首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J A Kiel  J M Boels  G Beldman  G Venema 《Gene》1990,89(1):77-84
The nucleotide sequence of the Synechococcus sp. PCC7942 glgB gene has been determined. The gene contains a single open reading frame (ORF) of 2322 bp encoding a polypeptide of 774 amino acids (aa) with an Mr of 89,206. Extensive sequence similarity exists between the deduced aa sequence of the Synechococcus sp. glgB gene product and that of the Escherichia coli branching enzyme in the middle portions of the proteins (62% identical aa). In contrast, the N-terminal portions shared little homology. The sequenced region which follows glgB contains an ORF encoding 79 aa of the N terminus of a polypeptide that shares extensive sequence similarity (41% identical aa) with human and rat uroporphyrinogen decarboxylase. This suggests that the region downstream from glgB contains the hemE gene and, therefore, that the organization of genes involved in glycogen biosynthesis in Synechococcus sp. is different from that described for E. coli. A fusion gene was constructed between the 5' end of the Bacillus licheniformis penP gene and the Synechococcus sp. glgB gene. The fusion gene was efficiently expressed in the Gram+ micro-organism Bacillus subtilis and specified a branching enzyme with an optimal temperature for activity similar to the wild-type enzyme.  相似文献   

2.
We isolated and characterized a gene encoding phosphoribulokinase (PRK) from Synechococcus sp. PCC 7942. The isolated sequence consisted of a 999 bp open reading frame encoding 333 amino acid residues of PRK. The PRK contained a pair of cysteinyl residues corresponding to Cys16 and Cys55 of spinach PRK regulated by a ferredoxin-thioredoxin system. However, there were seventeen amino acid residues lacking between the two cysteinyl residues compared with those of the chloroplastic enzyme in higher plants. The recombinant PRK of Synechococcus sp. PCC 7942 accounted for about 6-13% of the total soluble protein in the Escherichia coli. The specific activity of the enzyme was 230 micro mol min(-1) (mg protein)(-1). The enzyme activity was completely inactivated by treatment with 5,5'-dithiobis (2-nitrobenzoic acid) (cysteinyl residue-specific oxidant) or was decreased by treatment with H(2)O(2), but was more tolerant to oxidation than that of chloroplast. The oxidized PRK was fully activated by treatment with excessive dithiothreitol. Furthermore, incubation with 3 mM ATP protected the oxidation of the enzyme by either 5,5'-dithiobis (2-nitrobenzoic acid) or H(2)O(2). These results suggest Synechococcus sp. PCC 7942 PRK can be regulated by reversible oxidation/reduction in vitro, but might be resistant to oxidative inactivation in vivo.  相似文献   

3.
The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 signals the cellular state of nitrogen assimilation relative to CO2 fixation by being phosphorylated at a seryl residue. In this study, we first determined the location of the phosphorylated seryl residue within the PII amino acid sequence. The phosphorylation site exhibits an RXS motif, a recognition sequence characteristic for cyclic AMP-dependent protein serine kinases from eukaryotes. We established an in vitro PII phosphorylation assay to further analyze the PII kinase activity in Synechococcus sp. strain PCC 7942. ATP was used specifically as a phosphoryl donor, and the PII kinase activity was shown to be stimulated by alpha-ketoglutarate. Unlike the PII-modifying uridylyltransferase- and uridylyl-removing enzyme characterized in proteobacteria, the activity of the PII kinase from the cyanobacterium did not respond to glutamine.  相似文献   

4.
5.
Chlorophyll- b-possessing cyanobacteria of the genus Prochlorococcus share the presence of high amounts of alpha- and beta-carotenoids with green algae and higher plants. The branch point in carotenoid biosynthesis is the cyclization of lycopene, for which in higher plants two distinct enzymes are required, epsilon- and beta-lycopene cyclase. All cyanobacteria studied so far possess a single beta-cyclase. Here, two different Prochlorococcus sp. MED4 genes were functionally identified by heterologous gene complementation in Escherichia coli to encode lycopene cyclases. Whereas one is both functionally and in sequence highly similar to the beta-cyclase of Synechococcus sp. strain PCC 7942 and other cyanobacteria, the other showed several intriguing features. It acts as a bifunctional enzyme catalyzing the formation of epsilon- as well as of beta-ionone end groups. Expression of this cyclase in E. coli resulted in the simultaneous accumulation of alpha- beta-, delta-, and epsilon-carotene. Such an activity is in contrast to all lycopene epsilon-cyclases known so far, including those of the higher plants. Thus, for the first time among prokaryotes, two individual enzymes were identified in one organism that are responsible for the formation of cyclic carotenoids with either beta- or epsilon-end groups. These two genes are suggested to be designated as crtL-b and crtL-e. The results indicate that both enzymes might have originated from duplication of a single gene. Consequently, we suggest that multiple gene duplications followed by functional diversification resulted several times, and in independent lineages, in the appearance of enzymes for the biosynthesis of cyclic carotenoids.  相似文献   

6.
During sulfur-limited growth, the cyanobacterium Synechococcus sp. strain PCC 7942 loses most of its photosynthetic pigments and develops an increased capacity to acquire sulfate. Sulfur deprivation also triggers the synthesis of several soluble polypeptides. We have isolated a prominent polypeptide of 33 kDa that accumulates specifically under sulfur-limiting conditions. This polypeptide was localized to the periplasmic space. The gene for this protein (designated rhdA) was isolated and discovered to lie within a region of the Synechococcus sp. strain PCC 7942 genome that encodes components of the sulfate permease system. The mRNA for the 33-kDa protein accumulates to high levels within an hour after the cells are deprived of sulfur and drops rapidly when sulfur is added back to the cultures. The amino acid sequence of the protein has similarity to bovine liver rhodanese, an enzyme that transfers the thiol group of thiosulfate to a thiophilic acceptor molecule, and a rhodaneselike protein of Saccharopolyspora erythraea. A strain in which rhdA was interrupted by a drug resistance marker exhibited marginally lower levels of rhodanese activity but was still capable of efficiently utilizing a variety of inorganic sulfur sources. The possible role of this protein in the transport of specific sulfur compounds is discussed.  相似文献   

7.
Abstract The region of the genome encoding the glucose-6-phosphate dehydrogenase gene zwf was analysed in a unicellular cyanobacterium, Synechococcus sp. PCC 7942, and a filamentous, heterocystous cyanobacterium, Anabaena sp. PCC 7120. Comparison of cyanobacterial zwf sequences revealed the presence of two absolutely conserved cysteine residues which may be implicated in the light/dark control of enzyme activity. The presence in both strains of a gene fbp , encoding fructose-1,6-bisphosphatase, upstream from zwf strongly suggests that the oxidative pentose phosphate pathway in these organisms may function to completely oxidize glucose 6-phosphate to CO2. The amino acid sequence of fructose-1,6-bisphosphatase does not support the idea of its light activation by a thiol/disulfide exchange mechanism. In the case of Anabaena sp. PCC 7120, the tal gene, encoding transaldolase, lies between zwf and fbp .  相似文献   

8.
The putative glgX gene encoding isoamylase-type debranching enzyme was isolated from the cyanobacterium, Synechococcus elongatus PCC 7942. The deduced amino acid sequence indicated that the residues essential to the catalytic activity and substrate binding in bacterial and plant isoamylases and GlgX proteins were all conserved in the GlgX protein of S. elongatus PCC 7942. The role of GlgX in the cyanobacterium was examined by insertional inactivation of the gene. Disruption of the glgX gene resulted in the enhanced fluctuation of glycogen content in the cells during light-dark cycles of the culture, although the effect was marginal. The glycogen of the glgX mutant was enriched with very short chains with degree of polymerization 2 to 4. When the mutant was transformed with putative glgX genes of Synechocystis sp. PCC 6803, the short chains were decreased as compared to the parental mutant strain. The result indicated that GlgX protein contributes to form the branching pattern of polysaccharide in S. elongatus PCC 7942.  相似文献   

9.
10.
The two closely related fresh water cyanobacteria Synechococcus elongatus PCC 6301 and Synechococcus elongatus PCC 7942 have previously been shown to constitutively express a FAD-containing L-amino acid oxidase with high specificity for basic L-amino acids (L-arginine being the best substrate). In this paper we show that such an enzyme is also present in the fresh water cyanobacterium Synechococcus cedrorum PCC 6908. In addition, an improved evaluation of the nucleotide/amino acid sequence of the L-amino acid oxidase of Synechococcus elongatus PCC 6301 (encoded by the aoxA gene) with respect to the FAD-binding site and a translocation pathway signal sequence will be given. Moreover, the genome sequences of 24 cyanobacteria will be evaluated for the occurrence of an aoxA-similar gene. In the evaluated cyanobacteria 15 genes encoding an L-amino acid oxidase-similar protein will be found.  相似文献   

11.
Upon depletion of Sll0254 in Synechocystis sp. strain PCC 6803, cyclized carotenoids were replaced by linear, relatively hydrophilic carotenoids, and the amount of the two photosystems decreased greatly. Full segregants of the sll0254 deletion in Synechocystis were not obtained, implying that this gene is essential for survival, most likely to allow normal cell division. The N-terminal half of Sll0254 has limited similarity to the family of lycopene cyclases, has an additional dehydrogenase motif near the N terminus, and is followed by a Rieske 2Fe-2S center sequence signature. To test whether Sll0254 serves as a lycopene cyclase in Synechocystis, the corresponding gene was expressed in Escherichia coli strains that can produce lycopene or neurosporene. In the presence of Sll0254 these linear carotenoids were converted into cyclized, relatively hydrophilic pigments, with masses consistent with the introduction of two hydroxyl groups and with spectra indicative of only small changes in the number of conjugated double bonds. This suggests that Sll0254 catalyzes formation of oxygenated, cyclized carotenoids. We interpret the appearance of the hydroxyl groups in the carotenoids to be due to dioxygenase activity involving the Rieske 2Fe-2S center and the additional dehydrogenase domain. This dioxygenase activity is required in the myxoxanthophyll biosynthesis pathway, after or concomitant with cyclization on the other end of the molecule. We interpret Sll0254 to be a dual-function enzyme with both lycopene cyclase and dioxygenase activity and have named it CrtL(diox).  相似文献   

12.
Abstract A screening procedure for carotenoid genes involving heterologous complementation with two different plasmid constructs was developed. The plasmids contained the crtE and crtB genes from Erwinia unredovora together with the phytoene desaturase gene from either Rhodobacter capsulatus or Synechococcus PCC 7942. Transformation in E. coli led to the accumulation of neurosporene and ζ-carotene, respectively. Co-transformation with an Anabaena plasmid library resulted in the isolation of the two plasmids, pZDS1 and pZDS1. Their gene products showed the ability to convert neurosporene and ζ-carotene into lycopene. In contrast, accumulated phytoene could not be converted. We conclude that the cloned gene codes for the carotenoid biosynthesis gene ζ-carotene desaturase ( zds ).  相似文献   

13.
A gene (slr1166) putatively encoding pteridine glycosyltransferase was disrupted with a kanamycin resistance cassette in Synechocystis sp. PCC 6803, which produces cyanopterin. The deduced polypeptide from slr1166 consisted of 354 amino acid residues sharing 45% sequence identity with UDP-glucose:tetrahydrobiopterin alpha-glucosyltransferase (BGluT) isolated previously from Synechococcus sp. PCC 7942. The knockout mutant was unable to produce cyanopterin but only 6-hydroxymethylpterin-beta-galactoside, verifying that slr1166 encodes a pteridine glycosyltransferase, which is responsible for transfer of the second sugar glucuronic acid in cyanopterin synthesis. The mutant was affected in its intracellular pteridine content and growth rate, which were 74% and 80%, respectively, of wild type, demonstrating that the second sugar residue is still required for quantitative maintenance of cyanopterin. This supports the previous suggestion that glycosylation may contribute to high cellular concentration of pteridine compounds.  相似文献   

14.
A novel cyanobacterial vector, pTT201, containing the bar gene encoding resistance to herbicides, bialaphos and phosphinothricin, was constructed. In Synechococcus sp. strain PCC7942-SPc, the bar gene was successfully expressed. Plasmid pTT201 increased a minimum inhibitory concentration for bialaphos 16-fold over Synechococcus sp. strain PCC7942-SPc without pTT201. The combination of the bialaphos as a selective agent and the transformation by bar gene serves as a photostable selection system for Synechococcus.  相似文献   

15.
The complete nucleotide sequence of rpoD1 gene from Synechococcus PCC7942 has been determined. The nucleotide data have indicated the presence of an open reading frame of 1155 base pairs encoding a polypeptide which shares the framework structure for principal sigma factors of eubacterial strains.  相似文献   

16.
A sulfur-regulated gene (cysA) that encodes the membrane-associated ATP-binding protein of the sulfate transport system of the cyanobacterium Synechococcus sp. strain PCC 7942 was recently isolated and sequenced. Adjacent to cysA and transcribed in the opposite direction is a gene encoding the sulfate-binding protein (sbpA). Two other genes, cysT and cysW, encode proteins that may form a channel for the transport of sulfate across the cytoplasmic membrane. A fourth gene, cysR, located between cysT, and cysW, encodes a polypeptide that has some homology to a family of prokaryotic regulatory proteins. Mutant strains in which cysA, cysT, or cysW was interrupted by a drug resistance marker were not viable when grown with sulfate as the sole sulfur source and exhibited essentially no sulfate uptake. In contrast, sbpA and cysR mutants grew on sulfate, although they did not exhibit the 20-fold increase in the Vmax (concentration of sulfate at half-maximal transport rate) for sulfate transport characteristic of wild-type cells grown under sulfur-limiting conditions. Three of the sulfur-regulated genes in Synechococcus sp. strain PCC 7942 are similar to genes encoded by the chloroplast genome of the primitive plant Marchantia polymorpha. These data suggest that a sulfate transport system similar to that of Synechococcus sp. strain PCC 7942 may exist in the chloroplast envelope of photosynthetic eukaryotes.  相似文献   

17.
Synechocystis sp. PCC 6803 lacks a gene for the any known types of lycopene cyclase. Recently, we reported that Sll0659 (unknown for its function) from Synechocystis sp. PCC6803 shows similarity in sequence to a lycopene cyclase gene-CruA from Chlorobium tepidum. To test, whether sll0659 encoded protein serves as lycopene cyclase, in this study, we investigated the carotenoids of the wild types and mutants. In the sll0659 deleted mutant, there is no blockage at the lycopene cyclization step. Our results demonstrate that sll0659 does not affect lycopene cycilzation. However, the ultrastructure of mutants suggests the involvement or necessity of sll0659 in the cell division.  相似文献   

18.
The secY gene product is an essential component of the Escherichia coli cytoplasmic membrane, which mediates the protein translocation across the membrane. We found a gene homologous to secY in the genome of the cyanobacterium Synechococcus PCC7942. The deduced amino acid sequence, 439 amino acids long, shows 43% homology with that of the E. coli secY. The hydrophobic profile suggests that the Synechococcus SecY protein is an integral membrane protein containing ten membrane-spanning segments, which are closely related to the E. coli counterpart. The SecY protein may participate in the protein translocation across the cytoplasmic or thylakoid membrane in Synechococcus PCC7942.  相似文献   

19.
A mutant of the cyanobacterium Synechococcus sp. strain PCC 7942 carrying a disrupted gene encoding glucose-6-phosphate dehydrogenase (zwf) produced no detectable glucose-6-phosphate dehydrogenase as assessed by enzyme assay and Western blot (immunoblot) analysis. This mutant exhibited significantly impaired dark viability.  相似文献   

20.
RNA polymerase was purified from the unicellular cyanobacterium, Synechococcus sp. strain PCC 7942, and found to be associated with a 52 kilodalton (kDa) polypeptide. The determined N-terminal sequence of the polypeptide was identical to the predicted amino-acid sequence of the rpoD1 gene product. Furthermore, the rpoD1 gene is suggested to be indispensable for viability by the inability to disrupt the gene. These results indicate that the rpoD1 gene product is the principal sigma factor of RNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号