首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Chemerin--a new adipokine that modulates adipogenesis via its own receptor   总被引:5,自引:0,他引:5  
Chemerin, an 18 kDa protein secreted by adipose tissue, was reported to modulate immune system function through its binding to the chemerin receptor (chemerinR). We herein demonstrate that chemerin also influences adipose cell function. Our data showed that chemerin and chemerinR mRNA expressions were highly expressed in adipose tissues, and that their expression levels were up-regulated in mice fed a high-fat diet. Both chemerin and chemerinR mRNA expression dramatically increased during the differentiation of 3T3-L1 cells and human preadipocytes into adipocytes. Furthermore, recombinant chemerin induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2) and lipolysis in differentiated 3T3-L1 adipocytes. Thus, the adipokine chemerin likely regulates adipocyte function by autocrine/paracrine mechanisms.  相似文献   

2.
Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA.  相似文献   

3.
Chemerin is a leukocyte chemoattractant and adipokine with important immune and metabolic roles. Chemerin, secreted in an inactive form prochemerin, undergoes C-terminal proteolytic cleavage to generate active chemerin, a ligand for the chemokine-like receptor-1 (CMKLR1). We previously identified that adipocytes secrete and activate chemerin. Following treatment with the obesity-associated inflammatory mediator TNFα, unknown adipocyte mechanisms are altered resulting in an increased ratio of active to total chemerin production. Based on these findings we hypothesized adipocytes produce proteases capable of modifying chemerin and its ability to activate CMKRL1. 3T3-L1 adipocytes expressed mRNA of immunocyte and fibrinolytic proteases known to activate chemerin in vitro. Following treatment with a general protease inhibitor cocktail (PIC), the TNFα-stimulated increase in apparent active chemerin concentration in adipocyte media was amplified 10-fold, as measured by CMKLR1 activation. When the components of the PIC were investigated individually, aprotinin, a serine protease inhibitor, blocked 90% of the TNFα-associated increase in active chemerin. The serine proteases, elastase and tryptase were elevated in adipocyte media following treatment with TNFα and their targeted neutralization recapitulated the aprotinin-mediated effects. In contrast, bestatin, an aminopeptidase inhibitor, further elevated the TNFα-associated increase in active chemerin. Our results support that adipocytes regulate chemerin by serine protease-mediated activation pathways and aminopeptidase deactivation pathways. Following TNFα treatment, increased elastase and tryptase modify the balance between activation and deactivation, elevating active chemerin concentration in adipocyte media and subsequent CMKLR1 activation.  相似文献   

4.
Obesity is an alarming primary health problem and is an independent risk factor for type II diabetes, cardiovascular diseases, and hypertension. Although the pathologic mechanisms linking obesity with these co-morbidities are most likely multifactorial, increasing evidence indicates that altered secretion of adipose-derived signaling molecules (adipokines; e.g. adiponectin, leptin, and tumor necrosis factor alpha) and local inflammatory responses are contributing factors. Chemerin (RARRES2 or TIG2) is a recently discovered chemoattractant protein that serves as a ligand for the G protein-coupled receptor CMKLR1 (ChemR23 or DEZ) and has a role in adaptive and innate immunity. Here we show an unexpected, high level expression of chemerin and its cognate receptor CMKLR1 in mouse and human adipocytes. Cultured 3T3-L1 adipocytes secrete chemerin protein, which triggers CMKLR1 signaling in adipocytes and other cell types and stimulates chemotaxis of CMKLR1-expressing cells. Adenoviral small hairpin RNA targeted knockdown of chemerin or CMKLR1 expression impairs differentiation of 3T3-L1 cells into adipocytes, reduces the expression of adipocyte genes involved in glucose and lipid homeostasis, and alters metabolic functions in mature adipocytes. We conclude that chemerin is a novel adipose-derived signaling molecule that regulates adipogenesis and adipocyte metabolism.  相似文献   

5.
Oxidative stress and low-grade inflammation have been implicated in obesity and insulin resistance. As a selenium transporter, ubiquitously expressed selenoprotein P (SeP) is known to play a role in the regulation of antioxidant enzyme activity. However, SeP expression and regulation in adipose tissue in obesity and its role in inflammation and adipocyte biology remain unexplored. In this study, we examined Sepp1 gene expression and regulation in adipose tissue of obese rodents and characterized the role of Sepp1 in adipose inflammation and adipogenesis in 3T3-L1 adipocytes. We found that Sepp1 gene expression was significantly reduced in adipose tissue of ob/ob and high-fat diet-induced obese mice as well as in primary adipose cells isolated from Zucker obese rats. Rosiglitazone administration increased SeP protein expression in adipose tissue of obese mice. Treatment of either TNFα or H(2)O(2) significantly reduced Sepp1 gene expression in a time- and dose-dependent manner in 3T3-L1 adipocytes. Interestingly, Sepp1 gene silencing resulted in the reduction in glutathione peroxidase activity and the upregulation of inflammatory cytokines MCP-1 and IL-6 in preadipocytes, leading to the inhibition of adipogenesis and adipokine and lipogenic gene expression. Most strikingly, coculturing Sepp1 KD cells resulted in a marked inhibition of normal 3T3-L1 adipocyte differentiation. We conclude that SeP has an important role in adipocyte differentiation via modulating oxidative stress and inflammatory response.  相似文献   

6.
7.
The estrogen sulfotransferase (EST) is a phase II drug-metabolizing enzyme known to catalyze the sulfoconjugation of estrogens. EST is highly expressed in the white adipose tissue of male mice, but the role of EST in the development and function of adipocytes remains largely unknown. In this report, we showed that EST played an important role in adipocyte differentiation. EST was highly expressed in 3T3-L1 preadipocytes and primary mouse preadipocytes. The expression of EST was dramatically reduced in differentiated 3T3-L1 cells and mature primary adipocytes. Overexpression of EST in 3T3-L1 cells prevented adipocyte differentiation. In contrast, preadipocytes isolated from EST knockout (EST-/-) mice exhibited enhanced differentiation. The inhibitory effect of EST on adipogenesis likely resulted from the sustained activation of ERK1/2 MAPK and inhibition of insulin signaling, leading to a failure of switch from clonal expansion to differentiation. The enzymatic activity of EST was required for the inhibitory effect of EST on adipogenesis, because an enzyme-dead EST mutant failed to inhibit adipocyte differentiation. In vivo, overexpression of EST in the adipose tissue of female transgenic mice resulted in smaller adipocyte size. Taken together, our results suggest that EST functions as a negative regulator of adipogenesis.  相似文献   

8.

The adipokine Chemerin is reported to regulate adipogenesis and glucose homeostasis in vivo and in 3T3-L1 cells. Our team is focused on the role of Chemerin in metabolism and intramuscular adipocyte differentiation because intramuscular fat is the basic material for the formation of marbling in livestock and poultry meat. In this study, bovine intramuscular mature adipocytes were cultured in medium with Chemerin, and the process of lipolysis of mature adipocytes and the adipogenesis of de-differentiated preadipocytes were investigated. The results showed that Chemerin induced significant lipolytic metabolism in intramuscular mature adipocytes, indicated by increased levels of glycerol, FFA, and up-regulated expression of the lipolysis critical factors HSL, LPL, and leptin. Meanwhile, the expressions of adipogenic key factors PPARγ, C/EBPα, and A-FABP were decreased by Chemerin during lipolysis or dedifferentiation in mature adipocytes. The de-differentiated preadipocytes could re-differentiate into mature adipocytes. Intriguingly, the formation of cells’ lipid droplets was promoted by Chemerin during preadipocyte differentiation. In addition, mRNA and protein expressions of PPARγ, C/EBPα, and A-FABP were up-regulated by Chemerin during preadipocytes differentiation. These results suggest that Chemerin promotes lipolysis in mature adipocytes and induces adipogenesis during preadipocyte re-differentiation, further indicating a dual role for Chemerin in the deposition of intramuscular fat in ruminant animals.

  相似文献   

9.
The adipokine Chemerin has been reported to regulate differentiation and metabolism of adipocytes, but the mechanism underlying lipolysis is still largely unknown. The purpose of this study was to explore whether ERK1/2 pathway is involved in regulating Chemerin during bovine intramuscular mature adipocyte lipolysis. Intramuscular mature adipocytes of dairy bull calves were cultured in vitro and were treated with Chemerin or U0126, which is an inhibitor of ERK1/2 pathway. The results showed that TG content in cells was significantly decreased, glycerol and free fatty acid were significantly increased in cell culture media, and the expression of phosphorylated ERK1/2 in cells was increased in Chemerin-treated group, suggested that ERK1/2 pathway was involved in regulation of lipolysis by Chemerin. In addition, the expression of lipolytic-related critical factors ATGL, HSL, LPL, PPARα, UCP3, and CPT1 were upregulated, but the expression of adipogenic key factors, including PPARγ and C/EBPα were downregulated by Chemerin. Interestingly, all the effects of Chemerin on genes expression in intramuscular mature adipocytes or fat tissue were inhibited by U0126, showed that the function of Chemerin to promote adipose decomposition will be significantly weakened if the ERK1/2 pathway is suppressed, and confirmed that ERK1/2 pathway is involved in mediate Chemerin-enhanced lipolysis. In conclusion, the study demonstrated that Chemerin induce intramuscular mature adipocytes lipolysis through activation of the ERK1/2 pathway. Our research at least provide partial mechanisms of Chemerin on lipolysis and deposition of intramuscular fat tissue of dairy bull calves.  相似文献   

10.
11.
The canonical Wnt/beta-catenin signaling pathway plays diverse roles in embryonic development and disease. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and in mice. Here, we report that the beta-catenin antagonist Chibby (Cby) is required for adipocyte differentiation. Cby is expressed in adipose tissue in mice, and Cby protein levels increase during adipogenic differentiation of 3T3-L1 cells. Ectopic expression of Cby induces spontaneous differentiation of these cells into mature adipocytes to an extent similar to that of dominant-negative Tcf-4. In contrast, depletion of Cby by RNA interference potently blocks adipogenesis of 3T3-L1 and mouse embryonic stem cells. In support of this, embryonic fibroblasts obtained from Cby-deficient embryos display attenuated differentiation to the adipogenic lineage. Mechanistically, Cby promotes adipocyte differentiation, in part by inhibiting beta-catenin, since gain or loss of function of Cby influences beta-catenin signaling in 3T3-L1 cells. Our results therefore establish Cby as a novel proadipogenic factor required for adipocyte differentiation.  相似文献   

12.
Vascular endothelial growth factor (VEGF) is an important angiogenic factor and is expressed in wide variety of cell types. In this study, we investigated the mechanism of VEGF production in adipocytes in three sets of experiments. First, to clarify the relation between plasma VEGF concentrations and their expressions in adipose tissues, we investigated the genetically obese db/db and KK-Ay mice. Plasma VEGF concentrations in obese mice were significantly higher than in control and were related to adiposity. VEGF expressions in visceral fat were enhanced during growth and were related to fat deposition. Next, to demonstrate the relation between VEGF production and lipid accumulation in adipocytes, we analyzed VEGF mRNA expression and its protein secretion in 3T3-L1 cells. VEGF production was enhanced during lipid accumulation in 3T3-L1 cells after adipocyte conversion. Next, to clarify the role of anatomic localization on VEGF expression in adipocytes, we implanted 3T3-L1 cells into visceral or subcutaneous fat in athymic mice. 3T3-L1 cells implanted into the mesenteric area expressed more VEGF mRNA than that into the subcutaneous area. Plasma VEGF concentration in the mice implanted in visceral fat was higher than in controls. These results suggest that both the anatomic localization and the lipid accumulation are important for the VEGF production in adipocytes.  相似文献   

13.
Leucine-rich glioma inactivated 3 (LGI3) is a secreted protein and a member of LGI/epitempin family. We previously showed that LGI3 was highly expressed in brain and played regulatory roles in neuronal exocytosis and differentiation. Besides the nervous system, LGI3 was shown to be expressed in diverse tissues. In this study, we found that LGI3 and its receptor candidate ADAM23 were expressed in adipose tissues and 3T3-L1 cells. 3T3-L1 preadipocytes secreted a 60-kDa protein, a major secreted form of LGI3, which declined with adipocyte differentiation. LGI3 was also expressed in adipose tissue macrophages in the ob/ob mice and in macrophage cell line. The 60-kDa LGI3 protein was selectively increased in the ob/ob adipose tissues comparing with the lean mice. Pull-down experiments, coimmunoprecipitation and immunocytochemistry indicated that LGI3 associated with ADAM23 in adipose tissues and 3T3-L1 cells. Knockdown of LGI3 or ADAM23 by siRNA increased adipogenesis in 3T3-L1 cells. Treatment with LGI3 protein did not affect preadipocyte proliferation but attenuated adipogenesis and this effect was reversed by siRNA-mediated knockdown of ADAM23. Taken together, we propose that LGI3 may be a candidate adipokine that is perturbed in obesity and suppresses adipogenesis through its receptor, ADAM23.  相似文献   

14.
Infiltration of immune cells into adipose tissue plays a central role in the pathophysiology of obesity-associated low-grade inflammation. The aim of this study was to analyze the role of adipocyte NF-κB signaling in the regulation of the chemokine/adipokine interferon-γ-induced protein 10 kDa (IP-10) and adipocyte-mediated T cell migration. Therefore, the regulation of IP-10 was investigated in adipose tissue of male C57BL/6J mice, primary human and 3T3-L1 preadipocytes/adipocytes. To specifically block the NF-κB pathway, 3T3-L1 cells stably overexpressing a transdominant mutant of IκBα were generated, and the chemical NF-κB inhibitor Bay117082 was used. Adipocyte-mediated T cell migration was assessed by a migration assay. It could be shown that IP-10 expression was higher in mature adipocytes compared with preadipocytes. Induced IP-10 expression and secretion were completely blocked by an NF-κB inhibitor in 3T3-L1 and primary human adipocytes. Stable overexpression of a transdominant mutant of IκBα in 3T3-L1 adipocytes led to an inhibition of basal and stimulated IP-10 expression and secretion. T cell migration was induced by 3T3-L1 adipocyte-conditioned medium, and both basal and induced T cell migration was strongly inhibited by stable overexpression of a transdominant IκBα mutant. In addition, with the use of an anti-IP-10 antibody, a significant decrease of adipocyte-induced T cell migration was shown. In conclusion, in this study, we could demonstrate that the NF-κB pathway is essential for the regulation of IP-10 in 3T3-L1 and primary human adipocytes. Adipocytes rather than preadipocytes contribute to NF-κB-dependent IP-10 expression and secretion. Furthermore, NF-κB-dependent factors and especially IP-10 represent novel signals from adipocytes to induce T cell migration.  相似文献   

15.
We previously identified a novel gene encoding Favine/CCDC3 (NCBI protein entry NP_083080), a possible secretory factor, the mRNA of which is highly expressed in adipose tissue and the aorta. The Favine mRNA levels are increased in the course of differentiation of rat primary adipocytes and are more elevated in the adipose tissue of genetically obese and diet-induced obese mice than in lean mice. However, its biological function has not yet been elucidated until now. Here, we tested the hypothesis that Favine is involved in lipid metabolism in adipocytes. We found that overexpression of Favine promoted 3T3-L1 adipocyte differentiation. To further investigate the function of Favine in vivo, we generated Favine knock-out (KO) mice. Favine KO mice exhibited a lean phenotype as they aged. The weights of white adipose tissue and liver were less, and adipocyte size was smaller in Favine KO mice compared with wild-type littermates (WT). Expression levels of lipogenic genes, such as fatty-acid synthase (FAS), acetyl-CoA carboxylase α (ACC1), and diacylglycerol O-acyltransferase-2 (Dgat2), were decreased in adipose tissue of Favine KO mice. In 1-year-old mice, Favine deficiency decreased the number of inflammatory cells in white adipose tissue and diminished hepatic steatosis. In vitro, deficiency of Favine attenuated differentiation of primary adipocytes. Taken together, these data demonstrate that Favine has adipogenic and lipogenic effects on adipocytes.  相似文献   

16.
17.
Fat-specific protein (FSP)27/Cidec is most highly expressed in white and brown adipose tissues and increases in abundance by over 50-fold during adipogenesis. However, its function in adipocytes has remained elusive since its discovery over 15 years ago. Here we demonstrate that FSP27/Cidec localizes to lipid droplets in cultured adipocytes and functions to promote lipid accumulation. Ectopically expressed FSP27-GFP surrounds lipid droplets in 3T3-L1 adipocytes and colocalizes with the known lipid droplet protein perilipin. Immunostaining of endogenous FSP27 in 3T3-L1 adipocytes also confirmed its presence on lipid droplets. FSP27-GFP expression also markedly increases lipid droplet size and enhances accumulation of total neutral lipids in 3T3-L1 preadipocytes as well as other cell types such as COS cells. Conversely, RNA interference-based FSP27/Cidec depletion in mature adipocytes significantly stimulates lipolysis and reduces the size of lipid droplets. These data reveal FSP27/Cidec as a novel adipocyte lipid droplet protein that negatively regulates lipolysis and promotes triglyceride accumulation.  相似文献   

18.
Chemerin is an adipocyte-secreted protein that regulates adipogenesis and the metabolic function of mature adipocytes via activation of chemokine-like receptor 1 (CMKLR1). Herein we report the interaction of peroxisome proliferator-activated receptor γ (PPARγ) and chemerin in the context of adipogenesis. Knockdown of chemerin or CMKLR1 expression or antibody neutralization of secreted chemerin protein arrested adipogenic clonal expansion of bone marrow mesenchymal stem cells (BMSCs) by inducing a loss of G(2)/M cyclins (cyclin A2/B2) but not the G(1)/S cyclin D2. Forced expression of PPARγ in BMSCs did not completely rescue this loss of clonal expansion and adipogenesis following chemerin or CMKLR1 knockdown. However, forced expression and/or activation of PPARγ in BMSCs as well as non-adipogenic cell types such as NIH-3T3 embryonic fibroblasts and MCA38 colon carcinoma cells significantly induced chemerin expression and secretion. Sequence analysis revealed a putative PPARγ response element (PPRE) sequence within the chemerin promoter. This PPRE was able to confer PPARγ responsiveness on a heterologous promoter, and mutation of this sequence abolished activation of the chemerin promoter by PPARγ. Chromatin immunoprecipitation confirmed the direct association of PPARγ with this PPRE. Treatment of mice with rosiglitazone elevated chemerin mRNA levels in adipose tissue and bone marrow coincident with an increase in circulating chemerin levels. Together, these findings support a fundamental role for chemerin/CMKLR1 signaling in clonal expansion during adipocyte differentiation as well as a role for PPARγ in regulating chemerin expression.  相似文献   

19.
20.
The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes   总被引:16,自引:0,他引:16  
Ghrelin, a stomach-derived hormone, induces adiposity when administered to rodents. Because ghrelin receptor is abundantly expressed in adipose tissue, we investigated the role of ghrelin in adipocyte biology. We observed ghrelin receptor expression in 3T3-L1 preadipocytes and adipocytes. Treatment of preadipocytes with ghrelin induced cellular proliferation and differentiation to mature adipocytes, as well as basal and insulin-stimulated glucose transport, but it inhibited adipocyte apoptosis induced by serum deprivation. Exposure of 3T3-L1 cells to ghrelin caused a rapid activation of MAPKs, especially ERK1/2. Chemical inhibition of MAPK blocked the mitogenic and antiapoptotic effects of ghrelin. Ghrelin also stimulated the insulin receptor substrate-associated phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 preadipocytes and adipocytes, whereas inhibition of this pathway blocked the effects of ghrelin on cell proliferation, antiapoptosis and glucose uptake. These findings suggest that the direct effects of ghrelin on proliferation, differentiation, and apoptosis in adipocytes may play a role in regulating fat cell number. These effects may be mediated via activation of the MAPK and phosphatidylinositol 3-kinase/Akt pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号