首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu J  Yu HQ 《Bioresource technology》2007,98(2):253-259
The fungus Phanerochaete chrysosporium was immobilized in several polymer matrices: Ca-alginate, Ca-alginate-polyvinyl alcohol (PVA) and pectin, and was then used as a biosorbent for removing 2,4-dichlorophenol (2,4-DCP) in wastewater. Immobilization of P. chrysosporium onto pectin was less efficient than that onto other matrices because of its poor mechanical strength and low adsorption efficiency. Ca-alginate immobilized fungal beads with biocompatibility exhibited good mechanical strength and adsorption efficiency over 60%. Among the different biomass dosages in Ca-alginate immobilized fungal beads, 1.25% (w/v) was the optimum. The adsorption data of 2,4-DCP on the blank Ca-alginate beads, free, and immobilized fungal biomass could be described by the Langmuir and Freundlich isotherms very well. Desorption operation was efficiently completed by using distilled water as eluant, and the desorption efficiency reached 82.16% at an optimum solid/liquid ratio of 14.3. The consecutive adsorption/desorption cycles studies employing the Ca-alginate immobilized fungal beads demonstrated that the immobilized fungal biomass could be reused in five cycles without significant loss of adsorption efficiency and adsorbent weight.  相似文献   

2.
The potential use of the immobilized fresh water algae (in Ca-alginate) of Scenedesmus quadricauda to remove Cu(II), Zn(II) and Ni(II) ions from aqueous solutions was evaluated using Ca-alginate beads as a control system. Ca-alginate beads containing immobilized algae were incubated for the uniform growth at 22 degrees C for 5d ays. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae showed highest values at around pH 5.0. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae increased as the initial concentration of metal ions increased in the medium. The maximum adsorption capacities of the immobilized algal biosorbents for Cu(II), Zn(II) and Ni(II) were 75.6, 55.2 and 30.4 mg/g (or 1.155, 0.933 and 0.465 mmol/g) biosorbent, respectively. When the heavy metal ions were in competition, the amounts of adsorbed metal ions were found to be 0.84 mol/g for Cu(II), 0.59 mol/g for Ni(II) and 0.08 mol/g for Zn(II), the immobilised algal biomass was significantly selective for Cu(II) ions. The adsorption-equilibrium was also represented with Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. The adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae followed second-order kinetic.  相似文献   

3.
The Spirulina platensis biomass was characterized for its metal accumulation as a function of pH, external metal concentration, equilibrium isotherms, kinetics, effect of co-ions under free (living cells, lyophilized, and oven-dried) and immobilized (Ca-alginate and polyacrylamide gel) conditions. The maximum metal biosorption by S. platensis biomass was observed at pH 6.0 with free and immobilized biomass. The studies on equilibrium isotherm experiments showed highest maximum metal loading by living cells (181.0 +/- 13.1 mg Co(2+)/g, 272.1 +/- 29.4 mg Cu(2+)/g and 250.3 +/- 26.4 mg Zn(2+)/g) followed by lyophilized (79.7 +/- 9.6 mg Co(2+)/g, 250.0 +/- 22.4 mg Cu(2+)/g and 111.2 +/- 9.8 mg Zn(2+)/g) and oven-dried (25.9 +/- 1.9 mg Co(2+)/g, 160.0 +/- 14.2 mg Cu(2+)/g and 35.1 +/- 2.7 mg Zn(2+)/g) biomass of S. platensis on a dry weight basis. The polyacrylamide gel (PAG) immobilization of lyophilized biomass found to be superior over Ca-alginate (Ca-Alg) and did not interfere with the S. platensis biomass biosorption capacity, yielding 25% of metal loading after PAG entrapment. The time-dependent metal biosorption in both the free and immobilized form revealed existence of two phases involving an initial rapid phase (which lasted for 1-2 min) contributing 63-77% of total biosorption, followed by a slower phase that continued for 2 h. The metal elution studies conducted using various reagents showed more than 90% elution with mineral acids, calcium salts, and Na(2)EDTA with free (lyophilized or oven-dried) as well as immobilized biomass. The experiments conducted to examine the suitability of PAG-immobilized S. platensis biomass over multiple cycles of Co(2+), Cu(2+), and Zn(2+) sorption and elution showed that the same PAG cubes can be reused for at least seven cycles with high efficiency.  相似文献   

4.
Ability of Cr (VI) biosorption with immobilized Trichoderma viride biomass and cell free Ca-alginate beads was studied in the present study. Biosorption efficiency in the powdered fungal biomass entrapped in polymeric matric of calcium alginate compared with cell free calcium alginate beads. Effect of pH, initial metal ion concentration, time and biomass dose on the Cr (VI) removal by immobilized and cell free Ca-alginate beads were also determined. Biosorption of Cr (VI) was pH dependent and the maximum adsorption was observed at pH 2.0. The adsorption equilibrium was reached in 90 min. The maximum adsorption capacity of 16.075 mgg(-1) was observed at dose 0.2 mg in 100 ml of Cr (VI) solution. The high value of kinetics rate constant Kad (3.73 x 10(-2)) with immobilized fungal biomass and (3.75 x 10(-2)) with cell free Ca- alginate beads showed that the sorption of Cr (VI) ions on immobilized biomass and cell free Ca-alginate beads followed pseudo first order kinetics. The experimental results were fitted satisfactory to the Langmuir and Freundlich isotherm models. The hydroxyl (-OH) and amino (-NH) functional groups were responsible in biosorption of Cr (VI) with fungal biomass spp. Trichoderma viride analysed using Fourier Transform Infrared (FTIR) Spectrometer.  相似文献   

5.
The immobilized Aspergillus niger powder beads were obtained by entrapping nonviable A. niger powder into Ca-alginate gel. The effects of pH, contact time, initial uranium (VI) concentration and biomass dosage on the biosorption of uranium (VI) onto the beads from aqueous solutions were investigated in a batch system. Biosorption equilibrium data were agreeable with Langmuir isotherm model and the maximum biosorption capacity of the beads for uranium (VI) was estimated to be 649.4?mg/g at 30?°C. The biosorption kinetics followed the pseudo-second-order model and intraparticle diffusion equation. The variations in enthalpy (26.45?kJ/mol), entropy (0.167?kJ/mol?K) and Gibbs free energy were calculated from the experimental data. SEM and EDS analysis indicated that the beads have strong adsorption capability for uranium (VI). The adsorbed uranium (VI) on the beads could be released with HNO3 or HCl. The results showed that the immobilized A. niger powder beads had great potential for removing and recovering uranium (VI) from aqueous solutions.  相似文献   

6.
Papain, which is an industrially important enzyme, has been immobilized on fibrous polymer-modified composite beads, namely poly(methacrylic acid)-grafted chitosan/clay. Characterization studies have been done using FTIR and SEM analysis. Operating parameters such as pH and initial concentration of papain have been varied to obtain the finest papain immobilized polymer-modified composite beads. The immobilization capacity of composite beads has been determined as 34.47 ± 1.18 (n = 3) mg/g. The proteolytic activity of immobilized papain was operated using bovine serum albumin (BSA) and maximum velocity (V max) and Michaelis–Menten constant (Km) values of the free and immobilized enzymes were determined using Lineweaver–Burk and Eadie–Hofstee equations. Usability of papain immobilized polymer-modified composite beads as adsorbents for the elimination of mercury was investigated. The maximum removal capacity of PIPMC beads has been found to be 4.88 ± 0.21 mg Hg/g when the initial metal concentration and weight of polymer-modified composite beads were 50 mg/L and 0.04 g at pH 7, respectively. Mercury removal performance of the papain immobilized polymer-modified composite beads was investigated in conjunction with Cu (II), Zn (II) and Cd (II) ions. The mercury adsorption capacity of papain immobilized polymer-modified composite beads was a slight reduction from 1.15 to 0.89 mg/g in presence of multiple metal salts.  相似文献   

7.
Pumpkin (Cucurbita moschata) ascorbate oxidase was entrapped within 6% (w/v) Ca-alginate gel beads, and then the beads were treated with 1% (w/v) glutaraldehyde for 20 hr at 4°C. The immobilized ascorbate oxidase was much more stable than the free form. Under the optimum conditions, the immobilized enzyme remained fully active for 3 months and after 50 assays. A linear relationship was found between immobilized ascorbate oxidase activity and l-ascorbic acid concentration in the range of 2 ~ 20 μg/ml. The immobilized preparation could be employed for the simple and rapid determination of l-ascorbic acid in foods.  相似文献   

8.
Thermoalkalophilic esterase enzyme from Bal?ova (Agamemnon) geothermal site were aimed to be immobilized effectively via a simple and cost-effective protocol in silicate coated Calcium alginate (Ca-alginate) beads by entrapment. The optimal immobilization conditions of enzyme in Ca-alginate beads were investigated and obtained with 2% alginate using 0.5mg/ml enzyme and 0.7 M CaCl(2) solution. In order to prevent enzyme from leaking out of the gel beads, Ca-alginate beads were then coated with silicate. Enzyme loading efficiency and immobilization yield for silicate coated beads was determined as 98.1% and 71.27%, respectively and compared with non-coated ones which were 68.5% and 45.80%, respectively. Surface morphologies, structure and elemental analysis of both silicate coated and non-coated alginate beads were also compared using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM) equipped with Energy-dispersive X-ray spectroscopy (EDX). Moreover, silicate coated alginate beads enhanced reusability of esterase in continuous processes compared to non-coated beads. The hydrolytic properties of free and immobilized enzyme in terms of storage and thermal stability as well as the effects of the temperature and pH were determined. It was observed that operational, thermal and storage stabilities of the esterase were increased with immobilization.  相似文献   

9.
Inabilities to process particulate material and to allow the use of high flow rates are limitations of conventional chromatography. Membranes have been suggested as matrix for affinity separation due to advantages such as allowing high flow rates and low-pressure drops. This work evaluated the feasibility of using an iminodiacetic acid linked poly(ethylenevinyl alcohol) membrane in the immobilized metal ion affinity chromatography (IMAC) purification of a human proinsulin(His)(6) of an industrial insulin production process. The screening of metal ions showed Ni(2+) as metal with higher selectivity and capacity among the Cu(2+), Ni(2+), Zn(2+) and Co(2+). The membrane showed to be equivalent to conventional chelating beads in terms of selectivity and had a lower capacity (3.68 mg/g versus 12.26 mg/g). The dynamic adsorption capacity for human proinsulin(His)(6) was unaffected by the mode of operation (dead-end and cross-flow filtration).  相似文献   

10.
We have prepared a novel metal-chelate adsorbent utilizing N-methacryloyl-L-histidine methyl ester (MAH) as a metal-chelating ligand. MAH was synthesized by using methacryloyl chloride and l-histidine methyl ester dihydrochloride. Spherical beads with an average diameter of 75-125 microm were produced by suspension polymerization of 2-hydroxyethyl methacrylate (HEMA) and MAH carried out in an aqueous dispersion medium. Then, Cu(2+) ions were chelated directly on the chelating beads. Cu(2+)-chelated beads were used in the adsorption of cytochrome c (cyt c) from aqueous solutions. The maximum cyt c adsorption capacity of the Cu(2+)-chelated beads (658.2 micromol/g Cu(2+) loading) was found to be 31.7 mg/g at pH 10 in phosphate buffer. The nonspecific cyt c adsorption on the naked PHEMA beads was 0.2 mg/g. Cyt c adsorption increased with increasing Cu(2+) loading. Cyt c adsorption capacity was demonstrated for the buffer types with the effects in the order phosphate > HEPES > MOPS > MES > Tris-HCl. Cyt c molecules could be adsorbed and desorbed five times with these adsorbents without noticeable loss in their cyt c adsorption capacity.  相似文献   

11.
Summary Diacetyl production by (Citr*)Lactococcus lactis subsp.lactis 3022 was found to be an oxygen-dependent reaction. The diacetyl production by the cells immobilized in conventional Ca-alginate gel beads (Diameter: 3 mm) was lower than that of the cells immobilized in Ca-alginate gel fibers (Diameter: 0.2 mm), probably because oxygen transfer to the immobilized cells is better in gel fibers than in gel beads.  相似文献   

12.
Summary Acetobacter aceti cells were immobilized using entrapment in Ca-alginate gel and adsorption on preformed cellulose beads. The cell number within the supports showed no significant alterations on changing temperature or pH, whereas the acetic acid production was slightly increased by immobilization.  相似文献   

13.
Saccharomyces cerevisiae and Acetobacter aceti cells were immobilized by entrapment in Ca-alginate or by adsorption on to preformed cellulose beads and were treated with 0-20% (v/v) ethanol and 0-10% (v/v) acetic acid. At 20% (v/v) ethanol, lethal for free yeast cells, 62-72% of the immobilized cells survived. In 10% (v/v) acetic acid, free and adsorbed Acetobacter aceti cells ceased to grow but 69% of entrapped cells survived. Cells released from the carrier showed an intermediate survival (20-60%).  相似文献   

14.
ABSTRACT: BACKGROUND: The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. RESULTS: It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4[prime]-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 mumol/min/g dw of cells for immobilized catalyst vs 40.54 mumol/min/g for free cells in the asymmetric reduction of 4[prime]-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors eta < 1 and Thiele modulus 0.3<[empty set] <1. CONCLUSIONS: Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to free cells could give highly practicable immobilized biocatalyst.  相似文献   

15.
Oscillatoria sp. H1 (Cyanobacteria, microalgae) isolated from Mogan Lake was used for the removal of cadmium ions from aqueous solutions as its dry biomass, alive and heat-inactivated immobilized form on Ca-alginate. Particularly, the effect of physicochemical parameters like pH, initial concentration and contact time were investigated. The sorption of Cd(II) ions on the sorbent used was examined for the cadmium concentrations within the range of 25-250 mg/L. The biosorption of Cd(II) increased as the initial concentration of Cd(II) ions increased in the medium up to 100 mg/L. Maximum biosorption capacities for plain alginate beads, dry biomass, immobilized live Oscillatoria sp. H1 and immobilized heat-inactivated Oscillatoria sp. H1 were 21.2, 30.1, 32.2 and 27.5 mg/g, respectively. Biosorption equilibrium was established in about 1 h for the biosorption processes. The biosorption was well described by Langmuir and Freundlich adsorption isotherms. Maximum adsorption was observed at pH 6.0. The alginate-algae beads could be regenerated using 50 mL of 0.1 mol/L HCl solution with about 85% recovery.  相似文献   

16.
The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration (62 g/L) of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity (4.4 g/L h) was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
In this study we used the yeast Candida guilliermondii FTI 20037 immobilized by entrapment in Ca-alginate beads (2.5-3 mm diameter) for xylitol production from concentrated sugarcane bagasse hemicellulosic hydrolysate in a repeated batch system. The fermentation runs were carried out in 125- and 250-ml Erlenmeyer flasks placed in an orbital shaker at 30 degrees C and 200 rpm during 72 h, keeping constant the proportion between work volume and flask total volume. According to the results, cell viability was substantially high (98%) in all fermentative cycles. The values of parameters xylitol yield and volumetric productivity increased significantly with the reutilization of the immobilized biocatalysts. The highest values of xylitol final concentration (11.05 g/l), yield factor (0.47 g/g) and volumetric productivity (0.22 g/lh) were obtained in 250-ml Erlenmeyer flasks containing 80 ml of medium plus 20 ml of immobilized biocatalysts. The support used in this study (Ca-alginate) presented stability in the experimental conditions used. The results show that the use of immobilized cells is a promising approach for increasing the xylitol production rates.  相似文献   

18.
The rising trend of bioflavour synthesis by microorganisms is hindered by the high manufacturing costs, partially attributed to the cost of the starting material. To overcome this limitation, in the present study, dilute-acid hydrolysate of orange peel was employed as a low-cost, rich in fermentable sugars substrate for the production of flavour-active compounds by Saccharomyces cerevisiae. With this purpose, the use of immobilized cell technology to protect cells against the various inhibitory compounds present in the hydrolysate was evaluated with regard to yeast viability, carbon and nitrogen consumption and cell ability to produce flavour active compounds. For cell immobilization the encapsulation in Ca alginate beads was used. The results were compared with those obtained using free-cell system. Based on the data obtained immobilized cells showed better growth performance and increased ability for de novo synthesis of volatile esters of "fruity" aroma (phenylethyl acetate, ethyl hexanoate, octanoate, decanoate and dodecanoate) than those of free cells. The potential for in situ production of new formulations containing flavour-active compounds derive from yeast cells and also from essential oil of orange peel (limonene, α-terpineol) was demonstrated by the fact that bioflavour mixture was found to accumulate within the beads. Furthermore, the ability of the immobilized yeast to perform efficiently repeated batch fermentations of orange peel hydrolysate for bioflavour production was successfully maintained after six consecutive cycles of a total period of 240 h.  相似文献   

19.
Summary Zymomonas mobilis cells were immobilized into small 1 mm diameter beads of Ca-alginate in order to minimize mass transfer limitations and maximize immobilized cell activity. A combination of small bead size with a high cell concentration of 58 g dry wt. cell per lit. bead volume resulted in high ethanol productivities using a newly designed packed bed bioreactor system. Steady-state dilution rates ranging from 0.4 h-1 to 3.9 h-1 were run resulting in a maximum productivity of 102 g ethanol/l/h for an inlet substrate concentration of 100 g glu/l and 87% conversion. The bioreactor was run continuously at a fixed dilution rate for 384 h and short intermittent treatment of the beads with CaCl2 temporarily increased ethanol productivity to a maximum of 116 g ethanol/l/h.  相似文献   

20.

Immobilization of Lactobacillus rhamnosus ATCC7469 in poly(vinyl alcohol)/calcium alginate (PVA/Ca-alginate) matrix using “freezing–thawing” technique for application in lactic acid (LA) fermentation was studied in this paper. PVA/Ca-alginate beads were made from sterile and non-sterile PVA and sodium alginate solutions. According to mechanical properties, the PVA/Ca-alginate beads expressed a strong elastic character. Obtained PVA/Ca-alginate beads were further applied in batch and repeated batch LA fermentations. Regarding cell viability, L. rhamnosus cells survived well rather sharp immobilization procedure and significant cell proliferation was observed in further fermentation studies achieving high cell viability (up to 10.7 log CFU g−1) in sterile beads. In batch LA fermentation, the immobilized biocatalyst was superior to free cell fermentation system (by 37.1%), while the highest LA yield and volumetric productivity of 97.6% and 0.8 g L−1 h−1, respectively, were attained in repeated batch fermentation. During seven consecutive batch fermentations, the biocatalyst showed high mechanical and operational stability reaching an overall productivity of 0.78 g L−1 h−1. This study suggested that the “freezing–thawing” technique can be successfully used for immobilization of L. rhamnosus in PVA/Ca-alginate matrix without loss of either viability or LA fermentation capability.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号