automicrite framework, because they are preserved only as a result of automicrite formation, the percentage of automicrite and bound sediment is 54.9%. A smaller sampled reef consisting of the same basic facies had 39.5% automicrite and automicrite-bound sediment in its fremework (50.2% including sponges) and, at most, 33.4% skeletal organisms in growth position (minimum of 22.7%). The greater volume of skeletal framework in the small reef reflects a greater proportion of large corals. Of framebuilding skeletal organisms, automicrite-preserved lithistid and other sponges and cerioid rugose corals provided the greatest volume. However, crinoid holdfasts were the most widespread skeletal framework components. The dominant framework facies are sponge-automicrite boundstone, encrusted thrombolite, boundstone, mixed automicrite boundstone, and coral boundstone. The reefs are similar in overall framework construction and ecological succession to slightly older Visean reefs in eastern Australia and to some of the late Visean reefs of northern England. Surprisingly, framework similarities also exist between the reefs and certain thrombolite-lithistid-coral reefs of the European Jurassic.  相似文献   

3.
Mud mounds: A polygenetic spectrum of fine-grained carbonate buildups   总被引:2,自引:0,他引:2  
Summary This research report contains nine case studies (part II to X) dealing with Palaeozoic and Mesozoic mud mounds, microbial reefs, and modern zones of active micrite production, and two parts (I and XI) summarizing the major questions and results. The formation of different types ofin situ formed micrites (automicrites) in close association with siliceous sponges is documented in Devonian, Carboniferous, Triassic, Jurassic and Cretaceous mounds and suggests a common origin with a modern facies found within reef caves. Processes involved in the formation of autochthonous micrites comprise: (i) calcifying mucus enriched in Asp and Glu, this type presumably is linked to the formation of stromatolites, thrombolites and massive fabrics; (ii) protein-rich substances within confined spaces (e.g. microcavities) result in peloidal pockets, peloidal coatings and peloidal stromatolites, and (iii) decay of sponge soft tissues, presumably enriched with symbiotic bacteria, lead to the micropeloidal preservation of parts of former sponge bodies. As a consequence, there is strong evidence that the primary production of micrite in place represents the initial cause for buildup development. The mode of precipitation corresponds to biologically-induced, matrix-mediated mineralization which results in high-Mg-calcites, isotopically balanced with inorganic cements or equilibrium skeletal carbonates, respectively. If distinct automicritic fabrics are absent, the source or origin of micrite remains questionable. However, the co-occurring identifiable components are inadequate, by quantity and physiology, to explain the enhanced accumulation of fine-grained calcium carbonate. The stromatolite reefs from the Permian Zechstein Basin are regarded as reminiscent of ancestral (Precambrian) reef facies, considered the precursor of automicrite/sponge buildups. Automicrite/sponge buildups represent the basic Phanerozoic reef type. Analogous facies are still present within modern cryptic reef habitats, where the biocalcifying carbonate factory is restricted in space.  相似文献   

4.
Pennsylvanian phylloid algal reefs are widespread and well exposed in south Guizhou, China. Here we report on reefs ranging from 2 to 8 m thickness and 30–50 m lateral extension. Algae, the main components, display a wide spectrum of growth forms, but are commonly cyathiform (cup-shaped) and leaf-like (undulate plates). The algal reef facies is dominated by boundstone. Algal thalli form a dense carpet whose framework pores are filled with marine cement and peloidal micrite. The peloidal matrix is dense, partly laminated or clotted with irregular surfaces and often gravity defying. Algal reefs in Guizhou differ from examples reported to date by the high biodiversity of organisms other than phylloids: e.g., the intergrowth of algae with corals (some of which are twice the size of algal thalli) and numerous large brachiopods. This contrasts to previous views that phylloid algal “meadows” dominated the actual seafloor, excluding other biota. Also, the pervasive marine cements (up to 50%) including botryoidal cement are noteworthy. Algal reefs developed at platform margins, a depositional environment similar to that of modern Halimeda mounds in Java, Australia and off Bahamas, and to that of time-equivalent examples reported from the Canadian Arctic Archipelago. Whereas nutrients appear decisive in the growth of Halimeda reefs, algal reefs reported herein seemingly grew under conditions of low nutrient levels. Overall, algal reefs in Guizhou challenge previous views on growth forms, diversity patterns, and depositional environments and add to the spectrum of these partly puzzling biogenic structures.  相似文献   

5.
Natsuko Adachi  Yoichi Ezaki   《Palaeoworld》2007,16(4):301-310
Microbial contributions to reefal limestones are evident in eastern Australian Lower Devonian microbial frame/bindstones, red algal-microbial-stromatoporoid bindstones, and microbial-stromatoporoid bindstones. Varied microbialite textures, such as stromatolites, thrombolites, and leiolites, originated as accumulations and partial aggregations of calcimicrobes, peloids, and micrites, which also derived from microbial activities. In microbial frame/bindstones, calcimicrobes (e.g., Rothpletzella and Wetheredella) and dense micrite layers covered and bound underlying substrates. Stabilized substrates promoted the subsequent construction of layered, domal, and columnar frameworks, which were produced by combined accumulations and intermixed associations of calcimicrobes and micritic microbialites. Microbes flourished in the microbial-stromatoporoid bindstones and red algal-microbial-stromatoporoid bindstones during repeated growth interruptions of the framework-building skeletal organisms. Microbes bored into and eroded the skeletal frameworks to subsequently leave micritic envelopes, on which microbial and skeletal encrustations took place in turn. The importance of microbial colonization on the skeletal frameworks was first as subsidiary encrusters that helped to preserve them from erosion, and second as modifiers of the spaces suitable for succeeding encrusters. Partial aggregations of Renalcis filled in the interstices of the skeletal and microbial frameworks, thereby enhancing their rigidity.The microbial impacts on the genesis of reefal limestones are: (1) origination of components (calcimicrobes, peloids, and micrites); (2) formation of characteristic microbial textures; (3) main and subsidiary reef construction and encrustation; and (4) destruction of these components, textures, and structures, but also the protection of resultant constructions in turn. The Lower Devonian reefal limestones treated herein, surprisingly, preserve excellent records of a variety of microbial impacts. Similar effects may also have been common, although variable in preservation, in other ancient reefal deposits.  相似文献   

6.
Summary Microbial reefs, together with stromatolitic mounds and ooid shoals, constitute massive limestones in Famennian platform marginal strata in Guilin, in sharp contrast to the well-known coral-stromatoporoid reefs in the Givetian and Frasnian. Microbes played a significant and important role as stabilizers in the Famennian carbonate deposits of Guilin. A reef at Zhaijiang was constructed byEpiphyton andRenalcis, and is representative of such carbonate buildups. The reef is situated 10 km west of Guilin and corresponds to a microbe-dominated platform margin carbonate complex. Organisms in the Zhaijiang microbial reef are low diversity and dominated by ostracods and two genera of microbes,Epiphyton andRenalcis. Other microbial genera such asSphaerocodium andWetheredella occur in most of reef facies in Guilin, but their role as reef builder is doubtful because they occur only in minor amounts. The same four genera occur in volumetrically significant amounts in the upper Devonian carbonate complexes of Alberta. Canada and Western Australia. However.Epiphyton is more abundant in the Guilin reefs. The Zhaijiang microbial reef developed above Famennian proximal slope faices, as suggested by reef architecture and paleogeographic setting. The facies sequence of the microbial reef can be divided into three parts. The lower part is composed of medium-bedded bioclastic grainstones with a few microbial framestone lithoclasts, representing a proximal slope facies. The middle part consists of thin-bedded mudstone and shale with limestone lenses that are thought to be low stand deposits. In some cross sections, mudstone and shale infilled tidal channels that developed in the bioclastic grainstones.Renalcis-Epiphyton framestone constitutes the upper part with massive stacking patterns. The reef is 35 m thick and over 50 m in width. Nine litho- and biofacies are recognized. Zhaijiang reef provides an example of a binder guild-dominated buildup in the almost vacant reef ecosystem of the Famennian and represents a characteristic kind of reef after the Frasnian/Famennian extinction.  相似文献   

7.
Summary Givetian to early Carboniferous sediments of South China are characterized by carbonates. Middle and Late Devonian strata are best developed in the Guilin area. Reefs and organic shoals are recorded by various lithofacies types indicating the existence of an extended carbonate platform and a change of the composition of reef communities in time. Starting in the late Devonian, stromatoporoids and corals were replaced by algae that subsequently played an important role together with stromatoporoids, receptaculitids and fasciculate rugose corals in reef communities. In Houshan, 5 km west of Guilin, a coral-bafflestone reef occurs in the Frasnian strata, situated near an offshore algal-stromatoporoid reef. The coral reef was formed in a back-reef area adjacent to the inner platform margin. The coral-bafflestone reef is unique among the late Devonian reefs of South China with regard to the biotic composition. The reef is composed of fasciculate colonies ofSmithiphyllum guilinense n. sp. embedded within in packstones and wackestones. The height of colonies reaches 1 m. The community is low-diverse. The species ofSmithiphyllum occurring in the Frasnian reef complexes of Guilin exhibit a distinct facies control:Smithiphyllum guilinense occurs in or near to margin facies and formed bafflestone, constituting a coral reef whereasSmithiphyllum occidentale Sorauf, 1972 andSmithiphyllum sp.—characterized by small colonies with thin corallites—are restricted to the back-reef and marginal slope facies. The bush-like coral colonies baffled sediments. Algae and stromatoporoids (mainlyStachyodes) are other reef biota. Reef-dwelling organisms are dominated by brachiopods. The reefs are composed from base to top of five lithofacies types: 1) cryptalgal micrite, 2) peloidal packstone, 3) stromatactis limestone, 4) coral-bafflestone, and 5) pseudopeloidal packstone. The reef complex can be subdivided into back-reef subfacies, reef flat and marginal subfacies, and marginal fore-slope subfacies. The Houshan coral-bafflestone reef is not a barrier reef but a coral patch reef located near the inner margin of a carbonate platform.  相似文献   

8.
Markus Aretz 《Geobios》2002,35(2):187
The disused quarry east of Castelsec offers a view of shallow-marine carbonates of the poorly known Uppermost Mississippian of the Montagne Noire. At Castelsec, sections are studied in two characteristic facies types (bioclastic wackestone and microbial dominated boundstone) of the Upper Mississippian. The succession is rich in rugose corals and carbonate microfossils. Six genera with seven species belonging to a rugose coral fauna consisting of at least eight genera with several species are described herein; Dibunophyllum castelsecensis sp. nov. is described as new. Twenty-seven carbonate microfossils of different groups have been identified. The Castelsec succession is Brigantian in age, based on the stratigraphic occurrence of rugose corals, foraminifers, and calcareous algae observed in both sections. The rugose coral fauna shows relationships with the well-known fauna of northwestern Europe and the Ouralian-Asian Province. Typical elements of northwestern Europe are missing at Castelsec and vice versa. This differentiation between north and south is interpreted as responses to different palaeolatitudes and tectonic settings.  相似文献   

9.
Macroborings provide detailed information on the bioerosion, accretion and palaeoenvironment of both modern and fossil reefs. Dolomitized reefal carbonates in the Um Mahara Formation exhibit an outstanding example of spatially distributed, well‐preserved bioerosion structures in tropical to subtropical syn‐rift Miocene reefs. Ten ichnospecies belonging to five ichnogenera are identified; three belonging to the bivalve‐boring ichnogenus Gastrochaenolites, three attributed to the sponge‐boring ichnogenus Entobia, and four ichnospecies assigned to three worm‐boring ichnogenera Trypanites, Maeandropolydora and Caulostrepsis. The distribution of the reported borings is strongly linked to the palaeo‐reef zones. Two distinctive ichnological boring assemblages are recognized. The Gastrochaenolites‐dominated assemblage reflects shallower‐marine conditions, under water depths of a few metres, mostly in back‐reef to patch‐reef zones of a back‐reef lagoon. The Entobia‐dominated assemblage signifies relatively deeper marine conditions, mostly in reef core of the fringing Miocene reefs. These ichnological assemblages are attributed herein to the Entobia sub‐ichnofacies of the Trypanites ichnofacies. This ichnofacies indicates boring in hard carbonate substrates (such as corals, rhodoliths, carbonate cements and hardgrounds) during periods of non‐sedimentation or reduced sediment input.  相似文献   

10.
Pruss, S.B., Clemente, H. & Laflamme, M. 2012: Early (Series 2) Cambrian archaeocyathan reefs of southern Labrador as a locus for skeletal carbonate production. Lethaia, Vol. 45, pp. 401–410. Archaeocyathan reefs, the first reefs produced by animals, are prominent, global features of early Cambrian successions. However, microbialites – the dominant reef components of the Proterozoic – were still abundant in most archaeocyathan reefs. Although such reefs were a locus for carbonate production, it is unclear how much carbonate was produced skeletally. This analysis of well‐known early Cambrian archaeocyathan patch reefs of the Forteau Formation, southern Labrador, demonstrates that skeletal carbonate was abundantly produced in these archaeocyathan reefs, although only about half was produced by archaeocyathans. Trilobites, echinoderms and brachiopods contributed substantially to the total carbonate budget, particularly in grainstone facies flanking the reefs. Through point count analysis of samples collected from the reef core and flanking grainstones, it can be demonstrated that skeletal material was most abundant in grainstone facies, where animals such as trilobites and echinoderms contributed significantly to carbonate production. In contrast, microbial fabrics were more abundant than skeletal fabrics in the reef core, although archaeocyathan material was more abundant than other skeletal debris. Similar to modern reefs, these reefs created a variety of habitats that allowed for the proliferation of skeletal organisms living on and around the reef, thereby promoting skeletal carbonate production through ecosystem engineering. □Archaeocyatha, bioherms, carbonates, calcification, point count analysis  相似文献   

11.
A new benthic foraminifer is described as Siphodinarella costata n. gen., n. sp. from Coniacian shallow-water platform-interior carbonates of Slovenia and Croatia. The new foraminifer is found in skeletal wackestone in association with small benthic foraminifera, thaumatoporellaceans, and calcimicrobes (Decastronema, Girvanella-type tubes). The existence of an internal siphon in Siphodinarella n. gen. is interpreted as an entosolenian tube and discussed in terms of its generic and suprageneric importance.  相似文献   

12.
Carsten Helm  Immo Schülke 《Facies》2006,52(3):441-467
Small reefal bioconstructions that developed in lagoonal settings are widespread in a few horizons of the Late Jurassic (Oxfordian) succession of the Korallenoolith Formation, exposed southwest of Hannover, Northwest Germany. Especially the florigemma-Bank Member, “sandwiched” between oolite shoal deposits, exposes a high variety of build-ups, ranging from coral thrombolite patch reefs, to biostromes and to coral meadows. The reefs show a distribution with gradual facies variations along an outcrop belt that extends about 30 km from the Wesergebirge in the NW to the Osterwald Mts in the SE.The patch reefs from the Deister Mts locality at the “Speckhals” are developed as coral-chaetetid-solenoporid-microbialite reefs and represent a reef type that was hitherto unknown so far north of its Tethyan counterparts. They are mainly built up by coral thickets that are preserved in situ up to 1.5 m in height and a few metres in diameter. They contain up to 20 coral species of different morphotypes but are chiefly composed of phaceloid Stylosmilia corallina and Goniocora socialis subordinately. The tightly branched Stylosmilia colonies are stabilized by their anastomosing growth. The coral branches are coated with microbial crusts and micro-encrusters reinforcing the coral framework. Encrusters and other biota within the thicket show a typical community replacement sequence: Lithocodium aggregatum, Koskinobullina socialis and Iberopora bodeuri are pioneer organisms, whereas the occurrence of non-rigid sponges represents the terminal growth stage. The latter are preserved in situ and seem to be characteristic so far poorly known constituents of the Late Jurassic cryptobiont reef dweller community. The distance and overall arrangement of branches seems to be the crucial factor for the manifestation of a (cryptic) habitat promoting such community replacement sequences. Widely spaced branches often lack any encrusting and/or other reef dwelling organisms, whereas tightly branched corals, as is St. corallina, stimulate such biota. Hence, such reefs are well suited for research on coelobites and community sequences of encrusting and cavity dwelling organisms.  相似文献   

13.
Summary Coral-dominated communties are rare in Upper Permian reefs. The study of Murghabian rugose and tabulate corals from allochtonous carbonates (‘Oman exotics’) of the Hawasina Complex and autochthonous carbonates of the Saih Hatat area/Arabian Platform (Oman) provides evidence for a significant contribution of rugose corals to the formation of Late Permian reefs. The corals are described with respect to taxonomy, microfacies and community structure. 8 genera and 7 species were recognized.Monothecalis minor n.sp.,Praewentzelella regulare n.sp. andWentzelella katoi magna n.ssp. are new. The corals represent three communities: (1)Praewentzelella community (Hawasina Complex), (2) cerioid coral community (Hawasina Complex), and (3)Waagenophyllum community (Hawasina Complex and Saih hatat). The corals from the Hawasina Complex and the Saih Hatat flourished in significantly different environments: Rugosa from the Hawasina Complex are representatives of reefs, whereas their counterparts from the Saih Hatat lived in level-bottom communities. Coral-bearing reefal boundstones are characterized by a diverse assemblage of sphinctozoans, inozoans, chaetetids, bryozoans, crinoids,Tubiphytes, Archaeolithoporella and algae. These communities produced bafflestones or framestones and were part of a sponge reef complex. The level-bottom community of the Saih Hatat is low-diverse only comprising rugose and tabulate corals. These of isolated colonies locally acted as bafflers.  相似文献   

14.
The 125-ka sea level, which was approximately 6 m above present-day sea level, led to the partial flooding of many Caribbean islands. On Grand. Cayman, this event led to the formation of the large Ironshore Lagoon that covered most of the western half of the island and numerous, small embayments along the south, east, and north coasts. At that time, at least 33 coral species grew in waters around Grand Cayman. This fauna, like the modern coral fauna of Grand Cayman, was dominated byMontastrea annularis, Porites porites, Acropora polmata, andA. cervicornis. Scolymia cubensis andMycetophyllia ferox, not previously identified from the Late Pleistocene, are found in the Pleistocene patch reefs.Madracis mirabilis, Colpophyllia breviserialis, Agaricia tenuifolia, A. lamarcki, A. undata, Millepora spp., Mycetophyllia reesi, M. aliciae, andM. danaana, found on modern reefs, have not been identified from the Late Pleistocene reefs. Conversely,Pocillopora sp. cf.P. palmata, which is found in Late Pleistocene reefs, is absent on the modern reefs around Grand Cayman. The corals in the Ironshore Formation of Grand Cayman have been divided into 10 associations according to their dominant species, overall composition, and faunal diversity. Many of these associations are similar to the modern associations around Grand Cayman. Each of the Pleistocene coral associations, which can be accurately located on the known Late Pleistocene paleogeography of Grand Cayman, developed in distinct environmental settings. Overall trends identified in the modern settings are also apparent in the Late Pleistocene faunas. Thus, the diversity of the coral faunas increased from the interior of the Ironshore Lagoon to the reef crest. Similarly, the coral diversity in the Pleistocene patch reefs was related to the size of the reefs and their position relative to breaks in the barrier reef. The barrier reef included corals that are incapable of sediment rejection; whereas the patch reefs lacked such corals.  相似文献   

15.
Coral reef degradation is often associated with regime shifts from coral‐ to macroalgal‐dominated reefs. These shifts demonstrate that under certain conditions (e.g. coral mortality, decrease in herbivory, increased nutrients supply) some macroalgae may overgrow corals. The outcome of the competition is dependent on algal aggressiveness and the coral susceptibility. In undisturbed reefs, herbivore grazing is regulating macroalgal cover, thus preventing the latter from overgrowing corals. However, some macroalgae have evolved strategies not only to outcompete corals but also to escape herbivory to some extent, allowing overgrowth of some coral species in undisturbed reefs. Epizoism represents one of those successful strategies, and has been previously documented with red algae, cyanobacteria and Lobophora variegata (Dictyotales, Phaeophyceae). Here we report a new case of epizoism leading to coral mortality, involving a recently described species of Lobophora, L. hederacea, overgrowing the coral Seriatopora caliendrum (Pocilloporidae) in undisturbed reefs in New Caledonia.  相似文献   

16.
The Pleistocene elevated marine carbonate complexes on Mauritius island correspond to three types of depositional zones: (1) reef-crest zone, (2) backreef zone, (3) littoral zone.On reef crests, the primary frame-builders are scleractinian corals (Acroporidae, Faviidae, Poritidae) and crustose coralline algae. The secondary builders are encrusting Foraminifers (Homotrematidae) chiefly, Molluscs (Vermetidae), Bryozoans (Cheilostomata) and Serpulids. Associated internal sediments are coarse to fine sand-sized grainstones or packstones and wakestones. In decreasing order of abundance, skeletal elements include fragments of corals, branched and crustose red algae, Pelecypods, Gastropods, benthonic Foraminifera (Amphisteginidae, Peneroplidae, Calcarinidae, Nummulitidae, Alveolinidae and Homotrematidae), Echinoderms and Alcyonarians; the most abundant mud-sized grains are identified as tunicate spicules. Primary marine cements are needle, palisade, micrite and pelletal ones.The backreef zone is characterized by coarse tomedium grainstones, packstones and wakestones. In addition to pellets the most common components are skeletal in nature; they broadly show the same mode of occurrence as the reef-crest unit. Primary cements locally occur in packed fibrous or micrite form.In littoral areas, well-sorted grainstones to poorlysorted mudstones can be described. The distribution of the various categories of biogenic particles is dependent upon the extent of reef tracts; ancient beaches from narrow reefs are characterized by coralgal facies while consolidated muddy banks in large complexes display high amount of molluscan detritus. Primary cementation appears mainly to be the result of the precipitation of fibrous or micrite calcite.The morphology, biological associations andsediments of these Pleistocene limestones are homologous with those of the adjacent modern environments.  相似文献   

17.
Summary The internal construction and biotic communities of the Uzunbulak reef of the northwestern Tarim Basin are studied for the first time. The reef was built during the Sakmarian, while the reef substrate and capping beds are of latest Asselian and earliest Artinskian ages, respectively. The reef substrate beds are composed of skeletal and oncoid grainstone. Those fusulinid-dominated skeletal shoals and oncoid banks indicate a high-energy environment and produced local topographic highs on which the reef grew. Reef framework consists mainly of calcisponge bafflestone, calcisponge-Thartharella framestone, and Tubiphytes, Archaeolithoporella and Girvanella boundstones. Calcisponges were the primary frameconstructors that baffled high-energy currents. Archaeolithoporella, Tubiphytes, Girvanella and possibly microbes acted as the primary binders for the boundstone framework. Fusulinids and brachiopods were common reef dwellers. The interreef facies sediments are composed of skeletal-crinoid wackestone-packstone. Most of bioclasts have thick, micritized envelopes. The back-reef facies deposits consist of alternating skeletal packstone to wackestone and black shale. Sea-level fluctuations were probably accountable for the reef growth and demise. Of the reefal dwellers, brachiopods are extraordinarily abundant in Uzunbulak. They are assignable to five distinctive associations, one each from the reef substrate, framework and inter-reef facies, respectively, and two from the reef capping facies. The brachiopods in the substrate beds were mostly attached to hard substrates by a pedicle, while a few species rested on soft substrates by support of halteroid spines. Cementation of the ventral valve on hard substrates characterizes attachment of the reef framework brachiopods. All inter-reef species were anchored into the substratum comprising hard material by a strong pedicle. Back-reef brachiopods dominantly rested on the soft substrates by support of halteroid spines. the framework brachiopods had the strongest wave-resistant capability;those from both substrate and inter-reef facies were moderately capable of withstanding agitation; and the backreef species preferred to live in calmwater, organic-rich muddy environments.  相似文献   

18.
Toshie Igawa 《Facies》2003,48(1):61-78
Summary Microbial organisms significantly contributed to the accumulation of shallow-marine carbonates in an open-ocean realm of the Panthalassan Ocean during Late Carboniferous-Early Permian time. The Jigokudai plateau in the northern part of the Akiyoshidai Plateau is the study area, where the limestone of the Upper Carboniferous Kasimovian Stage to the Lower Permian Artinskian Stage is well exposed. The fusulinid biostratigraphy as well as top-bottom geopetal fabrics revealed that the rocks of the study area are overturned. The thickness of this succession is approximated to 150 m. The succession is lithologically divided into the Lower Jigokudai and Upper Jigokudai formations. The lime-stones of these formations were deposited in a lagoonal setting. The Lower Jigokudai formation (95 m thick: Kasimovian to Asselian) is characterized by sand shoal facies represented by crinoid-Tubiphytes-fusulinid peloidal pack/grainstones and oolitic grainstones. Phylloid algal grain/packstones and microbial boundstones subordinately crop out. The Upper Jigokudai Formation (55 m thick: Sakmarian to Artinskian) is characterized by shoal and tidal flat facies represented by mollusk-fusulinid peloidal grain/rudstones, and peloidal grain/rudstones and peloidal lime-mudstones, respectively. Laterally discontinuous microbial bound-stones occur intercalated in mollusk-fusulinid peloidal grain/rudstones. This formation contains pendant and meniscus cements, and flat-pebble breccia indicative of an intertidal deposition and subaerial exposure. Various types of boundstone and organosedimentary structures constructed mainly by filamentous cyanobacteria,Tubiphytes obscurus tubular microproblematicum A, and other microproblematica were recognized. Significant facies types are (1) filamentous cyanobacteria-microproblematicum A bind/framestones, (2)Tubiphytes obscurus bindstones, (3) stromatolitic bindstones, (4) microbial laminites, (5) microbially linked structures, (6) oncoids, (7) microproblematica B-C framestones. The calcimicrobes, combined with synsedimentary cementation, formed small-scale and low-relief mounds of these facies, and greatly contributed to the deposition of the Kasimovian to Artinskian Panthalassan buildup.  相似文献   

19.
Microhermal nodules very similar to those from the Oxfordian Smackover Formation are volumetrically important constituents of the Novillo Formation exposed in eastern Central Mexico. The nodules occur within a micritic limestone succession (Novillo Limestone). Coalescence of adjacent nodules leads to a delicate self-supported frame. Microhermal nodules consist of both microbial carbonate and clustered digitate and branching chambered microfossils. The latter occur in the form of crust-like agglomerations or bushy growth habit in small growth-framework cavities created by accretionary microbialites. Main growth patterns are branching upward, downward facing and pendant. Like Renalcis, the microfossils apparently resulted from the activity of calcimicrobes. Terebella, encrusting foraminifers, and Tubiphytes form part of the microhermal biota and occur as subordinate faunal components. The association developed on the floor of a calm, shallow-marine lagoon with restricted water interchange and reduced oxygenation at the sediment–water interface.  相似文献   

20.
Permian-Triassic boundary microbialites (PTBMs) are thin (0.05-15 m) carbonates formed after the end-Permian mass extinction. They comprise Renalcis-group calcimicrobes, microbially mediated micrite, presumed inorganic micrite, calcite cement (some may be microbially influenced) and shelly faunas. PTBMs are abundant in low-latitude shallow-marine carbonate shelves in central Tethyan continents but are rare in higher latitudes, likely inhibited by clastic supply on Pangaea margins. PTBMs occupied broadly similar environments to Late Permian reefs in Tethys, but extended into deeper waters. Late Permian reefs are also rich in microbes (and cements), so post-extinction seawater carbonate saturation was likely similar to the Late Permian. However, PTBMs lack widespread abundant inorganic carbonate cement fans, so a previous interpretation that anoxic bicarbonate-rich water upwelled to rapidly increase carbonate saturation of shallow seawater, post-extinction, is problematic. Preliminary pyrite framboid evidence shows anoxia in PTBM facies, but interbedded shelly faunas indicate oxygenated water, perhaps there was short-term pulsing of normally saturated anoxic water from the oxygen-minimum zone to surface waters. In Tethys, PTBMs show geographic variations: (i) in south China, PTBMs are mostly thrombolites in open shelf settings, largely recrystallised, with remnant structure of Renalcis-group calcimicrobes; (ii) in south Turkey, in shallow waters, stromatolites and thrombolites, lacking calcimicrobes, are interbedded, likely depth-controlled; and (iii) in the Middle East, especially Iran, stromatolites and thrombolites (calcimicrobes uncommon) occur in different sites on open shelves, where controls are unclear. Thus, PTBMs were under more complex control than previously portrayed, with local facies control playing a significant role in their structure and composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号