首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
C105Y, a synthetic peptide (CSIPPEVKFNKPFVYLI) based on the amino acid sequence corresponding to residues 359-374 of alpha1-antitrypsin, enhances gene expression from DNA nanoparticles. To investigate how this enhancement occurs, C105Y was fluorescently labeled to study its uptake and intracellular trafficking. When human hepatoma cells (HuH7) were incubated with fluorescently labeled C105Y for as little as 3 min, C105Y displayed nuclear and cytoplasmic staining with enrichment of fluorescent signal in the nucleus and nucleolus. Uptake and nucleolar localization were observed with the short sequence PFVYLI, but not with SIPPEVKFNK, and the D-isomer was readily taken up into cells but not into the nucleus. We found that the C105Y peptide is routed to the nucleolus very rapidly in an energy-dependent fashion, whereas membrane translocation and nuclear localization are energy-independent. When we tested the involvement of known endocytosis pathways in uptake and trafficking of this peptide, we demonstrated that C105Y peptide is internalized by a clathrin- and caveolin-independent pathway, although lipid raft-mediated endocytosis may play a role in peptide intracellular trafficking. Efficient energy-independent cell entry with rapid nuclear localization probably accounts for enhancement of gene expression from inclusion of C105Y into DNA nanoparticles.  相似文献   

2.
Three cysteine residues, which are completely conserved among alpha-subunits in all nitrile hydratases, are thought to be the ligands of a metal ion in the catalytic center of this enzyme. These cysteine residues (i.e. alpha C102, alpha C105 and alpha C107) in the high-molecular-mass nitrile hydratase (H-NHase) of Rhodococcus rhodochrous J1 were replaced with alanine by site-directed mutagenesis using the R. rhodochrous ATCC12674 host-vector system, and the resultant transformants were investigated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for the cell-free extracts of each mutant transformant revealed that four mutant transformants (i.e. alpha C105A, alpha C107A, alpha C102A/C105A and alpha C105A/C107A) showed predominant alpha- and beta-subunit protein bands with a mobility identical to those of the native H-NHase, while three mutant transformants (i.e. alpha C102A, alpha C102A/C107A and alpha C102A/C105A/C107A) did not produce the corresponding proteins. The purified former four mutant enzymes showed neither enzymatic activity nor the maximum absorption at 410 nm which was detected in the wild type H-NHase. They also did not contain cobalt ions. Based upon these findings, these three cysteine residues were found to be essential for the active expression of H-NHase.  相似文献   

3.
The spectral properties of three tryptophan-substituted mutants of recombinant chicken troponin C are compared. Site-specific mutagenesis was used to introduce a tryptophan residue into the high-affinity (Ca2+/Mg2+) domain of troponin C at residue position 105, thereby creating the mutant phenylalanine-105 to tryptophan (F105W). The spectral properties of F105W and a double mutant, F29W/F105W, were compared with the mutant phenylalanine-29 to tryptophan (F29W). Since wild-type chicken troponin C does not naturally contain either tyrosine or tryptophan residues, the tryptophan substitutions behaved as site-specific reporters of metal ion binding and conformational change. The residues that occupy positions 29 and 105 are at homologous locations in low-affinity and high-affinity domains, preceding the first liganding residues of binding loops I and III, respectively. Mutant proteins were examined by a combination of absorbance and fluorescence methods. Calcium induced significant changes in the near-UV absorbance spectra, fluorescence emission spectra, and far-UV circular dichroism of all three mutant proteins. Magnesium induced significant changes in the spectral properties of only F105W and F29W/F105W proteins. Tryptophan substitutions allowed Ca(2+)-specific and Ca(2+)/Mg(2+) sites to be titrated independently of one another. Results indicate that there is no interaction between the two binding domains under conditions where troponin C is isolated from the troponin complex. Magnesium-induced changes in the environment of the tryptophan reporter at position 105 were significantly different from those induced by calcium. This suggests that calcium and magnesium differ in their influence on the conformation of the high-affinity, Ca(2+)/Mg(2+) sites.  相似文献   

4.
The polyene macrolide antibiotic filipin is widely used as a probe for cholesterol and a diagnostic tool for type C Niemann-Pick disease. Two position-specific P450 enzymes are involved in the post-polyketide modification of filipin during its biosynthesis, thereby providing molecular diversity to the “filipin complex.” CYP105P1 and CYP105D6 from Streptomyces avermitilis, despite their high sequence similarities, catalyze filipin hydroxylation at different positions, C26 and C1′, respectively. Here, we determined the crystal structure of the CYP105P1-filipin I complex. The distal pocket of CYP105P1 has the second largest size among P450 hydroxylases that act on macrolide substrates. Compared with previously determined substrate-free structures, the FG helices showed significant closing motion on substrate binding. The long BC loop region adopts a unique extended conformation without a B′ helix. The binding site is essentially hydrophobic, but numerous water molecules are involved in recognizing the polyol side of the substrate. Therefore, the distal pocket of CYP105P1 provides a specific environment for the large filipin substrate to bind with its pro-S side of position C26 directed toward the heme iron. The ligand-free CYP105D6 structure was also determined. A small sub-pocket accommodating the long alkyl side chain of filipin I was observed in the CYP105P1 structure but was absent in the CYP105D6 structure, indicating that filipin cannot bind to CYP105D6 with a similar orientation due to steric hindrance. This observation can explain the strict regiospecificity of these enzymes.  相似文献   

5.
We present herein the first evidence that human C3 and, with a higher efficiency, trypsin-cleaved C3 enhanced in vitro phosphorylation of a cellular component, characterized by an apparent molecular weight of 105 kDa, pp105, present in the human B lymphoma cells, Raji. This regulatory activity was associated with C3d fragment generated in trypsin-cleaved C3. A 16 amino-acid peptide, carrying the LYNVEA sequence of C3d reacting with the C3d receptor (CR2), was synthetized. P16 enhanced, in a dose-dependent curve between 0.3 to 10 microM, in vitro phosphorylation of pp105, as well as C3d fragments present in trypsin-cleaved C3. A fibrinogen-related synthetic peptide of 15 amino acids, used as control, had no effect on pp105 phosphorylation. P16 and trypsin-cleaved C3 regulate pp105 phosphorylation through identical pathways. Thus, p16 represents the 16 amino-acid sequence of C3 which regulated in vitro phosphorylation of pp105.  相似文献   

6.
Abstract The promoting effects on cell proliferation of the 105K glycoprotein (105Kgp), purified from sera of chickens to which a Marek's disease (MD) lymphoblastoid cell line, MDCC-MSB1-41C (MSB1-41C), had been transplanted, were examined using culture cells from various sources. The MSB1-41C line as well as the other chicken lymphoblastoid cell lines examined were sensitive to the 105Kgp. The growth-promoting effects of 105Kgp showed a biphasic pattern depending upon the amount of 105Kgp added into the culture medium.
These findings indicate that the 105Kgp may be a promoting factor for chicken growing cells, especially lymphoblastoid cell lines.  相似文献   

7.
Dolichyl phosphate, dolichol C80-105 (dolichol 17:dihydroheptadecaprenol-dolichol 21:dihydrohexeicosaprenol), and dolichol C55 (dolichol 11:dihydroundecaprenol) were separated by anion-exchange paper chromatography. Squalene, sterols, phospholipids, anionic glycolipids, and glycerol did not migrate as dolichyl phosphate, dolichol C80-105, and dolichol C55 under our elution conditions. However, since the Rf of triglycerides was similar to that of dolichol C80-105, saponification, prior to chromatography, removed traces of triglycerides. Silica gel thin-layer chromatography (TLC) allowed the separation of dolichol C80-105 from dolichol C55, whereas dolichyl phosphate was eluted with other lipids. Incubation of spontaneously transformed cells derived from rat astrocytes primary cultures with [2-14C]acetate, saponification of the extracted lipids, and anion-exchange paper chromatography revealed the presence of radioactive dolichyl phosphate and dolichol C80-105 (15 pmol/mg protein). Extraction of labeled dolichyl phosphate followed by acid phosphatase treatment and subsequent analysis on TLC confirmed the identity of dolichyl phosphate since all the radioactivity was associated with dolichol C55. Treatment of the transformed cells with 30 microM 7-ketocholesterol or 7 beta-hydroxycholesterol stimulated markedly (two- to threefold) the incorporation of [2-14C]-acetate in both dolichol C80-105 and dolichyl phosphate. These data demonstrate that anion-exchange paper chromatography is technically suitable for the separation and analysis of dolichol C55, dolichol C80-105, and dolichyl phosphate in cultured cells prelabeled with radioactive precursors.  相似文献   

8.
To identify protein targets for calmodulin (CaM) in the cilia of Paramecium tetraurelia, we employed a 125I-CaM blot assay after resolution of ciliary proteins on SDS/polyacrylamide gels. Two distinct types of CaM-binding proteins were detected. One group bound 125I-CaM at free Ca2+ concentrations above 0.5-1 microM and included a major binding activity of 63 kDa (C63) and activities of 126 kDa (C126), 96 kDa (C96), and 36 kDa (C36). CaM bound these proteins with high (nanomolar) affinity and specificity relative to related Ca2+ receptors. The second type of protein bound 125I-CaM only when the free Ca2+ concentration was below 1-2 microM and included polypeptides of 95 kDa (E95) and 105 kDa (E105). E105 may also contain Ca2+-dependent binding sites for CaM. Both E95 and E105 exhibited strong specificity for Paramecium CaM over bovine CaM. Ciliary subfractionation experiments suggested that C63, C126, C96, E95, and E105 are bound to the axoneme, whereas C36 is a soluble and/or membrane-associated protein. Additional Ca2+-dependent CaM-binding proteins of 63, 70, and 120 kDa were found associated with ciliary membrane vesicles. In support of these results, filtration binding assays also indicated high-affinity binding sites for CaM on isolated intact axonemes and suggested the presence of both Ca2+-dependent and Ca2+-inhibitable targets. Like E95 and E105, the Ca2+-inhibitable CaM-binding sites showed strong preference for Paramecium CaM over vertebrate CaM and troponin C. Together, these results suggest that CaM has multiple targets in the cilium and hence may regulate ciliary motility in a complex and pleiotropic fashion.  相似文献   

9.
Activation of the oncogenic potential of the MEK kinase TPL-2 (Cot) requires deletion of its C terminus. This mutation also weakens the interaction of TPL-2 with NF-kappaB1 p105 in vitro, although it is unclear whether this is important for the activation of TPL-2 oncogenicity. It is demonstrated here that TPL-2 stability in vivo relies on its high-affinity, stoichiometric association with NF-kappaB1 p105. Formation of this complex occurs as a result of two distinct interactions. The TPL-2 C terminus binds to a region encompassing residues 497 to 534 of p105, whereas the TPL-2 kinase domain interacts with the p105 death domain. Binding to the p105 death domain inhibits TPL-2 MEK kinase activity in vitro, and this inhibition is significantly augmented by concomitant interaction of the TPL-2 C terminus with p105. In cotransfected cells, both interactions are required for inhibition of TPL-2 MEK kinase activity and, consequently, the catalytic activity of a C-terminally truncated oncogenic mutant of TPL-2 is not affected by p105. Thus, in addition to its role as a precursor for p50 and cytoplasmic inhibitor of NF-kappaB, p105 is a negative regulator of TPL-2. Insensitivity of C-terminally truncated TPL-2 to this regulatory mechanism is likely to contribute to its ability to transform cells.  相似文献   

10.
An 8.0-kilobase chromosomal fragment of Bacillus subtilis which contained an intact spo0A gene was recloned onto temperate phage phi 105 from the rho 11dspo0A+-1 transducing phage. A specialized transducing phage, phi 105-dspo0A+-1, was constructed and used to transduce the spo0A12 mutant strain 1S9. A Spo+ transductant which was a single lysogen of the phi 105dspo0A+-1 transducing phage was isolated. From competent cells of this Spo+ transductant was isolated a Spo- (Spo0A) strain which was immune to phi 105. It was used to prepare a lysate of the phi 105dspo0A12 phage. Transduction of the spo0C9V recE4 strain with the phi 105dspo0A12 and phi 105dspo0A+-1 phages was carried out. The phi 105dspo0A+-1 phage gave rise to a large number of heat-resistant cells, but the phi 105dspo0A12 phage formed no heat-resistant cells. These results indicate that the spo0A12 and spo0C9V mutant genes do not complement each other in the ability to sporulate and that the spo0C9V mutation is located within the spo0A gene. Although the spo0C9V strain was completely asporogenous, the spo0C9V/spo0C9V diploid strain produced heat-resistant cells at a frequency of ca. 10(-3) in the sporulation medium. This result indicates that two copies of the spo0C9V mutant gene partially restore the ability of these cells to sporulate.  相似文献   

11.
IL-18 gene polymorphisms affect IL-18 production capability by monocytes   总被引:2,自引:0,他引:2  
We previously demonstrated a significant association between IL-18 gene polymorphism 105A/C and asthma. In this study, we investigated the relationship of IL-18 gene polymorphism to IL-18 production capability by monocytes. The frequency of gene polymorphisms including IL-18-105A/C and IL-18--137G/C was determined by PCR analyses. The IL-18 production by monocytes stimulated without or with LPS or A23187+PMA for 1day was measured by ELISA. The produced IL-18 spontaneously or in response to A23187+PMA by monocytes was significantly higher for volunteers with 105A/A genotype than with 105A/C genotype. Similarly, the production capability of IL-18 by monocytes from volunteers with -137G/G genotype was significantly higher than that with -137G/C genotype and significant linkage disequilibrium was observed between 105A/C and -137G/C polymorphism. Thus, the genetic capacity to produce more IL-18 in response to stimuli may affect the onset of asthma.  相似文献   

12.
Varicella-zoster virus (VZV) is the alphaherpesvirus that causes chicken pox (varicella) and shingles (zoster). The two VZV glycoproteins gE and gI form a heterodimer that mediates efficient cell-to-cell spread. Deletion of gI yields a small-plaque-phenotype virus, ΔgI virus, which is avirulent in human skin using the xenograft model of VZV pathogenesis. In the present study, 10 mutant viruses were generated to determine which residues were required for the typical function of gI. Three phosphorylation sites in the cytoplasmic domain of gI were not required for VZV virulence in vivo. Two deletion mutants mapped a gE binding region in gI to residues 105 to 125. A glycosylation site, N116, in this region did not affect virulence. Substitution of four cysteine residues highly conserved in the Alphaherpesvirinae established that C95 is required for gE/gI heterodimer formation. The C95A and Δ105-125 (with residues 105 to 125 deleted) viruses had small-plaque phenotypes with reduced replication kinetics in vitro similar to those of the ΔgI virus. The Δ105-125 virus was avirulent for human skin in vivo. In contrast, the C95A mutant replicated in vivo but with significantly reduced kinetics compared to those of the wild-type virus. In addition to abolished gE/gI heterodimer formation, gI from the C95A or the Δ105-125 mutant was not recognized by monoclonal antibodies that detect the canonical conformation of gI, demonstrating structural disruption of gI in these viruses. This alteration prevented gI incorporation into virus particles. Thus, residues C95 and 105 to 125 are critical for gI structure required for gE/gI heterodimer formation, virion incorporation, and ultimately, effective viral spread in human skin.  相似文献   

13.
Clostridium acetobutylicum mutants BA 101 (hyperamylolytic) and BA 105 (catabolite depressed) were isolated by using N-methyl-N'-nitro-N-nitrosoguanidine together with selective enrichment on the glucose analog 2-deoxyglucose. Amylolytic enzyme production by C. acetobutylicum BA 101 was 1.8- and 2.5-fold higher than that of the ATCC 824 strain grown in starch and glucose, respectively. C. acetobutylicum BA 105 produced 6.5-fold more amylolytic activity on glucose relative to that of the wild-type strain. The addition of glucose at time zero to starch-based P2 medium reduced the total amylolytic activities of C. acetobutylicum BA 101 and BA 105 by 82 and 25%, respectively, as compared with the activities of the same strains grown on starch alone. Localization studies demonstrated that the amylolytic activities of C. acetobutylicum BA 101 and BA 105 were primarily extracellular on all carbohydrates tested.  相似文献   

14.
Clostridium acetobutylicum mutants BA 101 (hyperamylolytic) and BA 105 (catabolite depressed) were isolated by using N-methyl-N'-nitro-N-nitrosoguanidine together with selective enrichment on the glucose analog 2-deoxyglucose. Amylolytic enzyme production by C. acetobutylicum BA 101 was 1.8- and 2.5-fold higher than that of the ATCC 824 strain grown in starch and glucose, respectively. C. acetobutylicum BA 105 produced 6.5-fold more amylolytic activity on glucose relative to that of the wild-type strain. The addition of glucose at time zero to starch-based P2 medium reduced the total amylolytic activities of C. acetobutylicum BA 101 and BA 105 by 82 and 25%, respectively, as compared with the activities of the same strains grown on starch alone. Localization studies demonstrated that the amylolytic activities of C. acetobutylicum BA 101 and BA 105 were primarily extracellular on all carbohydrates tested.  相似文献   

15.
Evidence is presented for complexation of guanosine 5-monophosphate 2-methylimidazolide (2-MeImpG) with polycytidylate (poly(C)) at pH 8.0 and 23°C in the presence of 1.0 M NaCl and 0.2 M MgCl2 in water. The association of 2-McImpG with poly(C) was investigated using UV-vis spectroscopy as well as by monitoring the kinetics of the nucleophilic substitution reaction of the imidazole moiety by amines. The results of both methods are consistent with moderately strong poly(C) · 2-McImpG complexation and the spectrophotometric measurements allowed the construction of a binding isotherm with a concentration of 2-McImpG equal to 5.55 ± 0.15 mM at half occupancy. UV spectroscopy was employed to establish the binding of other guanosine derivatives on poly(C). These derivatives are guanosine 5-monophosphate (5GMP), guanosine 5monophosphate imidazolide (ImpG), and guanosine 5monophosphate morpholidate (morpG). Within experimental error these guanosine derivatives exhibit the same affinity for poly(C) as 2-McImpG.  相似文献   

16.
Temperate Bacillus phage 105 is serologically unrelated to previously described virulent Bacillus phages. Phage 105 is incapable of generalized transduction. Prophage 105 is inducible with mitomycin C. Phage 105 contains double-stranded deoxyribonucleic acid (DNA) with a molecular weight of about 25 × 107 as determined by band sedimentation and electron microscopy. The per cent guanine plus cytosine of 105 DNA is 43.5 as determined by buoyant density in CsCl and by thermal denaturation. Phage 105 DNA may contain complementary single-stranded ends.  相似文献   

17.
Heat shock protein (HSP)105 is a testis-specific and HSP90-related protein. The aim of this study was to explore the functions of HSP105 in the rat testis. Signals of HSP105 were detected immunohistochemically in the germ cells and translocated from the cytoplasm to the nucleus at 2 days after experimental induction of cryptorchidism. In cultured testicular germ cells, a significant increase in the expression of HSP105 in response to heat stress (37 degrees C) was detected in the insoluble protein fractions. Several binding proteins were isolated from rat testis using a HSP105 antibody immunoaffinity column, and p53, the tumor suppressor gene product, was copurified with these. Furthermore, immunoprecipitation using antibodies to p53 led to coprecipitation of HSP105 together with p53 after culturing germ cells at 32.5 degrees C, but not at 37 or 42 degrees C. In conclusion, HSP105 is specifically localized in the germ cells and may translocate into the nucleus after heat shock. HSP105 is suggested to form a complex with p53 at the scrotal temperature, and dissociate from it at suprascrotal temperatures. At scrotal temperature, HSP105 may thus contribute to the stabilization of p53 proteins in the cytoplasm of the germ cells, preventing the potential induction of apoptosis by p53.  相似文献   

18.
Mammalian cells incubated at 42 degrees C synthesize a specific heat-shock protein at 42 degrees C (42 degrees C-hsp) that is not induced by heat-shock at 45 degrees C or by other stresses that induce major heat shock proteins (Hatayama et al. (1986) Biochem. Biophys. Res. Commun. 137, 957-963). Antibody raised against a heat-shock protein with molecular weight of 105,000 (hsp 105) purified from mouse FM 3A cells cross-reacted to the 42 degrees C-hsp of the same cells. The antibody reacted only weakly to hsp 105 and 42 degrees C-hsp of human HeLa cells. These results suggested that hsp 105 and 42 degrees C-hsp have the same antigenic determinant, and that 42 degrees C-hsp may have a structure similar to that of hsp 105.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号