首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical orchids constitute the greater part of orchid diversity, but little is known about their obligate mycorrhizal relationships. The specificity of these interactions and associated fungal distributions could influence orchid distributions and diversity. We investigated the mycorrhizal specificity of the tropical epiphytic orchid Ionopsis utricularioides across an extensive geographical range. DNA ITS sequence variation was surveyed in both plants and mycorrhizal fungi. Phylogeographic relationships were estimated for the mycorrhizal fungi. Orchid functional outcomes were determined through in vitro seed germination and seedling growth with a broad phylogenetic representation of fungi. Most fungal isolates derived from one clade of Ceratobasidium (anamorphs assignable to Ceratorhiza), with 78% within a narrower phylogenetic group, clade B. No correlation was found between the distributions of orchid and fungal genotypes. All fungal isolates significantly enhanced seed germination, while fungi in clade B significantly enhanced seedling growth. These results show that I. utricularioides associates with a phylogenetically narrow, effective fungal clade over a broad distribution. This preference for a widespread mycorrhizae may partly explain the ample distribution and abundance of I. utricularioides and contrasts with local mycorrhizal diversification seen in some nonphotosynthetic orchids. Enhanced orchid function with a particular fungal subclade suggests mycorrhizal specificity can increase orchid fitness.  相似文献   

2.
【背景】除了菌根真菌(Orchid mycorrhizal fungi,OrMF)外,兰科植物根中还有其它内生真菌,称为根相关真菌(Root-associated fungi,RAF)。【目的】采用分离培养的方法获得同一栖息地针叶林和灌木林两种不同生境西藏杓兰、黄花杓兰和无苞杓兰的RAF菌株,研究其真菌谱系、多样性和生态功能结构。【方法】从杓兰根碎屑中分离RAF,通过总DNA提取、PCR扩增及测序得到ITS(Internaltranscribedspacer)序列;进行系统发育和多样性分析,并通过NCBI数据库比对得到相似性最高序列的注释信息来分析RAF生态学特性。【结果】共分离得到278株RAF,25种OTU类型,包括23个子囊菌门OTU,2个毛霉菌门OTU。RAF物种丰富度分析发现西藏杓兰的较黄花杓兰高,不同生境没有显著差异;不同杓兰物种较不同生境的RAF群落分化程度高。生态功能分析显示25个OTU包括共生型、腐生型和致病型3种营养型,以及外生菌根菌群、植物病原菌群、内生真菌群、动物病原菌群、真菌寄生菌群、杜鹃花类菌根群、未定义的腐生菌群和不确定型8种共位群。【结论】阐明不同生境采集的不同杓兰中RAF的分布特点和生态功能,为未来研究RAF与杓兰属植物的共生关系奠定基础。  相似文献   

3.
Although coevolution is acknowledged to occur in nature, coevolutionary patterns in symbioses not involving species-to-species relationships are poorly understood. Mycorrhizal plants are thought to be too generalist to coevolve with their symbiotic fungi; yet some plants, including some orchids, exhibit strikingly narrow mycorrhizal specificity. Here, we assess the evolutionary history of mycorrhizal specificity in the lady's slipper orchid genus, Cypripedium. We sampled 90 populations of 15 taxa across three continents, using DNA methods to identify fungal symbionts and quantify mycorrhizal specificity. We assessed phylogenetic relationships among sampled Cypripedium taxa, onto which we mapped mycorrhizal specificity. Cypripedium taxa associated almost exclusively with fungi within family Tulasnellaceae. Ancestral specificity appears to have been narrow, followed by a broadening after the divergence of C. debile. Specificity then narrowed, resulting in strikingly narrow specificity in most of the taxa in this study, with no taxon rewidening to the same extant as basal members of the genus. Sympatric taxa generally associated with different sets of fungi, and most clades of Cypripedium-mycorrhizal fungi were found throughout much of the northern hemisphere, suggesting that these evolutionary patterns in specificity are not the result of biogeographic lack of opportunity to associate with potential partners. Mycorrhizal specificity in genus Cypripedium appears to be an evolvable trait, and associations with particular fungi are phylogenetically conserved.  相似文献   

4.
Several key characteristics of the species-rich orchid familyare due to its symbiotic relationships with pollinators andmycorrhizal fungi. The majority of species are insect pollinatedand show strong adaptations for outcrossing, such as pollinationby food- and sexual-deception, and all orchids are reliant onmycorrhizal fungi for successful seedling establishment. Recentstudies of orchid pollination biology have shed light on thebarriers to reproductive isolation important to diversificationin different groups of deceptive orchids. Molecular identificationof orchid mycorrhizal fungi has revealed high fungal specificityin orchids that obtain organic nutrients from fungi as adults.Both pollinator and fungal specificity have been proposed asdrivers of orchid diversification. Recent findings in orchidpollination and mycorrhizal biology are reviewed and it is shownthat both associations are likely to affect orchid distributionand population structure. Integrating studies of these symbioseswill shed light on the unparalleled diversification of the orchidfamily. Key words: Mutualism, myco-heterotrophy, pollinator limitation, speciation Received 5 October 2007; Revised 12 December 2007 Accepted 21 December 2007  相似文献   

5.
Fungal specificity bottlenecks during orchid germination and development   总被引:2,自引:0,他引:2  
Fungus-subsidized growth through the seedling stage is the most critical feature of the life history for the thousands of mycorrhizal plant species that propagate by means of 'dust seeds.' We investigated the extent of specificity towards fungi shown by orchids in the genera Cephalanthera and Epipactis at three stages of their life cycle: (i) initiation of germination, (ii) during seedling development, and (iii) in the mature photosynthetic plant. It is known that in the mature phase, plants of these genera can be mycorrhizal with a number of fungi that are simultaneously ectomycorrhizal with the roots of neighbouring forest trees. The extent to which earlier developmental stages use the same or a distinctive suite of fungi was unclear. To address this question, a total of 1500 packets containing orchid seeds were buried for up to 3 years in diverse European forest sites which either supported or lacked populations of helleborine orchids. After harvest, the fungi associated with the three developmental stages, and with tree roots, were identified via cultivation-independent molecular methods. While our results show that most fungal symbionts are ectomycorrhizal, differences were observed between orchids in the representation of fungi at the three life stages. In Cephalanthera damasonium and C. longifolia , the fungi detected in seedlings were only a subset of the wider range seen in germinating seeds and mature plants. In Epipactis atrorubens , the fungi detected were similar at all three life stages, but different fungal lineages produced a difference in seedling germination performance. Our results demonstrate that there can be a narrow checkpoint for mycorrhizal range during seedling growth relative to the more promiscuous germination and mature stages of these plants' life cycle.  相似文献   

6.
Orchidaceae is one of the most species-rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and their life cycle. The level of specificity of the association between orchid species and fungi can be related to the number of co-occurring orchid species. To investigate orchid mycorrhizal associations in adult-photosynthetic orchids, 16 Mediterranean orchid species belonging to 4 genera (Anacamptis, Ophrys, Orchis, and Serapias) at 11 different sites were subjected to DNA-based analysis. Eighteen operational taxonomic units representing two fungal families, Tulasnellaceae and Ceratobasidiaceae, were identified. All examined orchid species associated with different mycorrhizal fungi. Interestingly, there was a positive correlation between number of orchid species and number of mycorrhizal. Monospecific populations showed a lower number of fungi, while sympatric populations had a higher number of mycorrhizal fungi. Our results showed that Mediterranean orchid species associated with a higher number of mycorrhizal fungi confirming as photosynthetic orchids are typically generalists toward mycorrhizal fungi. Thus, photosynthetic orchids exhibit low specificity for fungal symbionts showing the potential for opportunistic associations with diverse fungi reducing competition for nutrient. We suggest that these characteristics could confer symbiotic assurance particularly in habitat with resource limitations or prone to stressful conditions.  相似文献   

7.
Orchids typically depend on fungi for establishment from seeds, forming mycorrhizal associations with basidiomycete fungal partners in the polyphyletic group rhizoctonia from early stages of germination, sometimes with very high specificity. This has raised important questions about the roles of plant and fungal phylogenetics, and their habitat preferences, in controlling which fungi associate with which plants. In this issue of Molecular Ecology, Martos et al. (2012) report the largest network analysis to date for orchids and their mycorrhizal fungi, sampling a total of over 450 plants from nearly half the 150 tropical orchid species on Reunion Island, encompassing its main terrestrial and epiphytic orchid genera. The authors found a total of 95 operational taxonomic units of mycorrhizal fungi and investigated the architecture and nestedness of their bipartite networks with 73 orchid species. The most striking finding was a major ecological barrier between above‐ and belowground mycorrhizal fungal networks, despite both epiphytic and terrestrial orchids often associating with closely related taxa across all three major lineages of rhizoctonia fungi. The fungal partnerships of the epiphytes and terrestrial species involved a diversity of fungal taxa in a modular network architecture, with only about one in ten mycorrhizal fungi partnering orchids in both groups. In contrast, plant and fungal phylogenetics had weak or no effects on the network. This highlights the power of recently developed ecological network analyses to give new insights into controls on plant–fungal symbioses and raises exciting new hypotheses about the differences in properties and functioning of mycorrhiza in epiphytic and terrestrial orchids.  相似文献   

8.
9.
Evidence for mycorrhizal races in a cheating orchid   总被引:8,自引:0,他引:8  
Disruptive selection on habitat or host-specificity has contributed to the diversification of several animal groups, especially plant-feeding insects. Photosynthetic plants typically associate with a broad range of mycorrhizal fungi, while non-photosynthetic plants that capture energy from mycorrhizal fungi ('mycoheterotrophs') are often specialized towards particular taxa. Sister myco-heterotroph species are often specialized towards different fungal taxa, suggesting rapid evolutionary shifts in specificity. Within-species variation in specificity has not been explored. Here, we tested whether genetic variation for mycorrhizal specificity occurs within the myco-heterotrophic orchid Corallorhiza maculata. Variation across three single-nucleotide polymorphisms revealed six multilocus genotypes across 122 orchids from 30 sites. These orchids were associated with 22 different fungal species distributed across the Russulaceae (ectomycorrhizal basidiomycetes) according to internal-transcribed-spacer sequence analysis. The fungi associated with four out of the six orchid genotypes fell predominantly within distinct subclades of the Russulaceae. This result was supported by Monte Carlo simulation and analyses of molecular variance of fungal sequence diversity. Different orchid genotypes were often found growing in close proximity, but maintained their distinct fungal associations. Similar patterns are characteristic of insect populations diversifying onto multiple hosts. We suggest that diversification and specialization of mycorrhizal associations have contributed to the rapid radiation of the Orchidaceae.  相似文献   

10.
Fully mycoheterotrophic plants offer a fascinating system for studying phylogenetic associations and dynamics of symbiotic specificity between hosts and parasites. These plants frequently parasitize mutualistic mycorrhizal symbioses between fungi and trees. Corallorhiza striata is a fully mycoheterotrophic, North American orchid distributed from Mexico to Canada, but the full extent of its fungal associations and specificity is unknown. Plastid DNA (orchids) and ITS (fungi) were sequenced for 107 individuals from 42 populations across North America to identify C. striata mycobionts and test hypotheses on fungal host specificity. Four largely allopatric orchid plastid clades were recovered, and all fungal sequences were most similar to ectomycorrhizal Tomentella (Thelephoraceae), nearly all to T. fuscocinerea. Orchid-fungal gene trees were incongruent but nonindependent; orchid clades associated with divergent sets of fungi, with a clade of Californian orchids subspecialized toward a narrow Tomentella fuscocinerea clade. Both geography and orchid clades were important determinants of fungal association, following a geographic mosaic model of specificity on Tomentella fungi. These findings corroborate patterns described in other fully mycoheterotrophic orchids and monotropes, represent one of the most extensive plant-fungal genetic investigations of fully mycoheterotrophic plants, and have conservation implications for the >400 plant species engaging in this trophic strategy worldwide.  相似文献   

11.
兰科菌根的生态学研究进展   总被引:2,自引:0,他引:2  
兰科植物(Orchidaceae)是典型的菌根植物,自然条件下其种子的成功萌发和生长的早期阶段对菌根真菌有绝对的依赖性,在有些成年兰科植物中菌根真菌仍起着重要的作用。目前大部分兰科植物已为濒危物种,鉴于兰科植物天然的菌根共生关系,开展兰科植物和菌根真菌互作的生态学研究不仅具有极高的科研价值,更有助于兰科植物的物种保护和野生种群的生态恢复。近年研究表明,兰科植物对真菌的选择和二者共生关系的建立与菌根真菌的空间分布和丰度密切相关,然而当前对自然环境中兰科菌根真菌的实际分布还了解甚少,因此文章从生态学角度系统分析兰科植物与菌根真菌的关系,探讨该领域的研究热点,旨在为兰科菌根的生态学研究提供参考。  相似文献   

12.
Mycorrhizal association is a common characteristic in a majority of land plants, and the survival and distribution of a species can depend on the distribution of suitable fungi in its habitat. Orchidaceae is one of the most species‐rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and some also for subsequent growth and survival. Given this obligate dependence, at least in the early growth stages, elucidating the patterns of orchid–mycorrhizal relationships is critical to orchid biology, ecology and conservation. To assess whether rarity of an orchid is determined by its specificity towards its fungal hosts, we studied the spatial and temporal variability in the host fungi associated with one of the rarest North American terrestrial orchids, Piperia yadonii. The fungal internal transcribed spacer region was amplified and sequenced by sampling roots from eight populations of P. yadonii distributed across two habitats, Pinus radiata forest and maritime chaparral, in California. Across populations and sampling years, 26 operational taxonomic units representing three fungal families, the Ceratobasidiaceae, Sebacinaceae and Tulasnellaceae, were identified. Fungi belonging to the Sebacinaceae were documented in orchid roots only at P. radiata forest sites, while those from the Ceratobasidiaceae and Tulasnellaceae occurred in both habitats. Our results indicate that orchid rarity can be unrelated to the breadth of mycorrhizal associations. Our data also show that the dominance of various fungal families in mycorrhizal plants can be influenced by habitat preferences of mycorrhizal partners.  相似文献   

13.
Mycorrhizal fungi are essential for the germination of orchid seeds. However, the specificity of orchids for their mycorrhizal fungi and the effects of the fungi on orchid growth are controversial. Mycorrhizal fungi have been studied in some temperate and tropical, epiphytic orchids, but the symbionts of tropical, terrestrial orchids are still unknown. Here we study diversity, specificity and function of mycorrhizal fungi in Vanilla, a pantropical genus that is both terrestrial and epiphytic. Mycorrhizal roots were collected from four Vanilla species in Puerto Rico, Costa Rica and Cuba. Cultured and uncultured mycorrhizal fungi were identified by sequencing the internal transcribed spacer region of nuclear rDNA (nrITS) and part of the mitochondrial ribosomal large subunit (mtLSU), and by counting number of nuclei in hyphae. Vanilla spp. were associated with a wide range of mycorrhizal fungi: Ceratobasidium, Thanatephorus and Tulasnella. Related fungi were found in different species of Vanilla, although at different relative frequencies. Ceratobasidium was more common in roots in soil and Tulasnella was more common in roots on tree bark, but several clades of fungi included strains from both substrates. Relative frequencies of genera of mycorrhizal fungi differed significantly between cultured fungi and those detected by direct amplification. Ceratobasidium and Tulasnella were tested for effects on seed germination of Vanilla and effects on growth of Vanilla and Dendrobium plants. We found significant differences among fungi in effects on seed germination and plant growth. Effects of mycorrhizal fungi on Vanilla and Dendrobium were similar: a clade of Ceratobasidium had a consistently positive effect on plant growth and seed germination. This clade has potential use in germination and propagation of orchids. Results confirmed that a single orchid species can be associated with several mycorrhizal fungi with different functional consequences for the plant.  相似文献   

14.
All orchids have an obligate relationship with mycorrhizal symbionts. Most orchid mycorrhizal fungi are classified in the form-genus Rhizoctonia. This group includes anamorphs of Tulasnella, Ceratobasidium, and Thanatephorus. Rhizoctonia can be classified according to the number of nuclei in young cells (multi-, bi-, and uninucleate). From nine Puerto Rican orchids we isolated 108 Rhizoctonia-like fungi. Our isolates were either bi- or uninucleate, the first report of uninucleate Rhizoctonia-like fungi as orchid endophytes. We sequenced the internal transcribed spacer (ITS) region of nuclear ribosomal DNA from 26 isolates and identified four fungal lineages, all related to Ceratobasidium spp. from temperate regions. Most orchid species hosted more than one lineage, demonstrating considerable variation in mycorrhizal associations even among related orchid species. The uninucleate condition was not a good phylogenetic character in mycorrhizal fungi from Puerto Rico. All four lineages were represented by fungi from Tolumnia variegata, but only one lineage included fungi from Ionopsis utricularioides. Tropical epiphytic orchids appear to vary in degree of specificity in their mycorrhizal interactions more than previously thought.  相似文献   

15.
Background and Aims Most fully mycoheterotrophic (MH) orchids investigated to date are mycorrhizal with fungi that simultaneously form ectomycorrhizas with forest trees. Only a few MH orchids are currently known to be mycorrhizal with saprotrophic, mostly wood-decomposing, fungi instead of ectomycorrhizal fungi. This study provides evidence that the importance of associations between MH orchids and saprotrophic non-Rhizoctonia fungi is currently under-estimated.Methods Using microscopic techniques and molecular approaches, mycorrhizal fungi were localized and identified for seven MH orchid species from four genera and two subfamilies, Vanilloideae and Epidendroideae, growing in four humid and warm sub-tropical forests in Taiwan. Carbon and nitrogen stable isotope natural abundances of MH orchids and autotrophic reference plants were used in order to elucidate the nutritional resources utilized by the orchids.Key Results Six out of the seven MH orchid species were mycorrhizal with either wood- or litter-decaying saprotrophic fungi. Only one orchid species was associated with ectomycorrhizal fungi. Stable isotope abundance patterns showed significant distinctions between orchids mycorrhizal with the three groups of fungal hosts.Conclusions Mycoheterotrophic orchids utilizing saprotrophic non-Rhizoctonia fungi as a carbon and nutrient source are clearly more frequent than hitherto assumed. On the basis of this kind of nutrition, orchids can thrive in deeply shaded, light-limiting forest understoreys even without support from ectomycorrhizal fungi. Sub-tropical East Asia appears to be a hotspot for orchids mycorrhizal with saprotrophic non-Rhizoctonia fungi.  相似文献   

16.
We here apply a previously described method for identification of single peloton orchid mycorrhiza to a key orchid group and extend the usefulness in the heterobasidiomycetes of an existing fungal database for identification of mycorrhizal fungi. We amplified and sequenced mitochondrial ribosomal large subunit DNA from fungi in roots of Neuwiedia veratrifolia (Orchidaceae), a member of the small subfamily Apostasioideae that is sister to the remainder of Orchidaceae, and used the extended database to identify the mycorrhizal fungi. Sequences from fungi cultured from Neuwiedia roots and from direct peloton amplifications were analyzed cladistically with sequences determined from reference fungal collections and published sequences. The fungi from Neuwiedia are referred to the heterobasidiomycetous orders Tulasnellales and Ceratobasidiales, indicating that apostasioids utilize the same fungi as other photosynthetic orchids. The majority of Neuwiedia mycobionts came together in a clade with Tulasnella species, but some were most closely related to Thanatephorus. In some cases members of these two clades were isolated from the same orchid plant, providing another example of multiple mycobionts occurring in a single plant.  相似文献   

17.
Dendrobium is a large genus of tropical epiphytic orchids. Some members of this genus are in danger of extinction across China. To investigate orchid mycorrhizal associations of the genus Dendrobium, plants from two Dendrobium species (Dendrobium officinale and Dendrobium fimbriatum) were collected from two habitats in Guangxi Province, China, and clone libraries were constructed to identify the mycorrhizal fungi of individual plants. A low and high degree of specificity was observed in D. officinale and D. fimbriatum, respectively. Phylogenetic analysis revealed that the majority of Dendrobium mycorrhizal fungi are members of the Tulasnellaceae, but, in some plants, members of the Ceratobasidiaceae and Pluteaceae were also found. In D. officinale, individual plants associated with more than three fungi simultaneously, and, in some cases, associations with five fungi at the same time. One fungus was shared by individual plants of D. officinale collected from the two habitats. In D. fimbriatum, only one fungal partner was found in each population, and this fungus differed between populations. The two species of Dendrobium sampled from the same habitat did not share any fungal taxa. These results provide valuable information for conservation of these orchid species.  相似文献   

18.
Understanding the processes that determine the architecture of interaction networks represents a major challenge in ecology and evolutionary biology. One of the most important interactions involving plants is the interaction between plants and mycorrhizal fungi. While there is a mounting body of research that has studied the architecture of plant–fungus interaction networks, less is known about the potential factors that drive network architecture. In this study, we described the architecture of the network of interactions between mycorrhizal fungi and 44 orchid species that represented different life forms and co‐occurred in tropical forest and assessed the relative importance of ecological, evolutionary and co‐evolutionary mechanisms determining network architecture. We found 87 different fungal operational taxonomic units (OTUs), most of which were members of the Tulasnellaceae. Most orchid species associated with multiple fungi simultaneously, indicating that extreme host selectivity was rare. However, an increasing specificity towards Tulasnellaceae fungal associates from terrestrial to epiphytic and lithophytic orchids was observed. The network of interactions showed an association pattern that was significantly modular (M = 0.7389, Mrandom = 0.6998) and nested (NODF = 5.53, p < 0.05). Terrestrial orchids had almost no links to modules containing epiphytic or lithophytic orchids, while modules containing epiphytic orchids also contained lithophytic orchids. Within each life form several modules were observed, suggesting that the processes that organize orchid–fungus interactions are independent of life form. The overall phylogenetic signal for both partners in the interaction network was very weak. Overall, these results indicate that tropical orchids associate with a wide number of mycorrhizal fungi and that ecological rather than phylogenetic constraints determine network architecture.  相似文献   

19.
Most orchid species rely on mycorrhizae to complete their life cycle. Despite a growing body of literature identifying orchid mycorrhizal associations, the nature and specificity of the association between orchid species and mycorrhizal fungi remains largely an open question. Nonetheless, better insights into these obligate plant–fungus associations are indispensable for understanding the biology and conservation of orchid populations. To investigate orchid mycorrhizal associations in five species of the genus Orchis (O. anthropophora, O. mascula, O. militaris, O. purpurea, and O. simia), we developed internal transcribed spacer‐based DNA arrays from extensive clone library sequence data sets, enabling rapid and simultaneous detection of a wide range of basidiomycetous mycorrhizal fungi. A low degree of specificity was observed, with two orchid species associating with nine different fungal partners. Phylogenetic analysis revealed that the majority of Orchis mycorrhizal fungi are members of the Tulasnellaceae, but in some plants, members of the Thelephoraceae, Cortinariaceae and Ceratobasidiaceae were also found. In all species except one (O. mascula), individual plants associated with more than one fungus simultaneously, and in some cases, associations with ≥3 mycorrhizal fungi at the same time were identified. Nestedness analysis showed that orchid mycorrhizal associations were significantly nested, suggesting asymmetric specialization and a dense core of interactions created by symmetric interactions between generalist species. Our results add support to the growing literature that multiple associations may be common among orchids. Low specificity or preference for a widespread fungal symbiont may partly explain the wide distribution of the investigated species.  相似文献   

20.
Throughout the industrialized world, wetland species face the greatest risk of extinction from altered environmental conditions and loss of habitat. Manmade wetlands are often the only feasible strategy to provide habitat for these species. Wetland orchids are particularly susceptible to environmental degradation due to potentially limited availability of specialized pollinators and mycorrhizal symbionts. Here, we assess the fungal symbiont diversity of two orchid species, Habenaria radiata and Epipactis thunbergii, occupying three manmade wetlands in Hiroshima Prefecture, Japan to determine if orchids colonizing reconstructed habitats associate with a phylogenetically diverse or narrow suite of fungal symbionts. We collected three individuals each of H. radiata and E. thunbergii, respectively, growing at the first pond, six H. radiata from a second pond, and two E. thunbergii from a third pond. We identified fungal taxa using PCR and DNA sequencing techniques. Habenaria radiata associated with a phylogenetically diverse suite of fungi; in comparison, E. thunbergii associated with a phylogenetically narrow range of fungi dominated by the Tulasnellaceae. These common wetland orchid species readily colonize manmade wetlands, and we propose sampling soils for the presence of appropriate mycorrhizal fungi to determine limitations on orchid population regeneration due to mycorrhizal specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号