首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Bégin M  Schoen DJ 《Genetics》2006,174(4):2129-2136
Little is known about the role of transposable element (TE) insertion in the production of mutations with mild effects on fitness, the class of mutations thought to be central to the evolution of many basic features of natural populations. We propagated mutation-accumulation (MA) lines of two RNAi-deficient strains of Caenorhabditis elegans that exhibit germline transposition. We show here that the impact of TE activity was to raise the level of mildly deleterious mutation by 2- to 8.5-fold, as estimated from fecundity, longevity, and body length measurements, compared to that observed in a parallel MA experiment with a control strain characterized by a lack of germline transposition. Despite this increase, the rate of mildly deleterious mutation was between one and two orders of magnitude lower than the rate of TE accumulation, which was approximately two new insertions per genome per generation. This study suggests that high rates of TE activity do not necessarily translate into high rates of detectable nonlethal mutation.  相似文献   

2.
Ajie BC  Estes S  Lynch M  Phillips PC 《Genetics》2005,170(2):655-660
Spontaneous mutations play a fundamental role in the maintenance of genetic variation in natural populations, the nature of inbreeding depression, the evolution of sexual reproduction, and the conservation of endangered species. Using long-term mutation-accumulation lines of the nematode Caenorhabditis elegans, we estimate the rate and magnitude of mutational effects for a suite of behaviors characterizing individual chemosensory responses to a repellant stimulus. In accordance with evidence that the vast majority of mutations are deleterious, we find that behavioral responses degrade over time as a result of spontaneous mutation accumulation. The rate of mutation for behavioral traits is roughly of the same order or slightly smaller than those previously estimated for reproductive traits and the average size of the mutational effects is also comparable. These results have important implications for the maintenance of genetic variation for behavior in natural populations as well as for expectations for behavioral change within endangered species and captive populations.  相似文献   

3.
Evolutionary reconstruction of the natural history of an organism ultimately requires knowledge about the development, population genetics, ecology, and phylogeny of the species. Such investigations would benefit from studies of mutational processes because mutations are the source of natural variation. The nematode Pristionchus pacificus has been developed as a model organism in evolutionary biology by comparing its development with Caenorhabditis elegans. Pristionchus pacificus and related species are associated with scarab beetles, and their ecology and phylogeny are well known. More than 200 P. pacificus isolates from all over the world are available for this cosmopolitan species. We generated mutation accumulation (MA) lines in P. pacificus to study spontaneous mutation rates in the mitochondrial genome and compared mutation rate estimates with natural variation between nine representative isolates of the species. The P. pacificus mitochondrial genome is 15,955 bp in length and is typical for nematodes. Pristionchus pacificus has all known mitochondrial genes and contains an unusual suppressor transfer RNA (tRNA) for the codon UAA. This has most likely influenced the spectrum of observable mutations because 6 of 12 mutations found in the 82 MA lines analyzed are nonsense mutations that can be suppressed by the suppressor tRNA. The overall mutation rate in P. pacificus is 7.6 × 10?? per site per generation and is less than one order of magnitude different from estimates in C. elegans and Drosophila. Using this mutation rate estimate in a comparison of the mitochondrial genome of nine P. pacificus isolates, we calculate the minimum time to the most recent common ancestor at 10?-10? generations. The combination of mutation rate analysis with intraspecific divergence provides a powerful tool for the reconstruction of the natural history of P. pacificus, and we discuss the ecological implication of these findings.  相似文献   

4.
Estes S  Phillips PC  Denver DR  Thomas WK  Lynch M 《Genetics》2004,166(3):1269-1279
The consequences of mutation for population-genetic and evolutionary processes depend on the rate and, especially, the frequency distribution of mutational effects on fitness. We sought to approximate the form of the distribution of mutational effects by conducting divergence experiments in which lines of a DNA repair-deficient strain of Caenorhabditis elegans, msh-2, were maintained at a range of population sizes. Assays of these lines conducted in parallel with the ancestral control suggest that the mutational variance is dominated by contributions from highly detrimental mutations. This was evidenced by the ability of all but the smallest population-size treatments to maintain relatively high levels of mean fitness even under the 100-fold increase in mutational pressure caused by knocking out the msh-2 gene. However, we show that the mean fitness decline experienced by larger populations is actually greater than expected on the basis of our estimates of mutational parameters, which could be consistent with the existence of a common class of mutations with small individual effects. Further, comparison of the total mutation rate estimated from direct sequencing of DNA to that detected from phenotypic analyses implies the existence of a large class of evolutionarily relevant mutations with no measurable effect on laboratory fitness.  相似文献   

5.
In a genome-wide analysis of the active transposons in Caenorhabditis elegans we determined the localization and sequence of all copies of each of the six active transposon families. Most copies of the most active transposons, Tc1 and Tc3, are intact but individually have a unique sequence, because of unique patterns of single-nucleotide polymorphisms. The sequence of each of the 32 Tc1 elements is invariant in the C. elegans strain N2, which has no germline transposition. However, at the same 32 Tc1 loci in strains with germline transposition, Tc1 elements can acquire the sequence of Tc1 elements elsewhere in the N2 genome or a chimeric sequence derived from two dispersed Tc1 elements. We hypothesize that during double-strand-break repair after Tc1 excision, the template for repair can switch from the Tc1 element on the sister chromatid or homologous chromosome to a Tc1 copy elsewhere in the genome. Thus, the population of active transposable elements in C. elegans is highly dynamic because of a continuous exchange of sequence information between individual copies, potentially allowing a higher evolution rate than that found in endogenous genes.  相似文献   

6.
The effective use of microsatellite loci as tools for microevolutionary analysis requires knowledge of the factors influencing the rate and pattern of mutation, much of which is derived from indirect inference from population samples. Interspecific variation in microsatellite stability also provides a glimpse into aspects of phylogenetic constancy of mutational processes. Using long-term series of mutation-accumulation lines, we have obtained direct estimates of the spectrum of microsatellite mutations in two model systems: the nematode Caenorhabditis elegans and the microcrustacean Daphnia pulex. Although the scaling of the mutation rate with the number of tandem repeats is highly consistent across distantly related species, including yeast and human, the per-cell-division mutation rate appears to be elevated in multicellular species. Contrary to the expectations under the stepwise mutation model, most microsatellite mutations in C. elegans and D. pulex involve changes of multiple repeat units, with expansions being much more common than contractions.  相似文献   

7.
Transposon jumps are a major cause of genome instability. In the C. elegans strain Bristol N2, transposons are active in somatic cells, but they are silenced in the germline, presumably to protect the germline from mutations. Interestingly, the transposon-silencing mechanism shares factors with the RNAi machinery. To better understand the mechanism of transposon silencing, we performed a genome-wide RNAi screen for genes that, when silenced, cause transposition of Tc1 in the C. elegans germline. We identified 27 such genes, among which are mut-16, a mutator that was previously found but not identified at the molecular level, ppw-2, a member of the argonaute family, and several factors that indicate a role for chromatin structure in the regulation of transposition. Some of the newly identified genes are also required for cosuppression and therefore represent the shared components of the two pathways. Since most of the newly identified genes have clear homologs in other species, and since transposons are found from protozoa to human, it seems likely that they also protect other genomes against transposon activity in the germline.  相似文献   

8.
Despite a nearly worldwide distribution in nature, Caenorhabditis elegans exhibits low levels of genetic polymorphism, possibly as an indirect consequence of low levels of outcrossing. In the laboratory, Caenorhabditis elegans males are produced at low rates and are steadily eliminated from cultures, so that reproduction happens largely through self-fertilization in hermaphrodites. C. elegans is increasingly the focus of evolutionary research; however, natural outcrossing rates are difficult to measure because mating tests with laboratory strains are usually required to identify C. elegans. We sampled natural populations of C. elegans with an RNA interference (RNAi) assay. Heterozygosities and polymorphism patterns revealed surprisingly high levels of population structure and outcrossing (approximately 22% of individuals are estimated to be the result of outcrossing and not self-fertilization). The finding of strong local population structure, together with low levels of diversity on local and global scales, suggests a metapopulation model of frequent extinction and recolonization of local populations. The occurrence of substantial outcrossing suggests that the extinction of local populations is probably not driven by the accumulation of harmful mutations.  相似文献   

9.
Insertion sequences (ISs) are simple mobile genetic elements capable of relocating within a genome. Through this transposition activity, they are known to create mutations which are mostly deleterious to the cell, although occasionally they are beneficial. Two closely related isolates of thermophilic Synechococcus species from hot spring microbial mats are known to harbor a large number of diverse ISs. To explore the mechanism of IS acquisition within natural populations and survival in the face of high IS abundance, we examined IS content and location in natural populations of Synechococcus by comparing metagenomic data to the genomes of fully sequenced cultured isolates. The observed IS distribution in the metagenome was equivalent to the distribution in the isolates, indicating that the cultured isolates are appropriate models for the environmental population. High sequence conservation between IS families shared between the two isolates suggests that ISs are able to move between individuals within populations and between species via lateral gene transfer, consistent with models for IS family accumulation. Most IS families show evidence of recent activity, and interruption of critical genes in some individuals was observed, demonstrating that transposition is an ongoing mutational force in the populations.  相似文献   

10.
It is often assumed that the efficiency of selection for mutational robustness would be proportional to mutation rate and population size, thus being inefficient in small populations. However, Krakauer and Plotkin (2002) hypothesized that selection in small populations would favor robustness mechanisms, such as redundancy, that mask the effect of deleterious mutations. In large populations, by contrast, selection is more effective at removing deleterious mutants and fitness would be improved by eliminating mechanisms that mask the effect of deleterious mutations and thus impede their removal. Here, we test whether these predictions are supported in experiments with evolving populations of digital organisms. Digital organisms are self-replicating programs that inhabit a virtual world inside a computer. Like their organic counterparts, digital organisms mutate, compete, evolve, and adapt by natural selection to their environment. In this study, 160 populations evolved at different combinations of mutation rate and population size. After 10(4) generations, we measured the mutational robustness of the most abundant genotype in each population. Mutational robustness tended to increase with mutation rate and to decline with population size, although the dependence with population size was in part mediated by a negative relationship between fitness and robustness. These results are independent of whether genomes were constrained to their original length or allowed to change in size.  相似文献   

11.
Biased mutations and microsatellite variation   总被引:10,自引:6,他引:4  
Mutation bias is one of the forces that may constrain the variation at microsatellite loci. Here, we study the dynamics of population statistics and the genetic distance between two populations under multiple stepwise mutations with linear bias and random drift. Expressions are derived for these statistics as functions of time, as well as at mutation-drift equilibrium. Applying these expressions to published data on humans and chimpanzees, the regression coefficient of mutation bias on allele size was estimated to be at least between - 0.0064 and -0.013. The assumption of mutational bias produces larger estimates of divergence times than are obtained in its absence; in particular, the time of split between African and non-African human populations is estimated to be between 183,000 and 222,000 years, assuming one-step mutations and no selection. With multistep mutations, the divergence time is estimated to be lower.   相似文献   

12.
13.
Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.  相似文献   

14.
In C. elegans, reduced insulin-like signalling induces developmental quiescence, reproductive delay and lifespan extension. We show here that the C. elegans orthologues of LKB1 and AMPK cooperate during conditions of reduced insulin-like signalling to establish cell cycle quiescence in the germline stem cell population, in addition to prolonging lifespan. The inactivation of either protein causes aberrant germline proliferation during diapause-like ;dauer' development, whereas the loss of AMPK uncouples developmental arrest from lifespan extension. Reduced TGF-beta activity also triggers developmental quiescence independent of the insulin-like pathway. Our data suggest that these two signalling pathways converge on the C. elegans PTEN orthologue to coordinate germline proliferation with somatic development during dauer formation, via the regulation of AMPK and its upstream activator LKB1, rather than through the canonical insulin-like signalling cascade. In humans, germline mutations in TGF-beta family members, PTEN or LKB1 result in related tumour-predisposing syndromes. Our findings establish a developmental relationship that may underscore their shared, characteristic aetiology.  相似文献   

15.
A variety of models propose that the accumulation of deleterious mutations plays an important role in the evolution of breeding systems. These models make predictions regarding the relative rates of protein evolution and deleterious mutation in taxa with contrasting modes of reproduction. Here we compare available coding sequences from one obligately outcrossing and two primarily selfing species of Caenorhabditis to explore the potential for mutational models to explain the evolution of breeding system in this clade. If deleterious mutations interact synergistically, the mutational deterministic hypothesis predicts that a high genomic deleterious mutation rate (U) will offset the reproductive disadvantage of outcrossing relative to asexual or selfing reproduction. Therefore, C. elegans and C. briggsae (both largely selfing) should both exhibit lower rates of deleterious mutation than the obligately outcrossing relative C. remanei. Using a comparative approach, we estimate U to be equivalent (and < 1) among all three related species. Stochastic mutational models, Muller's ratchet and Hill-Robertson interference, are expected to cause reductions in the effective population size in species that rarely outcross, thereby allowing deleterious mutations to accumulate at an elevated rate. We find only limited support for more rapid molecular evolution in selfing lineages. Overall, our analyses indicate that the evolution of breeding system in this group is unlikely to be explained solely by available mutational models.  相似文献   

16.
It is often assumed that the mutation rate is an evolutionarily optimized property of a taxon. The relevant mutation rate is for mutations that affect fitness, U, but the strength of selection on the mutation rate depends on the average effect of a mutation. Determination of U is complicated by the possibility that mutational effects depend on the particular environmental context in which the organism exists. It has been suggested that the effects of deleterious mutations are typically magnified in stressful environments, but most studies confound genotype with environment, so it is unclear to what extent environmental specificity of mutations is specific to a particular starting genotype. We report a study designed to separate effects of species, genotype, and environment on the degradation of fitness resulting from new mutations. Mutations accumulated for >200 generations at 20 degrees in two strains of two species of nematodes that differ in thermal sensitivity. Caenorhabditis briggsae and C. elegans have similar demography at 20 degrees, but C. elegans suffers markedly reduced fitness at 25 degrees. We find little evidence that mutational properties differ depending on environmental conditions and mutational correlations between environments are close to those expected if effects were identical in both environments.  相似文献   

17.
Natural selection can produce a correlation between local recombination rates and levels of neutral DNA polymorphism as a consequence of genetic hitchhiking and background selection. Theory suggests that selection at linked sites should affect patterns of neutral variation in partially selfing populations more dramatically than in outcrossing populations. However, empirical investigations of selection at linked sites have focused primarily on outcrossing species. To assess the potential role of selection as a determinant of neutral polymorphism in the context of partial self-fertilization, we conducted a multivariate analysis of single-nucleotide polymorphism (SNP) density throughout the genome of the nematode Caenorhabditis elegans. We based the analysis on a published SNP data set and partitioned the genome into windows to calculate SNP densities, recombination rates, and gene densities across all six chromosomes. Our analyses identify a strong, positive correlation between recombination rate and neutral polymorphism (as estimated by noncoding SNP density) across the genome of C. elegans. Furthermore, we find that levels of neutral polymorphism are lower in gene-dense regions than in gene-poor regions in some analyses. Analyses incorporating local estimates of divergence between C. elegans and C. briggsae indicate that a mutational explanation alone is unlikely to explain the observed patterns. Consequently, we interpret these findings as evidence that natural selection shapes genome-wide patterns of neutral polymorphism in C. elegans. Our study provides the first demonstration of such an effect in a partially selfing animal. Explicit models of genetic hitchhiking and background selection can each adequately describe the relationship between recombination rate and SNP density, but only when they incorporate selfing rate. Clarification of the relative roles of genetic hitchhiking and background selection in C. elegans awaits the development of specific theoretical predictions that account for partial self-fertilization and biased sex ratios.  相似文献   

18.
Recent theoretical studies have illustrated the potential role of spontaneous deleterious mutation as a cause of extinction in small populations. However, these studies have not addressed several genetic issues, which can in principle have a substantial influence on the risk of extinction. These include the presence of synergistic epistasis, which can reduce the rate of mutation accumulation by progressively magnifying the selective effects of mutations, and the occurrence of beneficial mutations, which can offset the effects of previous deleterious mutations. In stochastic simulations of small populations (effective sizes on the order of 100 or less), we show that both synergistic epistasis and the rate of beneficial mutation must be unrealistically high to substantially reduce the risk of extinction due to random fixation of deleterious mutations. However, in analytical calculations based on diffusion theory, we show that in large, outcrossing populations (effective sizes greater than a few hundred), very low levels of beneficial mutation are sufficient to prevent mutational decay. Further simulation results indicate that in populations small enough to be highly vulnerable to mutational decay, variance in deleterious mutational effects reduces the risk of extinction, assuming that the mean deleterious mutational effect is on the order of a few percent or less. We also examine the magnitude of outcrossing that is necessary to liberate a predominantly selfing population from the threat of long-term mutational deterioration. The critical amount of outcrossing appears to be greater than is common in near-obligately selfing plant species, supporting the contention that such species are generally doomed to extinction via random drift of new mutations. Our results support the hypothesis that a long-term effective population size in the neighborhood of a few hundred individuals defines an approximate threshold, below which outcrossing populations are vulnerable to extinction via fixation of deleterious mutations, and above which immunity is acquired.  相似文献   

19.
Theory predicts that fitness decline via mutation accumulation will depend on population size, but there are only a few direct tests of this key idea. To gain a qualitative understanding of the fitness effect of new mutations, we performed a mutation accumulation experiment with the facultative sexual rotifer Brachionus calyciflorus at six different population sizes under UV‐C radiation. Lifetime reproduction assays conducted after ten and sixteen UV‐C radiations showed that while small populations lost fitness, fitness losses diminished rapidly with increasing population size. Populations kept as low as 10 individuals were able to maintain fitness close to the nonmutagenized populations throughout the experiment indicating that selection was able to remove the majority of large effect mutations in small populations. Although our results also seem to imply that small populations are effectively immune to mutational decay, we caution against this interpretation. Given sufficient time, populations of moderate to large size can experience declines in fitness from accumulating weakly deleterious mutations as demonstrated by fitness estimates from simulations and, tentatively, from a long‐term experiment with populations of moderate size. There is mounting evidence to suggest that mutational distributions contain a heavier tail of large effects. Our results suggest that this is also true when the mutational spectrum is altered by UV radiation.  相似文献   

20.
While all known natural isolates of C. elegans contain multiple copies of the Tc1 transposon, which are active in the soma, Tc1 transposition is fully silenced in the germline of many strains. We mutagenized one such silenced strain and isolated mutants in which Tc1 had been activated in the germline ("mutators"). Interestingly, many other transposons of unrelated sequence had also become active. Most of these mutants are resistant to RNA interference (RNAi). We found one of the mutated genes, mut-7, to encode a protein with homology to RNaseD. This provides support for the notion that RNAi works by dsRNA-directed, enzymatic RNA degradation. We propose a model in which MUT-7, guided by transposon-derived dsRNA, represses transposition by degrading transposon-specific messengers, thus preventing transposase production and transposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号