首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The binding of salivary amylase to Streptococcus gordonii has previously been shown to involve a 20-kDa amylase-binding protein (AbpA). S. gordonii also releases an 82-kDa protein into the supernatant that binds amylase. To study this 82-kDa component, proteins were precipitated from bacterial culture supernatants by the addition of acetone or purified amylase. Precipitated proteins were separated by SDS-PAGE and transferred to a sequencing membrane. The P2 kDa band was then sequenced, yielding a 25 N-terminal amino acid sequence, CGFIFGRQLTADGSTMFGPTEDYP. Primers derived from this sequence were used in an inverse PCR strategy to clone the full-length gene from S. gordonii chromosomal DNA. An open reading frame of 1959 bp was noted that encoded a 652 amino acid protein having a predicted molecular mass of 80 kDa. The first 24 amino acid residues were consistent with a hydrophobic signal peptide, followed by a 25 amino acid N-terminal sequence that shared identity (24 of 25 residues) with the amino acid sequence of purified AbpB. The abpB gene from strains of S. gordonii was interrupted by allelic exchange with a 420-bp fragment of the abpB gene linked to an erythromycin cassette. The 82-kDa protein was not detected in supernatants from these mutants. These abpB mutants retained the ability to bind soluble amylase. Thus, AbpA, but not AbpB, appears sufficient to be the major receptor for amylase binding to the streptococcal surface. The role of AbpB in bacterial colonization remains to be elucidated.  相似文献   

2.
3.
Cell surface protein receptors in oral streptococci   总被引:19,自引:0,他引:19  
Abstract Streptococci have a vast repertoire of adherence properties which include binding to human tissue components, epithelial cells and to other bacterial cells. These interactions are determined by the expression of cell-surface receptors some of which are species-specific. In the oral streptococci, two families of surface protein receptors with highly conserved amino acid sequences have been identified. The antigen I/II family of polypeptides are wall-associated high molecular mass proteins (158–166 kDa) with several binding functions that may be attributed to different domains of the receptor molecules. The LraI family of polypeptides are surface-associated lipoproteins (32–33 kDa) involved in adherence of streptococci to salivary glycoprotein pellicle and to oral Actinomyces . A region of amino acid sequence similarity is evident amongst members of the two protein families in Streptococcus gordonii . Ligand-binding specificities of these receptor polypeptides may account for species-specific adherence and site-directed colonization of streptococci within the human oral cavity.  相似文献   

4.
Competition between pioneer colonizing bacteria may determine polymicrobial succession during dental plaque development, but the ecological constraints are poorly understood. For example, more Streptococcus sanguinis than Streptococcus gordonii organisms are consistently isolated from the same intraoral sites, yet S. gordonii fails to be excluded and survives as a species over time. To explain this observation, we hypothesized that S. gordonii could compete with S. sanguinis to adhere to saliva-coated hydroxyapatite (sHA), an in vitro model of the tooth surface. Both species bound similarly to sHA, yet 10- to 50-fold excess S. gordonii DL1 reduced binding of S. sanguinis SK36 by 85 to >95%. S. sanguinis, by contrast, did not significantly compete with S. gordonii to adhere. S. gordonii competed with S. sanguinis more effectively than other species of oral streptococci and depended upon the salivary film on HA. Next, putative S. gordonii adhesins were analyzed for contributions to interspecies competitive binding. Like wild-type S. gordonii, isogenic mutants with mutations in antigen I/II polypeptides (sspAB), amylase-binding proteins (abpAB), and Csh adhesins (cshAB) competed effectively against S. sanguinis. By contrast, an hsa-deficient mutant of S. gordonii showed significantly reduced binding and competitive capabilities, while these properties were restored in an hsa-complemented strain. Thus, Hsa confers a selective advantage to S. gordonii over S. sanguinis in competitive binding to sHA. Hsa expression may, therefore, serve as an environmental constraint against S. sanguinis, enabling S. gordonii to persist within the oral cavity, despite the greater natural prevalence of S. sanguinis in plaque and saliva.  相似文献   

5.
Four proteins of molecular mass 102, 87, 45, and 38 kDa were isolated from plasma membrane preparations by affinity chromatography. The 102-, 87-, and 38-kDa proteins were shown to be collagen receptors involved in the adhesion of HeLa cells to a gelatin substratum. All four proteins were eluted by high salt from affinity columns made of either types I or IV collagen or type I gelatin. Generally, a total of six major proteins were found in the high salt eluates, although the relative amounts of each varied among experiments. Immunoprecipitation, immunoblotting, and limited peptide mapping indicated that the 102-kDa protein was most sensitive to proteolysis leading to the formation of proteins of molecular mass 58 and 54 kDa. Even in the presence of a mixture of protease inhibitors the 58-kDa fragment was usually the more abundant species. Lectin binding indicated that the 102-, 87-, and 38-kDa proteins contain carbohydrate. Phase-partitioning with Triton X-114 and the need to solubilize the proteins in Triton X-100 indicated that the 102-, 87-, 45-, and 38-kDa proteins have a hydrophobic domain. The 87-kDa protein partitioned exclusively with the detergent-rich phase, suggesting that it is the most hydrophobic. Cell surface labeling with 125I indicated that the four proteins have an extracellular domain. Four criteria were used to determine which of the four proteins are collagen receptors mediating cell-substrate adhesion: 1) during HeLa cell adhesion, proteins with Mr values similar to all four proteins or their peptide fragments were cross-linked to a gelatin substratum derivatized with a photoactivatable probe; 2) a pentapeptide containing the Arg-Gly-Asp cell recognition sequence eluted the same four proteins as those found by high salt elution of collagen affinity columns; 3) monospecific antibodies to the 102-, 87-, and 38-kDa proteins, but not the 45-kDa protein, inhibited the spreading of HeLa cells on a gelatin substratum; 4) monospecific antibodies to the 102-, 87-, and 38-kDa proteins, but not the 45-kDa protein, bound to culture dishes substituted for gelatin in mediating the spreading of HeLa cells. Taken together, the data suggest that the 102-, 87-, and 38-kDa proteins are collagen receptors involved in HeLa cell adhesion. Although the 45-kDa protein has two of the characteristics of a collagen receptor defined here, it does not fit the criteria for one involved in cell-substratum adhesion.  相似文献   

6.
With the exception of calcium very little is known about metal binding characteristics of either human salivary or porcine pancreatic amylase. In order to learn more about these protein-metal binding interactions, calcium-free human salivary and porcine pancreatic amylase [P(protein)] were obtained by carboxymethylcellulose chromatography of the partially purified proteins. Because these proteins acquired small amounts of calcium after further preparatory studies, they were dialyzed against 1 mM EDTA, pH 7.4, at 22 degrees C, which removed essentially all acquired calcium. The calcium-free amylases were then subjected to equilibrium dialysis against copper or zinc solutions with or without added glycine. The experimental data were fitted to appropriate mathematical equations, and binding constants of the metal complexes were calculated. Both human salivary and porcine pancreatic amylase were found to have two metal ion binding sites, only one of which was selective for calcium. Copper or zinc appeared to bind to the second site forming the species CuCaLP (or ZnCaP), where L, a ligand, is the glycine anion. Neither copper nor zinc displaced calcium from human salivary amylase, although copper bound to both binding sites in human salivary apoamylase to form the species Cu2L2P in which the amylase molecule appeared to form a bridge between the two copper atoms. In the case of the zinc-human salivary apoamylase system, the experimental data could not be analyzed quantitatively since the protein formed an insoluble complex species. Copper displaced calcium from porcine pancreatic amylase and formed a mixed ligand species similar to that formed with human salivary apoamylase. Zinc bound to both metal binding sites of porcine pancreatic apoamylase, forming species ZnP and Zn2P, although it did not displace calcium from the protein. While calcium in amylase is known to be critical for its amylolytic activity, little is known about the function of either zinc or copper in amylase albeit both of these metals are important in biological systems.  相似文献   

7.
The ability of 51 strains, belonging to Streptococcus sanguis, 'S. mitior', S. oralis and related groups, to bind salivary amylase was studied. Most strains were grouped according to their DNA-relatedness and then compared using 14 phenotypic tests. S. mitis, 'S. mitior' and three relatively new groups of strains ('CR', 'MGH' and 'Tufted mitior') bound salivary amylase, while strains of S. sanguis and S. oralis did not. The ability of strains to bind amylase or not was remarkably consistent within groups and the test proved to be reproducible, rapid and easy to perform. Combination of the amylase-binding test with 6 other conventional physiological tests allowed the construction of a dichotomous identification key which correctly identified 95% of strains for which genetic data was available. These findings suggest that the ability of organisms to bind salivary amylase could become a key test in identification schemes for certain oral streptococci.  相似文献   

8.
Proteolytic digestion and indirect immunostaining were used to compare the platelet and sarcoplasmic reticulum Ca2+-ATPase proteins. When the platelet and sarcoplasmic reticulum Ca2+-ATPase proteins were digested in the native state with trypsin, the platelet Ca2+-ATPase, which had an apparent undigested molecular mass of 103 kDa, yielded 78-kDa and 25-kDa fragments. Calcium transport activity depended on the integrity of the 103-kDa protein, while the digested protein had residual ATPase activity. Tryptic digestion of the sarcoplasmic reticulum pump protein, which also had an undigested molecular mass of 103 kDa, yielded products with apparent molecular masses of 55 kDa, 36 kDa, and 26 kDa. Distinct patterns were also observed when the platelet and sarcoplasmic reticulum calcium pump proteins were digested with chymotrypsin and Staphylococcus aureus protease in the presence of sodium dodecyl sulfate. Chymotrypsin digestion of the platelet protein resulted in the appearance of products with apparent molecular masses of 70 kDa, 39 kDa, and 31 kDa, while a similar digestion of the sarcoplasmic reticulum calcium pump protein yielded 54-kDa, 52.5-kDa, 46-kDa, 41-kDa, and 36-kDa fragments. Exposure of the sarcoplasmic reticulum and platelet Ca2+-ATPase proteins to S. aureus protease also yielded dissimilar fragmentation patterns. These results indicate that the Ca2+-ATPases from platelets and sarcoplasmic reticulum are distinct proteins.  相似文献   

9.
Iodinated interleukin-3 (IL-3) can be covalently cross-linked to three specific surface glycoproteins with net molecular masses of 170, 140, and 65-70 kDa under conditions in which ligand internalization and degradation do not occur. These three proteins plus two additional non-ligand-binding proteins of 90 and 55 kDa can be purified by IL-3 affinity chromatography. Comparative two-dimensional analysis of the tryptic digests of these five proteins indicates that the ligand-binding proteins are highly related at the peptide level. Incubation of cells with 125I-IL-3 at 37 degrees C results in rapid time- and energy-dependent internalization and degradation of ligand. Under these conditions only the 140- and 65-70-kDa binding proteins, which can recycle to the surface after internalization, can be identified. The lability of the 170-kDa protein indicates that it may not recycle. Thus, an energy-dependent mechanism is responsible for internalization and may be necessary for any potential interconversion of the higher 170- or 140-kDa proteins to the lower 140- and/or 65-70-kDa binding proteins.  相似文献   

10.
Rat ovarian lutropin receptor occurs predominantly as a monomer of an apparent molecular mass of 70 or 80 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing and reducing conditions, respectively. The receptor contains 0.4% free cysteine and 1.9% cysteine as cystine, determined by amino acid analysis of the S-carboxymethyl receptor prepared before and after reduction. The presence of free thiol groups was further shown by the specific adsorption of the receptor on p-chloromercuribenzoate-agarose and its susceptibility to 3H labeling with [3H]N-ethylmaleimide or [3H]iodoacetic acid. The receptor readily undergoes association into homo-oligomers. Evidence suggests that the association was caused by the intermolecular oxidation of the free -SH groups to form disulfide bonds. The aggregation could be induced by H2O2 or molecular O2 and was inhibited by sulfhydryl protecting agents such as N-ethylmaleimide, iodoacetic acid, dithiothreitol, cysteine, and Zn(II). The oligomers could be dissociated by reduction into a monomer. 125I-Labeling of the S-carboxymethyl- or N-ethylmaleyl receptor gave a single band of molecular mass 70 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Furthermore, S-alkylation of the receptor did not affect its binding to the ligand. On reduction, however, it lost its ability to bind to the ligand, but the reduced receptor retained its ability to bind to a specific polyclonal rabbit antireceptor antibody indicating the separation of the ligand and antibody binding sites. Endoproteinase Glu-C cleaved the receptor at a single glutamyl residue to give two components, 46 and 36 kDa. The 36-kDa component was extracellularly located since it contained the carbohydrate. On deglycosylation with endoglycosidase F, it yielded two components, 27 and 25 kDa. The deglycosylation of the reduced intact receptor (80 kDa) with endoglycosidase F occurred in two steps giving 73- and 64-kDa polypeptides, indicating the presence of about 20% carbohydrate contained in two or more N-linked chains.  相似文献   

11.
Abstract A protein with the proteolytic activity was isolated from culture filtrate of the aculeacin A acylase producing strain, Actinoplanes utahensis NRRL12052. The purified protein showed a single band of molecular mass of 87 kDa in SDS-PAGE and gel filtration using HPLC, and reacted with anti-aculeacin A acylase antiserum. The 87-kDa protein was degraded to two peptides of molecular mass of 60 kDa and 19 kDa by incubation at 37°C in the presence of 0.1% SDS and the former band also responded to the antiserum. These results indicate that the 87-kDa protein possessing the proteolytic activity is a precursor of aculeacin A acylase.  相似文献   

12.
We describe here the purification and characterization of a recently identified adherens junction protein that has an apparent molecular mass of 82 kDa on sodium dodecyl sulfate-polyacrylamide gels (Beckerle, M. C. (1986) J. Cell Biol. 103, 1679-1687). The 82-kDa protein was isolated from avian smooth muscle by a low ionic strength alkaline pH extraction followed by ammonium sulfate fractionation. Sequential chromatographic separation using DEAE-cellulose, phenyl-Sepharose CL-4B, and hydroxylapatite resins results in a purified 82-kDa protein. The 82-kDa protein has a Stokes radius of 5.6 nm and a relative sedimentation coefficient of 3.0 S. The calculated native molecular mass of the protein based on its hydrodynamic properties is 69 kDa, and the derived frictional ratio (f/fo) is 2.1. The protein does not focus discretely by isoelectric-focusing-sodium dodecyl sulfate-polyacrylamide gel electrophoresis; there are numerous isoelectric point variants in the range of 6.4-7.2, with the average isoelectric point being 6.9. The 82-kDa protein is phosphorylated in vivo and appears to be a cytoplasmic component of adherens junctions. The properties of the 82-kDa protein distinguish it from other known adherens junction proteins of this molecular mass. In fibroblasts, the 82-kDa protein is found in adhesion plaques as well as along actin-containing stress fibers near where they terminate at sites of cell-substratum adhesion. It is also found in the cell-cell adherens junctions of pigmented retinal epithelial cells and the dense plaques of smooth muscle cells. Since the 82-kDa protein is found at both cell-substratum and cell-cell adherens junctions, we propose to call it zyxin, meaning a joining, to indicate that it is found at regions where extracellular ligands are structurally and functionally joined to the cytoskeleton.  相似文献   

13.
Tryptic cleavage of EF-2, molecular mass 93 kDa, produced an 82-kDa polypeptide and a 10-kDa fragment, which was further degraded. By a slower reaction the 82-kDa polypeptide was gradually split into a 48-kDa and a 34-kDa fragment. Similarly, treatment with chymotrypsin resulted in the formation of an 82-kDa polypeptide and a small fragment. In contrast to the tryptic 82-kDa polypeptide the corresponding chymotryptic cleavage product was relatively resistant to further attack. The degradation of the 82-kDa polypeptide with either trypsin or chymotrypsin was facilitated by the presence of guanosine nucleotides, indicating a conformational shift in native EF-2 upon nucleotide binding. No effect was observed in the presence of ATP, indicating that the effect was specific for guanosine nucleotides. After affinity labelling of native EF-2 with oxidized [3H]GTP and subsequent trypsin treatment the radioactivity was recovered in the 48-kDa polypeptide showing that the GTP-binding site was located within this part of the factor. Correspondingly, tryptic degradation of EF-2 labelled with [14C]NAD+ in the presence of diphtheria toxin showed that the site of ADP-ribosylation was within the 34-kDa polypeptide. By cleavage with the tryptophan-specific reagent N-chlorosuccinimide the site of ADP-ribosylation could be located at a distance of 40-60 kDa from the GTP-binding site and about 4-11 kDa from the nearest terminus.  相似文献   

14.
Previous studies have demonstrated that human cytomegalovirus (HCMV) binding to human foreskin fibroblasts (HFF) is mediated by a single type of molecule, likely a glycoprotein, which serves as a specific receptor for the virus. In the present experiments, HCMV was found to bind to an HFF membrane protein with an approximate molecular mass of 30 kilodaltons (kDa); weak binding to 28- and 92-kDa membrane components was also observed. Binding was specific, as it was inhibited by excess unlabeled HCMV. Radiolabeled HCMV also bound selectively to Raji and Daudi lymphoblastoid cell membrane proteins of the same molecular masses. The 30-kDa radiolabeled HFF membrane protein bound to HCMV in solution; this binding was also specific, as it was blocked by an excess of HCMV. These data suggest that a membrane protein with a molecular mass of approximately 30 kDa mediates HCMV binding to several cell types.  相似文献   

15.
Paracoccidioides brasiliensis causes paracoccidioidomycosis, a systemic mycosis in Latin America. Formamidases hydrolyze formamide, putatively plays a role in fungal nitrogen metabolism. An abundant 45-kDa protein was identified as the P. brasiliensis formamidase. In this study, recombinant formamidase was overexpressed in bacteria and a polyclonal antibody to this protein was produced. We identified a 180-kDa protein species reactive to the antibody produced in mice against the P. brasiliensis recombinant purified formamidase of 45 kDa. The 180-kDa purified protein yielded a heat-denatured species of 45 kDa. Both protein species of 180 and 45 kDa were identified as formamidase by peptide mass fingerprinting using MS. The identical mass spectra generated by the 180 and the 45-kDa protein species indicated that the fungal formamidase is most likely homotetrameric in its native conformation. Furthermore, the purified formamidase migrated as a protein of 191 kDa in native polyacrylamide gel electrophoresis, thus revealing that the enzyme forms a homotetrameric structure in its native state. This enzyme is present in the fungus cytoplasm and the cell wall. Use of a yeast two-hybrid system revealed cell wall membrane proteins, in addition to cytosolic proteins interacting with formamidase. These data provide new insights into formamidase structure as well as potential roles for formamidase and its interaction partners in nitrogen metabolism.  相似文献   

16.
Several bacterial species express surface proteins with affinity for the constant region (Fc) of immunoglobulin (Ig) of different animal species. Previous studies from our group have reported the presence of an IgG-binding protein in various serotypes of Streptococcus suis . This molecule was also shown to bind in a non-immune fashion chicken IgY and to our knowledge this characteristic is unique. In the present study, by dot-blotting, we showed that the native protein, obtained by affinity chromatography, reacted more strongly with IgG from various animal species than the denatured material. Using a competitive enzyme-linked immunosorbent assay the affinity of the native 60-kDa protein (previously identified as a 52-kDa protein) towards IgG of various animal species was compared to pig IgG. Bovine, goat and human IgG were able to compete effectively with pig IgG whereas chicken IgY constituted a poor competitor. Peptide mapping analysis using denatured protein indicated that pig and bovine IgG recognized the same proteolytic fragment whereas chicken IgY did not. The smallest proteolytic fragment that retained the binding activity towards the IgG of the different animal species tested had a molecular mass of approximately 40 kDa. Fragments with M r<40 kDa showed specific binding activities. That is, the smallest fragment binding pig and bovine IgG had a M r of 30 kDa whereas for goat and human IgG a fragment of less than 16 kDa still showed binding activity. Finally, we observed that antisera raised against a heat-shock protein of Pseudomonas aeruginosa reacted with the 60-kDa S. suis protein indicating that the S. suis 60-kDa protein is a member of the 60-kDa hsp family that possesses the characteristic of binding in a non-immune way mammalian IgG and chicken IgY.  相似文献   

17.
Biosynthesis of the prohormone convertase mPC1 in AtT-20 cells.   总被引:9,自引:0,他引:9  
A new family of mammalian subtilisin-like enzymes, probably involved in the processing of proproteins in regulated and constitutive cells at paired basic residues, has recently been discovered. Little information exists as yet concerning the biosynthesis of these endogenous subtilisin-like enzymes. In the present work the biosynthesis and release of the endogenous prohormone convertase PC1 in AtT-20 cells were studied. As predicted from mRNA studies, AtT-20 cells contain high levels of PC1 protein. Through immunoblotting, 87-kilodalton (kDa) and 66-kDa bands were detected with an amino terminally directed antiserum; however, only the 87-kDa product was detected with carboxyl terminally directed antiserum, indicating carboxyl terminal truncation. Pulse-chase experiments, using [35S]methionine/cysteine, showed that after 20 min pulse the main product in the cells was the 87-kDa protein. Cells chased for varying amounts of time exhibited a progressive increase in the intensity of a 66-kDa band, along with a corresponding decrease of the 87-kDa band. The 87-66 kDa conversion was nearly complete after 4 h of chase. This posttranslational processing was inhibited by the ionophore monensin, a Golgi disruptor, with a corresponding accumulation of the 87-kDa protein within the cell. Both the 87 kDa- and 66 kDa-labeled proteins were detected as membrane-bound rather than soluble proteins. The 87-kDa protein was the main product secreted by nonstimulated AtT-20 cells, while the 66-kDa product was only released when the cells were stimulated with CRF or BaCl2 and Bromo-cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Calcium-dependent phospholipid binding and phospholipase A2 inhibitory proteins were isolated from human mononuclear cells. Lipocortins I and II were present whereas lipocortin IV (endonexin I) was not. The other proteins were purified to homogeneity and shown to have molecular masses of 35, 36, 32 and 73 kDa. The 36-kDa and 73-kDa proteins are related, the smaller appears to be part of the larger. The 73-kDa protein is related to the 67-kDa calelectrin and to lipocortin VI; the 32-kDa protein is different from endonexin I but related to chromobindin 7 and to lipocortin V. The 35-kDa protein has been identified by tryptic peptide sequencing as lipocortin III. All these proteins inhibit phospholipase A2 activity in vitro and the three smaller ones inhibit the [3H]arachidonic acid release from prelabelled monocytes induced by the calcium ionophore A23187 in a dose-dependent manner.  相似文献   

19.
Four porcine sperm plasma membrane proteins were previously identified as putative ligands for the oocyte plasma membrane. The present study examined the binding of these proteins and two additional porcine sperm membrane proteins to oocytes from sheep, mice and hamsters as a first step in assessing potential conservation of these putative sperm ligands across species and across mammalian orders. Plasma membrane vesicles were isolated from porcine sperm, solubilised, and the proteins separated by one-dimensional gel electrophoresis. The 7, 27, 39 and 62 kDa porcine sperm protein bands demonstrating predominant binding of the porcine oocyte plasma membrane on ligand blots, a 90 kDa protein band demonstrating minor binding, and a 97 kDa protein band that did not bind the oocyte plasma membrane probe were electroeluted. Proteins were biotinylated, and incubated with zona-free oocytes. Bound biotinylated protein was labelled with fluorescent avidin and the oocytes examined with a confocal microscope. The 7 kDa, 27 kDa and the 39 kDa proteins bound to the sheep oocytes but not to a majority of the hamster or mouse oocytes. The 62 kDa protein bound to sheep oocytes and mouse oocytes but not to a majority of the hamster oocytes. The 90 kDa protein bound to oocytes from all three species. The 97 kDa protein, which did not recognise the porcine oocyte probe on a Western ligand blot, did not bind to oocytes from any species and served as a negative control. These observations are consistent with significant conservation of molecule and function among species within the same mammalian order. Hence, one species may be a good model for other species from the same order. Only limited conservation of binding activity of porcine sperm plasma membrane proteins to rodent oocytes was observed, suggesting a greater divergence either in molecular structure or in function among species from different orders.  相似文献   

20.
Extracellular amylase in Streptomyces lividans was undetectable in starch-supplemented medium. However, S. lividans produced fivefold-higher levels of amylase than Streptomyces griseus IMRU 3570 when transformed with the S. griseus amy gene. Two major proteins of 57 and 50 kDa with amylase activity accumulated in the culture broths of the donor S. griseus and S. lividans transformed with the amy gene. Both proteins were also present in protoplast lysates in the same relative proportion; they gave a positive reaction with antibodies against the 57-kDa amylase. They did not differ in substrate specificity or enzyme kinetics. The two amylases were purified to homogeneity by a two-step procedure. Both proteins showed the same amino-terminal sequence of amino acids, suggesting that both proteins are derived from the same gene. The deduced signal peptide has 28 amino acids with two positively charged arginines near the amino-terminal end. When an internal NcoI fragment was removed from the amy gene, the resulting S. lividans transformants did not synthesize any of the two amylase proteins and showed no reaction in immunoblotting. Formation of the 50-kDa protein was observed when pure 57-kDa amylase was treated with supernatants of protoplast lysates but not when it was treated with membrane preparations, indicating that the native 57-kDa amylase could be processed intracellularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号