首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI) induces light- and O2-dependent lipid peroxidation and chlorophyll (Chl) bleaching in the green alga Scenedesmus obliquus. Under conditions of O2-limitation, these effects are diminished by prometyne and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), both inhibitors of photosynthetic electron transport. Mutants in which photosynthetic electron transport is blocked are also resistant to DPEI under conditions of O2-limitation. Light- and O2-dependent lipid peroxidation and Chl bleaching are also induced by 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methoxyphthalide (DPEII), a diphenyl ether whose redox properties preclude reduction by photosystem I. However, these effects of DPEII are also inhibited by DCMU. Under conditions of high aeration, DCMU does not protect Scenedesmus cells from Chl bleaching induced by DPEI, but does protect against paraquat. DPEI, but not paraquat, induces tetrapyrrole formation in treated cells in the dark. This is also observed in a mutant lacking photosystem I but is suppressed under conditions likely to lead to O2 limitation. Our results indicate that, in contrast to paraquat, the role of photosynthetic electron transport in diphenyl ether toxicity in Scenedesmus is not to reduce the herbicide to a radical species which initiates lipid peroxidation. Its role is probably to maintain a sufficiently high O2 concentration, through water-splitting, in the algal suspension.  相似文献   

2.
5-[2-Chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI), is a potent nitrodiphenyl ether herbicide which causes rapid leaf wilting, membrane lipid peroxidation, and chlorophyll destruction in a process which is both light- and O2-dependent. These effects resemble those of other nitrodiphenyl ether herbicides. Unlike paraquat, the herbicidal effects of DPEI are only slightly reduced by pretreatment with the photosynthetic electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. DPEI is a weak inhibitor of photosynthetic electron transport (I50 15 micromolar for water to paraquat) in vitro, with at least one site of action at the cytochrome b6f complex. Ultrastructural studies and measurements of ethane formation resulting from lipid peroxidation indicate that mutants of barley lacking photosystem I (PSI) (viridis-zb63) or photosystem II (viridis-zd69) are resistant to paraquat but susceptible to DPEI. The results indicate that electron transfer through both photosystems is not essential for the toxic effects of nitrodiphenyl ether herbicides. Furthermore, the results show that neither cyclic electron transport around PSI, nor the diversion of electrons from PSI to O2 when NADPH consumption is blocked are essential for the phytotoxicity of nitrodiphenyl ether herbicides.  相似文献   

3.
The effects of the diphenyl ether herbicides HOE 29152 (methyl-2[4-(4-trifluoromethoxy) phenoxy] propanoate) and nitrofluorfen (2-chloro-1-[4-nitrophenoxy]-4-[trifluoromethyl]benzene) on photosynthetic electron transport have been examined with pea seedling and spinach chloroplasts. Linear electron transport (water to ferricyanide or methylviologen) is inhibited in treated chloroplasts, but neither photosystem II activity (water to dimethylquinone plus dibromothymoquinone) nor photosystem I activity (diaminodurene to methylviologen) is affected. Cyclic electron flow, cata-lyzed by either phenazine methosulfate or diaminodurene, is resistant to inhibition by nitrofluorfen. In diphenyl ether-treated chloroplasts the half-time for the dark reduction of cytochrome f is increased 5- to 15-fold. These data indicate that the site of inhibition for the diphenyl ethers is between the two photosystems in the plastoquinone-cytochrome f region.  相似文献   

4.
Excised cucumber (Cucumis sativus L. cv 447 Wisconsin SMR 18) cotyledons were sensitive to acifluorfen-methyl (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate) and MC-15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). Injury was detected by monitoring efflux of 3-O-methyl-d-[U-14C]glucose from herbicide-treated tissue after exposure to light. Efflux kinetics of 3-O-methyl-[14C]glucose from cotyledons treated with either acifluorfen-methyl (AFM) or MC-15608 were similar. Neither herbicide was active in darkness.  相似文献   

5.
The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-O-(acetic acid, methyl ester) (DPEI) induced an abnormal accumulation of protoporphyrin IX in darkness in the green alga Chlamydomonas reinhardtii, as determined by high-performance liquid chromatography and spectrofluorimetry. It also inhibited the increase in cell density of the alga in light-grown cultures with an I50 (concentration required to decrease cell density increase to 50% of the noninhibited control value) of 0.16 μm. The relative ability of four peroxidizing diphenyl ether herbicides to cause tetrapyrrole accumulation in C. reinhardtii correlated qualitatively with their ability to inhibit the increase in cell density in light-grown cultures. The purified S(−) enantiomer of the optically active phthalide DPE 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methylphthalide (DPEIII), which has greater herbicidal activity than the R(+) isomer, induces a 4- to 5-fold greater tetrapyrrole accumulation than the R(+) isomer. The I50 for inhibition of increase in cell density in light-grown cultures of C. reinhardtii by the S(−) isomer (0.019 μm) is less than 25% of that for the R(+) isomer. DPEIII inhibits protoporphyrinogen IX oxidase activity in pea (Pisum sativum) etioplast lysates, with the S(−) enantiomer showing considerably greater potency than the R(+) isomer and the racemic mixture showing a potency intermediate between the two. The results indicate that the site at which DPEs inhibit protoporphyrinogen IX oxidase shows chiral discrimination and provide further evidence for the link between inhibition of this enzyme, protoporphyrin IX accumulation, and the phytotoxicity of DPE herbicides.  相似文献   

6.
The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10−4 molar and paraquat) and also under temperature conditions (3°C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10−9 molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane.  相似文献   

7.
Paraquat resistance in conyza   总被引:6,自引:2,他引:4       下载免费PDF全文
A biotype of Conyza bonariensis (L.) Cronq. (identical to Conyza linefolia in other publications) originating in Egypt is resistant to the herbicide 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat). Penetration of the cuticle by [14C]paraquat was greater in the resistant biotype than the susceptible (wild) biotype; therefore, resistance was not due to differences in uptake. The resistant and susceptible biotypes were indistinguishable by measuring in vitro photosystem I partial reactions using paraquat, 6,7-dihydrodipyrido [1,2-α:2′,1′-c] pyrazinediium ion (diquat), or 7,8-dihydro-6H-dipyrido [1,2-α:2′,1′-c] [1,4] diazepinediium ion (triquat) as electron acceptors. Therefore, alteration at the electron acceptor level of photosystem I is not the basis for resistance. Chlorophyll fluorescence measured in vivo was quenched in the susceptible biotype by leaf treatment with the bipyridinium herbicides. Resistance to quenching of in vivo chlorophyll fluorescence was observed in the resistant biotype, indicating that the herbicide was excluded from the chloroplasts. Movement of [14C] paraquat was restricted in the resistant biotype when excised leaves were supplied [14C]paraquat through the petiole. We propose that the mechanism of resistance to paraquat is exclusion of paraquat from its site of action in the chloroplast by a rapid sequestration mechanism. No differential binding of paraquat to cell walls isolated from susceptible and resistant biotypes could be detected. The exact site and mechanism of paraquat binding to sequester the herbicide remains to be determined.  相似文献   

8.
Orr GL  Hess FD 《Plant physiology》1982,69(2):502-507
Cucumber (Cucumis sativus L.) cotyledons were sensitive to the diphenyl ether herbicide acifluorfen-methyl (AFM); methyl 5-[2-chloro-4-(trifluoro-methyl)phenoxyl-2-nitrobenzoate. Injury was detected by monitoring the efflux of 86Rb+ from treated tissues after exposure to light (600 micro einsteins per meter2 per second; photosynthetically active radiation).  相似文献   

9.
The specific binding of the herbicide acifluorfen 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid to corn etioplast membranes is competitively inhibited by protoporphyrinogen IX, the substrate of protoporphyrinogen oxidase. Three other peroxidizing molecules, oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol -2-one], LS 82556 [(S)3-N-(methylbenzyl)carbamoyl-5-propionyl-2,6-lutidine], and M&B 39279 [5-amino-4-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazol], also compete with acifluorfen for its binding site. The four herbicides thus bind to the same site, or to closely located sites, on the enzyme protoporphyrinogen oxidase.  相似文献   

10.
Ridley SM 《Plant physiology》1983,72(2):461-468
Several effects on pea (Pisum sativum L. var Onwards) chloroplasts of a new diphenylether herbicide, fomesafen (5-[2-chloro-4-trifluoromethyl-phenoxy]-N-methanesulfonyl-2 -nitrobenzamide) have been compared with those of a herbicide of related structure, nitrofluorfen (2-chloro-1-[4-nitrophenoxy]-4-[trifluoromethyl]benzene). Although both compounds produce the same light-dependent symptoms of desiccation and chlorosis indicative of a common primary mechanism of action, this study is concerned with a more broadly based investigation of different effects on the electron transport system. Comparisons have also been made with other compounds interacting with the chloroplast. Unlike nitrofluorfen, fomesafen has little effect as an inhibitor of electron flow or energy transfer. Both compounds have the ability to stimulate superoxide production through a functional electron transport system, and this involves specifically the p-nitro substituent. The stimulation, which is not likely to be an essential part of the primary herbicidal effect, is diminished under conditions that remove the coupling factor. Evidence suggests that both diphenylethers may be able to bind to the coupling factor, and kinetic studies reveal this for dibromothymoquinone as well. Such a binding site might be an important feature in allowing the primary effect of the diphenylether herbicides to be expressed.  相似文献   

11.
Light is required for the herbicide activity of diphenyl ether herbicides. An action spectrum of acifluorfen-methyl activity with Chlamydomonas eugametos (Moewus) determined that cell death occurred at two peaks of light; 450 and 670 nanometers. These data indicate both chlorophyll and carotenoids, but not riboflavin, are involved in herbicide toxicity.  相似文献   

12.
The effects of the photosystem II herbicides diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) on the photosynthetic membranes of a cyanobacterium, Aphanocapsa 6308, were compared to the effects on a higher plant, Spinacia oleracea. The inhibition of photosystem II electron transport by these herbicides was investigated by measuring the photoreduction of the dye 2,6-dichlorophenol-indophenol spectrophotometrically using isolated membranes. The concentration of herbicide that caused 50% inhibition of electron transport (I50 value) in Aphanocapsa membranes for diuron was 6.8 × 10−9 molar and the I50 value for atrazine was 8.8 × 10−8 molar. 14C-labeled diuron and atrazine were used to investigate herbicide binding with calculated binding constants (K) being 8.2 × 10−8 molar for atrazine and 1.7 × 10−7 molar for diuron. Competitive binding studies carried out on Aphanocapsa membranes using radiolabeled [14C]atrazine and unlabeled diuron revealed that diuron competed with atrazine for the herbicide-binding site. Experiments involving the photoaffinity label [14C]azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-2-triazine) and autoradiography of polyacrylamide gels indicated that the herbicide atrazine binds to a 32-kilodalton protein in Aphanocapsa 6308 cell extracts.  相似文献   

13.
Chen L  Cai T  Wang Q 《Current microbiology》2011,62(6):1710-1717
A fluoroglycofen ethyl-degrading bacterium, MBWY-1, was isolated from the soil of an herbicide factory. This isolated strain was identified as Mycobacterium phocaicum based on analysis of its 16S rRNA gene sequence and its morphological, physiological, and biochemical properties. The strain was able to utilize fluoroglycofen ethyl as its sole source of carbon for growth and could degrade 100 mg l−1 of fluoroglycofen ethyl to a non-detectable level within 72 h. The optimum temperature and pH for fluoroglycofen ethyl degradation by strain MBWY-1 were 30°C and 7.0, respectively. Five metabolites produced during the degradation of fluoroglycofen ethyl and were identified by mass spectrometry as {5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-nitrophenylacyl} hydroxyacetic acid, acifluorfen, 5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-nitrobenzoate, 5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-hydroxyl, and 3-chloro-4-hydroxyl benzotrifluoride. Identification of the metabolites allowed to propose the degradation pathway of fluoroglycofen ethyl by strain MBWY-1. The inoculation of strain MBWY-1 into soil treated with fluoroglycofen ethyl resulted in a higher fluoroglycofen ethyl degradation rate than in uninoculated soil regardless of whether the soil was sterilized or nonsterilized.  相似文献   

14.
Specific wavelengths of light required for expression of phytotoxic activity of S-23142 (N-[4-chloro-2-fluoro-5-propargyloxy]phenyl-3,4,5,6-tetra- hydrophthalimide) and acifluorfen-ethyl (ethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitro benzoic acid) were determined in cotyledons of cucumber seedlings using the Okazaki Large Spectrograph. Leakage of amino acids from the cotyledons was measured as an indication of the phytotoxic activity. The wavelength effects showed common major peaks of activity at 550 and 650 nanometers and a minor peak at 450 nanometers for both herbicides, indicating a common primary photoreaction. Concomitant application of DCMU (3-[3,4-dichlorophenyl]-1,1-dimethylurea) with S-23142 had little influence on the effective wavelengths for S-23142 activity. Light of 450 and 650 nanometers was relatively less effective in achlorophyllous tissue grown in far red light than in green tissue. These results strongly suggest that the phytotoxic action of S-23142 and diphenylethers involves multiple photoreactions and that one of the photoreceptor pigments may be chlorophyll or its related pigment, although photosynthesis is not involved.  相似文献   

15.
Abstract

Oxyfluorfen (2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene) is a nitrophenyl ether herbicide. Phytocystatins are crucial plant proteins which regulate various physiological processes and are also responsible for maintaining protease–antiprotease balance within plants. Thus, the present article deciphers the interaction of oxyfluorfen with garlic phytocystatin (GPC) through various spectroscopic and calorimetric techniques. The cysteine proteinase inhibitory assay was done to assess the inhibitory action of GPC in the presence of oxyfluorfen. The GPC loses its inhibitory activity in the presence of oxyfluorfen. The complex formation of GPC-oxyfluorfen was shown by UV absorption spectroscopy. The intrinsic fluorescence experiment affirmed the quenching of GPC in the presence of oxyfluorfen. The Stern–Volmer quenching constant and binding constant was obtained as 6.89?×?103 M?1 and 9.72?×?103 M?1, respectively. Synchronous fluorescence showed the alteration in the microenvironment around tyrosine residues. 3D fluorescence suggested the perturbation in the polarity around aromatic residues. The isothermal titration experiment suggests that the interaction of oxyfluorfen with GPC is a thermodynamically favorable reaction. Secondary structure alteration of GPC in the presence of oxyfluorfen was studied by circular dichroism (CD). The CD result showed a reduction in the α-helical content of GPC on interaction with oxyfluorfen. Consequently, all these outcomes affirmed the formation of GPC–oxyfluorfen complex along with the structural and conformational alteration. This study identifies and signifies that the exposure of oxyfluorfen induces stress within the plant system.

Communicated by Ramaswamy H. Sarma  相似文献   

16.
To study the role of glutathione reductase in lipid peroxidation, bean leaves (Phaseolus vulgaris) cv Fori were treated with the herbicide acifluorfen-sodium (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Acifluorfen is a potent inducer of lipid peroxidation. In beans, decrease of acid-soluble SH-compounds and lipid peroxidation, measured as ethane evolution, were the toxic events after treatment of leaves with acifluorfen. As a primary response to peroxidation, increased production of antioxidants, such as vitamin C and glutathione, was found. This was followed by elevation of glutathione reductase activity. Enhanced activity of the enzyme prevented both further decline of acid-soluble SH-compounds and lipid peroxidation. Increased production of antioxidants and elevated activity of antioxidative enzymes, like glutathione reductase, seem to be a general strategy to limit toxic peroxidation in plants.  相似文献   

17.
The activity of acifluorfen-methyl (AFM); methyl 5-(2-chloro-4-[trifluoromethyl] phenoxy)-2-nitrobenzoate in excised cucumber cotyledons (Cucumis sativus L.) was examined. AFM induced membrane disruption, was significantly greater when etiolated cotyledons were illuminated 16 hours at 150 microeinsteins per square meter per second photosynthetically active radiation versus incubation under illumination of 4-fold greater intensity. These results were unexpected since the loss of membrane integrity is initiated by photodynamic reactions. Untreated, etiolated cotyledons were not able to accumulate chlorophyll under the higher light intensity while control and herbicide treated cotyledons greened significantly under the lower intensity illumination suggesting that some process associated with greening stimulated AFM activity. Inhibition of greening by cycloheximide also reduced AFM activity. Intermittent lighting induced greening in AFM treated cotyledons without causing any detectable loss of plasmalemma integrity. Utilization of this system for pretreatment of cotyledons prior to continuous illumination revealed that activity was greater when tissue was greened in the presence of AFM than when herbicide treatments were made after a greening period of the same duration. The results indicate that the pigments in situ in etiolated tissue are sufficient, without greening, to initiate membrane disruption by AFM. However, greening increases the herbicidal efficacy greatly. Furthermore, the stimulation appears to be due to specific interactions between AFM and the developing plastid and is not attributable solely to an increase in endogenous photosensitizers.  相似文献   

18.
Direct anti-tuberculosis screening of commercially available compound libraries identified a novel piperidinol with interesting anti-tuberculosis activity and drug like characteristics. To generate a structure activity relationship about this hit a 22 member optimization library was generated using parallel synthesis. Products of this library 1-((R)-3-(4-chlorophenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl)piperidin-4-ol and 1-((S)-3-(4-(trifluoromethyl) phenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl) piperidin-4-ol demonstrated good anti-tuberculosis activity. Unfortunately, side effects were observed upon in vivo anti-tuberculosis testing of these compounds precluding their further advancement, which may be in part due to the secondary pharmacology associated with the aryl piperidinol core.  相似文献   

19.
In barley (Hordeum vulgare L.) root cells, activity for oxidizing protoporphyrinogen to protoporphyrin (protoporphyrinogen oxidase), a step in chlorophyll and heme synthesis, was found both in the crude mitochondrial fraction and in a plasma membrane enriched fraction separated by a sucrose gradient technique utilized for preparing plasma membranes. The specific activity (expressed as nanomoles of protoporphyrin formed per hour per milligram protein) in the mitochondrial fraction was 8 and in the plasma membrane enriched fraction was 4 to 6. The plasma membrane enriched fraction exhibited minimal cytochrome oxidase activity and no carotenoid content, indicating little contamination with mitochondrial or plastid membranes. Etioplasts from etiolated barley leaves exhibited a protoporphyrinogen oxidase specific activity of 7 to 12. Protoporphyrinogen oxidase activity in the barley root mitochondrial fraction and etioplast extracts was more than 90% inhibited by assay in the presence of the diphenyl ether herbicide acifluorfen methyl, but the activity in the plasma membrane enriched fraction exhibited much less inhibition by this herbicide (12 to 38% inhibition) under the same assay conditions. Acifluorfen-methyl inhibition of the organellar (mitochondrial or plastid) enzyme was maximal upon preincubation of the enzyme with 4 mm dithiothreitol, although a lesser degree of inhibition was noted if the organellar enzyme was preincubated in the presence of other reductants such as glutathione or ascorbate. Acifluorfen-methyl caused only 20% inhibition if the enzyme was preincubated in buffer without reductants. Incubation of barley etioplast extracts with the earlier tetrapyrrole precursor coproporphyrinogen and acifluorfen-methyl resulted in the accumulation of protoporphyrinogen, which could be converted to protoporphyrin even in the presence of the herbicide by the addition of the plasma membrane enriched fraction from barley roots. These findings have implications for the toxicity of diphenyl ether herbicides, whose light induced tissue damage is apparently caused by accumulation of the photoreactive porphyrin intermediate, protoporphyrin, when the organellar protoporphyrinogen oxidase enzyme is inhibited by herbicides. Our results suggest that the protoporphyrinogen that accumulates as a result of herbicide inhibition of the organellar enzyme can be oxidized to protoporphyrin by a protoporphyrinogen oxidizing activity that is located at sites such as the plasma membrane, which is much less sensitive to inhibition by diphenylether herbicides.  相似文献   

20.
A series of Chlamydomonas reinhardii mutants were selected for resistance to the herbicides atrazine, bromacil, and diuron. Four of these have reduced herbicide binding to the thylakoid membranes and show the non-Mendelian inheritance pattern characteristic of chloroplast genes. These mutants show a variety of selective alterations in binding of the three herbicides. These changes account for the observed patterns of in vivo cross-resistance. Analyses of chloroplast gene recombination indicate that these four mutations are in the same gene. Overall, the results suggest that this gene codes for a protein component of the herbicide binding site. One of the mutants has slow phototrophic growth and altered electron transport as has been observed in atrazine-resistant higher plant varieties, but the others are normal in these respects. The slow growth characteristic of this mutant seems to be the consequence of the same mutation which confers herbicide resistance.

The mutants isolated also include a large number which achieve resistance by some secondary mechanism. These are all nuclear gene mutations, and represent numerous loci. They also show a variety of patterns of cross-resistance, but the mechanisms behind them have not yet been investigated.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号