首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simulated microgravity increases myogenic tone in rat cerebral arteries   总被引:2,自引:0,他引:2  
Adaptation ofthe cerebral circulation to microgravity was investigated in rat middlecerebral arteries after 20 days of hindlimb unweighting (HU). Myogenicresponses were measured in isolated, pressurized arteries from HU andcontrol animals. Maximal passive lumen diameters, obtained in theabsence of extracellular Ca2+ plusEDTA, were not significantly different between groups (249 vs. 258 µm). In physiological salt solution, arteries from both HU andcontrol animals maintained a constant lumen diameter when subjected toincremental increases in transmural pressure (20-80 mmHg).However, the diameter of arteries from HU animals was significantly smaller than that of arteries from control animals at all pressures; this difference could be eliminated by exposure to the nitric oxidesynthase inhibitorNG-nitro-L-argininemethyl ester. After HU treatment, transient distensibility of theartery wall in response to pressure was also significantly decreased,whereas the frequency and amplitude of vasomotion were increased. Thelatter changes were not affected byNG-nitro-L-argininemethyl ester. Thus simulated microgravity increases cerebral arterymyogenic tone through both nitric oxide synthase-dependent and-independent mechanisms.

  相似文献   

2.
Arteries that have developed myogenic tone (MT) are in a markedly different physiological state compared with those that have not, with higher cytosolic [Ca(2+)] and altered activity of several signal transduction pathways. In this study, we sought to determine whether alpha(1)-adrenoceptor-induced Ca(2+) signaling is different in pressurized arteries that have spontaneously developed MT (the presumptive physiological state) compared with those that have not (a common experimental state). At 32 degrees C and intraluminal pressure of 70 mmHg, cytoplasmic [Ca(2+)] was steady in most smooth muscle cells (SMCs). In a minority of cells (34%), however, at least one propagating Ca(2+) wave occurred. alpha(1)-Adrenoceptor activation (phenylephrine, PE; 0.1-10.0 microM) caused strong vasoconstriction and markedly increased the frequency of Ca(2+) waves (in virtually all cells). However, when cytosolic [Ca(2+)] was elevated experimentally in these arteries ([K(+)] 20 mM), PE failed to elicit Ca(2+) waves, although it did elevate [Ca(2+)] (F/F(0)) further and caused further vasoconstriction. During development of MT, the cytosolic [Ca(2+)] (F/F(0)) in individual SMCs increased, Ca(2+) waves disappeared (from SMCs that had them), and small Ca(2+) ripples (frequency approximately 0.05 Hz) appeared in approximately 13% of cells. PE elicited only spatially uniform increases in [Ca(2+)] and a smaller change in diameter (than in the absence of MT). Nevertheless, when cytosolic [Ca(2+)] and MT were decreased by nifedipine (1 microM), PE did elicit Ca(2+) waves. Thus alpha(1)-adrenoceptor-mediated Ca(2+) signaling is markedly different in arteries with and without MT, perhaps due to the elevated [Ca(2+)], and may have a different molecular basis. alpha(1)-Adrenoceptor-induced vasoconstriction may be supported either by Ca(2+) waves or by steady elevation of cytoplasmic [Ca(2+)], depending on the amount of MT.  相似文献   

3.
The present study tests the hypothesis that age-related changes in patterns of agonist-induced myofilament Ca(2+) sensitization involve corresponding differences in the relative contributions of thick- and thin-filament regulation to overall myofilament Ca(2+) sensitivity. Posterior communicating cerebral arteries from term fetal and nonpregnant adult sheep were used in measurements of cytosolic Ca(2+), myosin light chain (MLC) phosphorylation, and contractile tensions induced by varying concentrations of K(+) or serotonin [5-hydroxytryptamine (5-HT)]. The results were used to assess the relative contributions of the relationships between cytosolic Ca(2+) and MLC phosphorylation (thick-filament reactivity), along with the relationships between MLC phosphorylation and contractile tension (thin-filament reactivity), to overall myofilament Ca(2+) sensitivity. For K(+)-induced contractions, both fetal and adult arteries exhibited similar basal myofilament Ca(2+) sensitivity. Despite this similarity, thick-filament reactivity was greater in fetal arteries, whereas thin-filament reactivity was greater in adult arteries. In contrast, 5-HT-induced contractions exhibited increased myofilament Ca(2+) sensitivity compared with K(+)-induced contractions for both fetal and adult cerebral arteries, and the magnitude of this effect was greater in fetal compared with adult arteries. When interpreted together with our previous studies of 5-HT-induced myofilament Ca(2+) sensitization, we attributed the present effects to agonist enhancement of thick-filament reactivity in fetal arteries mediated by G protein receptor activation of a PKC-independent but RhoA-dependent pathway. In adult arteries, agonist stimulation enhanced thin-filament reactivity was also probably mediated through G protein-coupled activation of RhoA-dependent and PKC-independent mechanisms. Overall, the present data demonstrate that agonist-enhanced myofilament Ca(2+) sensitivity can be partitioned into separate thick- and thin-filament effects, the magnitudes of which are different between fetal and adult cerebral arteries.  相似文献   

4.
The effects of protein kinase C inhibition by staurosporine was studied on Ca-dependent tone of the rabbit facial vein. Tone was produced either by stretch or by readmission of Ca2+ in a non-depolarizing Ca2+-free salt solution. Stretch-induced tone was inhibited by staurosporine. When tissues were incubated in a Ca2+-free solution, staurosporine (50 nM) inhibited the contractile responses produced by readmission of Ca2+. These observations suggest that maintenance of stretch-induced extracellular Ca2+-dependent tone may be regulated by protein kinase C.  相似文献   

5.
The inner diameter and wall thickness of rat middle cerebral arteries (MCAs) were measured in vitro in both a pressure-induced, myogenically-active state and a drug-induced, passive state to quantify active and passive mechanical behavior. Elasticity parameters from the literature (stiffness derived from an exponential pressure-diameter relationship, beta, and elasticity in response to an increment in pressure, Einc-p) and a novel elasticity parameter in response to smooth muscle cell (SMC) activation, Einc-a, were calculated. beta for all passive MCAs was 9.11 +/- 1.07 but could not be calculated for active vessels. The incremental stiffness increased significantly with pressure in passive vessels; Einc-p (10(6) dynes/cm2) increased from 5.6 +/- 0.5 at 75 mmHg to 14.7 +/- 2.4 at 125 mmHg, (p < 0.05). In active vessels, Einc-p (10(6) dynes/cm2) remained relatively constant (5.5 +/- 2.4 at 75 mmHg and 6.2 +/- 1.0 at 125 mmHg). Einc-a (10(6) dynes/cm2) increased significantly with pressure (from 15.1 +/- 2.3 at 75 mmHg to 49.4 +/- 12.6 at 125 mmHg, p < 0.001), indicating a greater contribution of SMC activity to vessel wall stiffness at higher pressures.  相似文献   

6.
The effects of PMA, an activator of protein kinase C, was studied on Ca2+-induced tone in the rabbit basilar artery. Contractile responses to Ca2+ occurred only in arteries pretreated with PMA; the extent of Ca2+-induced contractions were related to the level of stretch applied to the vessels. Bay K 8644, a Ca2+-channel agonist, at a concentration that was subthreshold for contraction, augmented the extent of Ca2+-induced tone occurring in PMA-treated arteries. Nifedipine, a Ca2+-entry inhibitor, and staurosporine, an inhibitor of protein kinase C attenuated the response to Ca2+ occurring either in the absence or presence of Bay K 8644. Our results suggest that PMA increases myofilament sensitivity to Ca2+, such that levels of Ca2+ previously ineffective for contraction Ca2+-influx, e.g. due to Bay K 8644, is manifest as contraction. Our results also confirm the role of extracellular Ca2+ entry via plasma membrane stretch-dependent Ca2+-channels in the maintenance of vascular tone in the basilar artery.  相似文献   

7.
Earlier studies have implicated phospholipase C (PLC) in the development of myogenic tone (MT) based on pharmacological studies in larger arteries. In the present study, we further investigated the cellular effects of PLC inhibition using pharmacological and electrophysiological approaches to provide more quantitative functional evidence for the involvement of PLC in the genesis of MT in small cerebral arteries. The phosphatidylinositol-selective PLC (PI-PLC) inhibitor U-73122 decreased MT by 87% in posterior cerebral arteries from Sprague-Dawley rats with pIC(50) of 6.2 +/- 0.09 (n = 5). Similar potency (pIC(50) of 6.2 +/- 0.04, n = 5) was observed in arteries with MT that were further constricted with 30 nM serotonin. The phosphatidylcholine-specific (PC-PLC) inhibitor D609 had no effect on MT. U-73343, the inactive analog of U-73122, did not show any relaxant effect, but at higher concentrations (>1 microM) it reduced MT. In the presence of 125-500 nM U-73122, the pressure-diameter curves shifted toward that obtained in Ca-free conditions. U-73122-mediated decrease in MT was accompanied by a decrease in mean arterial wall calcium (maximum effect: 77 +/- 3% of 16 mM KCl-mediated decrease, n = 4). This was due to a simultaneous membrane potential hyperpolarization of approximately 9 mV or from -44 +/- 1 to -53 +/- 2 mV (10 microM, P < 0.001, n = 8). In summary, this study provides the first quantitative data suggesting a critical importance of PI-PLC in the genesis of pressure-induced MT in rat cerebral arteries via membrane potential depolarization and increased calcium influx.  相似文献   

8.
The effects of two structurally distinct inhibitors of gap junction communication were studied by using three different forms of vasoconstriction in pressurized rat middle cerebral arteries. The sensitivity of myogenic tone (at 60 mmHg), vasopressin-induced tone (10 nM, at 20 mmHg), and depolarizing solution-induced tone (80 mM K(+), at 20 mmHg) to inhibition by heptanol (1.0 microM to 3.0 mM) or 18alpha-glycyrrhetinic acid (18alpha-GA, 1.0 to 50 microM) were determined. Pressure-induced myogenic tone was inhibited by heptanol (IC(50) = 0.75 +/- 0.09 mM) and 18alpha-GA ( approximately 30 microM). Vasopressin-induced vasoconstriction was also inhibited by heptanol (IC(50) = 0.4 +/- 0.3 mM) and 18alpha-GA (>1 microM). Depolarizing solution-induced vasoconstriction was less sensitive to inhibition by heptanol compared to vasopressin (P < 0.01) or pressure-induced constriction (P < 0.05). However, 18alpha-GA did not inhibit depolarization-induced constriction. Sharp microelectrode experiments on isolated arteries revealed stable membrane potentials, with no detectable effect of heptanol (1 mM) or 18alpha-GA (20-30 microM) on the average membrane potential at 20 mmHg. However, approximately 20% of impaled cells (5 of 28) exhibited uncharacteristic oscillations in membrane potential after pharmacological uncoupling. At 60 mmHg a approximately 7- to 9-mV hyperpolarization and corresponding vasodilation (approximately 50%) was observed, and the frequency of membrane potential oscillations doubled (9 of 23 cells). These data indicate that gap junctions play an important role in the maintenance and modulation of membrane potential and tone in cerebral resistance arteries.  相似文献   

9.
Tissue blood flow and blood pressure are each regulated by the contractile behavior of resistance artery smooth muscle. Vascular diseases such as hypertension have also been attributed to changes in vascular smooth muscle function as a consequence of altered Ca2+ removal. In the present study of Ca2+ removal mechanisms, in dissociated single cells from resistance arteries using fura-2 microfluorimetry and voltage clamp, Ca2+ uptake by the sarcoplasmic reticulum and extrusion by the Ca2+ pump in the cell membrane were demonstrably important in regulating Ca2+. In contrast, the Na+-Ca2+ exchanger played no detectable role in clearing Ca2+. Thus a voltage pulse to 0 mV, from a holding potential of -70 mV, triggered a Ca2+ influx and increased intracellular Ca2+ concentration ([Ca2+]i). On repolarization, [Ca2+]i returned to the resting level. The decline in [Ca2+]i consisted of three phases. Ca2+ removal was fast immediately after repolarization (first phase), then plateaued (second phase), and finally accelerated just before [Ca2+]i returned to resting levels (third phase). Thapsigargin or ryanodine, which each inhibit Ca2+ uptake into stores, did not affect the first but significantly inhibited the third phase. On the other hand, Na+ replacement with choline+ did not affect either the phasic features of Ca2+ removal or the absolute rate of its decline. Ca2+ removal was voltage-independent; holding the membrane potential at 120 mV, rather than at -70 mV, after the voltage pulse to 0 mV, did not attenuate Ca2+ removal rate. These results suggest that Ca2+ pumps in the sarcoplasmic reticulum and the plasma membrane, but not the Na+-Ca2+ exchanger, are important in Ca2+ removal in cerebral resistance artery cells.  相似文献   

10.
11.
Intravascular pressure-induced vasoconstriction (the "myogenic response") is intrinsic to smooth muscle cells, but mechanisms that underlie this response are unresolved. Here we investigated the physiological function of arterial smooth muscle cell caveolae in mediating the myogenic response. Since caveolin-1 (cav-1) ablation abolishes caveolae formation in arterial smooth muscle cells, myogenic mechanisms were compared in cerebral arteries from control (cav-1(+/+)) and cav-1-deficient (cav-1(-/-)) mice. At low intravascular pressure (10 mmHg), wall membrane potential, intracellular calcium concentration ([Ca(2+)](i)), and myogenic tone were similar in cav-1(+/+) and cav-1(-/-) arteries. In contrast, pressure elevations to between 30 and 70 mmHg induced a smaller depolarization, [Ca(2+)](i) elevation, and myogenic response in cav-1(-/-) arteries. Depolarization induced by 60 mM K(+) also produced an attenuated [Ca(2+)](i) elevation and constriction in cav-1(-/-) arteries, whereas extracellular Ca(2+) removal and diltiazem, an L-type Ca(2+) channel blocker, similarly dilated cav-1(+/+) and cav-1(-/-) arteries. N(omega)-nitro-l-arginine, an nitric oxide synthase inhibitor, did not restore myogenic tone in cav-1(-/-) arteries. Iberiotoxin, a selective Ca(2+)-activated K(+) (K(Ca)) channel blocker, induced a similar depolarization and constriction in pressurized cav-1(+/+) and cav-1(-/-) arteries. Since pressurized cav-1(-/-) arteries are more hyperpolarized and this effect would reduce K(Ca) current, these data suggest that cav-1 ablation leads to functional K(Ca) channel activation, an effect that should contribute to the attenuated myogenic constriction. In summary, data indicate that cav-1 ablation reduces pressure-induced depolarization and depolarization-induced Ca(2+) influx, and these effects combine to produce a diminished arterial wall [Ca(2+)](i) elevation and constriction.  相似文献   

12.
This study investigated the effect of peroxynitrite (OONO(-))-induced nitrosylation of filamentous (F)-actin on myogenic tone in isolated and pressurized posterior cerebral arteries (PCAs). Immunohistochemical staining was used to determine 3-nitrotyrosine (NT) and F-actin content in vascular smooth muscle after exposure to 10(-7) M or 10(-4) M OONO(-) for 5 or 60 min in isolated third-order PCAs (n = 37) from male Wistar rats pressurized to 75 mmHg in an arteriograph chamber, quantified with confocal microscopy. Additionally, the role of K(+) channels in OONO(-)-induced dilation was investigated with 3 microM glibenclamide or 10 mM tetraethylammonium chloride before OONO(-) exposure. OONO(-) (10(-4) M) induced a 40% dilation of tone (P < 0.05) while diminishing F-actin content by half (P < 0.05) and causing a 60-fold increase in NT (P < 0.05) in the vascular smooth muscle of PCAs. Additionally, F-actin was inversely correlated with both diameter and NT content (P < 0.05) and was significantly colocalized in the vascular smooth muscle with NT (overlap coefficient = 0.8). The dilation to ONOO(-) was independent of K(+) channel activity and thiol oxidation as glibenclamide, tetraethylammonium chloride, and dithiothreitol had no effect on OONO(-)-induced dilation or F-actin or NT content in PCAs. Because NT was colocalized with F-actin, we hypothesize that OONO(-) induces nitrosylation of F-actin in vascular smooth muscle leading to depolymerization and the subsequent loss of myogenic tone, which may promote vascular damage during oxidative stress such as in ischemia and reperfusion injury.  相似文献   

13.
Arterial smooth muscle constriction in response to pressure, i.e., myogenic tone, may involve calcium-dependent and calcium-sensitization mechanisms. Calcium sensitization in vascular smooth muscle is regulated by kinases such as PKC and Rho kinase, and activity of these kinases is known to be altered in cardiovascular disorders. In the present study, we evaluated the relative contribution of PKC and Rho kinase to myogenic tone in cerebral arteries in hypertension. Myogenic tone and arterial wall calcium in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were measured simultaneously, and the effect of PKC and Rho kinase inhibitors on myogenic tone was evaluated. SHR arteries showed significantly greater myogenic tone than WKY arteries. Pressure/wall tension-arterial wall calcium curves showed a hyperbolic relation in WKY rats, but the curves for SHR arteries were parabolic. Myogenic tone was decreased by the Rho kinase inhibitors Y-27632 and HA-1077, with a significantly greater effect in SHR than in WKY arteries. Reduction in myogenic tone produced by the PKC inhibitor bisindolylmaleimide I in WKY and SHR arteries was significantly less than that produced by Rho kinase inhibition. The pressure-dependent increase in myogenic tone was significantly decreased by Y-27632, and the decrease was markedly greater than that produced by bisindolylmaleimide I in SHR arteries. In WKY arteries, the pressure-dependent increase in myogenic tone was decreased to a similar extent by Y-27632 and bisindolylmaleimide I. These results suggest greater myogenic tone with increased calcium sensitization in SHR arteries, largely because of Rho kinase activation, with a minor contribution of PKC activation.  相似文献   

14.
Cerebral artery vasospasm is a major cause of death and disability in patients experiencing subarachnoid hemorrhage (SAH). Currently, little is known regarding the impact of SAH on small diameter (100-200 microm) cerebral arteries, which play an important role in the autoregulation of cerebral blood flow. With the use of a rabbit SAH model and in vitro video microscopy, cerebral artery diameter was measured in response to elevations in intravascular pressure. Cerebral arteries from SAH animals constricted more (approximately twofold) to pressure within the physiological range of 60-100 mmHg compared with control or sham-operated animals. Pressure-induced constriction (myogenic tone) was also enhanced in arteries from control animals organ cultured in the presence of oxyhemoglobin, an effect independent of the vascular endothelium or nitric oxide synthesis. Finally, arteries from both control and SAH animals dilated as intravascular pressure was elevated above 140 mmHg. This study provides evidence for a role of oxyhemoglobin in impaired autoregulation (i.e., enhanced myogenic tone) in small diameter cerebral arteries during SAH. Furthermore, therapeutic strategies that improve clinical outcome in SAH patients (e.g., supraphysiological intravascular pressure) are effective in dilating small diameter cerebral arteries isolated from SAH animals.  相似文献   

15.
In rat mesenteric arteries, the ability of ACh to evoke hyperpolarization of smooth muscle cells and consummate dilatation relies on an increase in endothelial cell cytosolic free [Ca2+] and activation of Ca2+-activated K+ channels (KCa). The time course of average and spatially organized rises in endothelial cell [Ca2+]i and concomitant effects on membrane potential were investigated in individual cells of pressurized arteries and isolated sheets of native cells stimulated with ACh. In both cases, ACh stimulated a sustained and oscillating rise in endothelial cell [Ca2+]i. Overall, the oscillations remained asynchronous between cells, yet occasionally localized intercellular coordination became evident. In pressurized arteries, repetitive waves of Ca2+ moved longitudinally across endothelial cells, and depended on Ca2+-store refilling. The rise in endothelial cell Ca2+ was associated with sustained hyperpolarization of endothelial cells in both preparations. This hyperpolarization was also evident when recording from smooth muscle cells in pressurized arteries, and from resting membrane potential, selective inhibition of small-conductance K Ca (SK Ca) with apamin (50 nM) was sufficient to inhibit this response. In the presence of phenylephrine-tone, both apamin and the selective inhibitor of intermediate conductance K Ca (IK Ca) TRAM-34 (1 microM) were required to inhibit the non-nitric oxide-mediated dilatation to ACh. When hyperpolarization of endothelial cells was fully prevented either with inhibitors of K Ca or in KCl (35 mM)-depolarized cells, both the time course and frequency of oscillations in endothelial cell [Ca2+]i to ACh were unaffected. Together, these data show that although a rise in endothelial cell [Ca2+]i stimulates hyperpolarization, depletion of intracellular stores with ACh stimulates Ca2+-influx which is not significantly influenced by the increase in cellular electrochemical gradient for Ca2+ caused by that hyperpolarization.  相似文献   

16.
The effects of Mg(2+) and nifedipine (Nif) on vasoconstriction and Ca(2+) transients were studied in intact, pressurized rat mesenteric arteries with myogenic tone. Changes in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) were measured with confocal microscopy in fluo 4-AM loaded, individual myocytes. Myogenic tone was abolished by 10 mM Mg(2+) or 0.3 microM Nif. Contractions induced by 75 mM K(+) depolarization were blocked by 0.3 microM Nif, but not by 10 mM Mg(2+). Phenylephrine (PE; 5 microM) evoked sustained [Ca(2+)](cyt) elevation and vasoconstriction with superimposed Ca(2+) oscillations and vasomotion. The subsequent addition of 10 mM Mg(2+) or 0.3 microM Nif reduced [Ca(2+)](cyt) and abolished plateau vasoconstriction. When added before PE, both Mg(2+) and Nif abolished the PE-evoked Ca(2+) oscillations and vasomotion. Mg(2+) dilated the PE-constricted arteries after a brief (< or =180-240 s) vasoconstriction, but Nif did not. Both agents also abolished the vasoconstriction attributed to Ca(2+) entry through store-operated channels (SOCs) during internal Ca(2+) store refilling that followed store depletion. The data suggest that Ca(2+) entry through SOCs helps maintain both myogenic tone and alpha(1)-adrenoceptor-induced tonic vasoconstriction.  相似文献   

17.
Activation of MAP kinase kinase, also called ERK kinase (MEK), may lead to desinhibition of thin filament regulatory proteins and we therefore investigated the acute effects of the potent MEK inhibitor, PD98059 on the contractile properties of pressurized rat middle cerebral arteries. Cerebral arteries (diameter 100-150 microm) were mounted on a pressure myograph and PD98059 (10 microM, 40 microM) significantly inhibited (15% and 64%) myogenic tone (P < 0.001). At these concentrations, PD98059 also significantly reduced the vasopressin (0.1 microM)- and KCl (60 mM)-induced tone. Cumulative addition of exogenous Ca2+ (0.4-1.6 mM) increased myogenic tone to approximately 50% of constriction at 80 mmHg. This effect was inhibited by PD98059 (P < 0.001). These results demonstrate that pressure-induced myogenic tone is inhibited by PD98059 at the concentrations that have been reported to be selective for inhibition of MEK and the MAP kinase cascade. However, our results also demonstrate that PD98059 may have nonspecific effects on voltage-sensitive Ca2+ entry in vascular smooth muscle.  相似文献   

18.
Voltage dependence of Ca2+ sparks in intact cerebral arteries   总被引:4,自引:0,他引:4  
Ca2+ sparks have beenpreviously described in isolated smooth muscle cells. Here we presentthe first measurements of local Ca2+ transients("Ca2+ sparks") in an intactsmooth muscle preparation. Ca2+sparks appear to result from the opening of ryanodine-sensitive Ca2+ release (RyR) channels in thesarcoplasmic reticulum (SR). Intracellular Ca2+ concentration([Ca2+]i)was measured in intact cerebral arteries (40-150 µm in diameter) from rats, using the fluorescentCa2+ indicator fluo 3 and a laserscanning confocal microscope. Membrane potential depolarization byelevation of external K+ from 6 to30 mM increased Ca2+ sparkfrequency (4.3-fold) and amplitude (~2-fold) as well as globalarterial wall[Ca2+]i(~1.7-fold). The half time of decay (~50 ms) was not affected bymembrane potential depolarization. Ryanodine (10 µM), which inhibitsRyR channels and Ca2+ sparks inisolated cells, and thapsigargin (100 nM), which indirectly inhibitsRyR channels by blocking the SRCa2+-ATPase, completely inhibitedCa2+ sparks in intact cerebralarteries. Diltiazem, an inhibitor of voltage-dependentCa2+ channels, lowered global[Ca2+]iand Ca2+ spark frequency andamplitude in intact cerebral arteries in a concentration-dependentmanner. The frequency of Ca2+sparks (<1s1 · cell1),even under conditions of steady depolarization, was too low tocontribute significant amounts ofCa2+ to globalCa2+ in intact arteries. Theseresults provide direct evidence that Ca2+ sparks exist in quiescentsmooth muscle cells in intact arteries and that changes of membranepotential that would simulate physiological changes modulate bothCa2+ spark frequency and amplitudein arterial smooth muscle.

  相似文献   

19.
The goal of this study was to determine how myogenic responses and vascular responses to reduced Po(2) interact to determine vascular smooth muscle (VSM) transmembrane potential and active tone in isolated middle cerebral arteries from Sprague-Dawley rats. Stepwise elevation of transmural pressure led to depolarization of the VSM cells and myogenic constriction, and reduction of the O(2) concentration of the perfusion and superfusion reservoirs from 21% O(2) to 0% O(2) caused vasodilation and VSM hyperpolarization. Myogenic constriction and VSM depolarization in response to transmural pressure elevation still occurred at reduced Po(2). Arterial dilation in response to reduced Po(2) was not impaired by pressure elevation but was significantly reduced at the lowest transmural pressure (60 mmHg). However, the magnitude of VSM hyperpolarization was unaffected by transmural pressure elevation. This study demonstrates that myogenic activation in response to transmural pressure elevation does not override hypoxic relaxation of middle cerebral arteries and that myogenic responses and hypoxic relaxation can independently regulate vessel diameter despite substantial changes in the other variable.  相似文献   

20.
We previously showed that testosterone, administered in vivo, increases the tone of cerebral arteries. A possible underlying mechanism is increased vasoconstriction through the thromboxane A2 (TxA2) pathway. Therefore, we investigated the effect of chronic testosterone treatment (4 wk) on TxA2 synthase levels and the contribution of TxA2 to vascular tone in rat middle cerebral arteries (MCAs). Using immunofluorescence and confocal microscopy, we demonstrated that TxA2 synthase is present in MCA segments in both smooth muscle and endothelial layers. Using Western blot analysis, we found that TxA2 synthase protein levels are higher in cerebral vessel homogenates from testosterone-treated orchiectomized (ORX + T) rats compared with orchiectomized (ORX) control animals. Functional consequences of changes in cerebrovascular TxA2 synthase were determined using cannulated, pressurized MCA segments in vitro. Constrictor responses to the TxA2 mimetic U-46619 were not different between the ORX + T and ORX groups. However, dilator responses to either the selective TxA2 synthase inhibitor furegrelate or the TxA2-endoperoxide receptor (TP) antagonist SQ-29548 were greater in the ORX + T compared with ORX group. In endothelium-denuded arteries, the dilation to furegrelate was attenuated in both the ORX and ORX + T groups, and the difference between the groups was abolished. These data suggest that chronic testosterone treatment enhances TxA2-mediated tone in rat cerebral arteries by increasing endothelial TxA2 synthesis without altering the TP receptors mediating constriction. The effect of in vivo testosterone on cerebrovascular TxA2 synthase, observed here after chronic hormone administration, may contribute to the risk of vasospasm and thrombosis related to cerebrovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号