首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV-1 protease (PR) is a 99 amino acid protein responsible for proteolytic processing of the viral polyprotein – an essential step in the HIV-1 life cycle. Drug resistance mutations in PR that are selected during antiretroviral therapy lead to reduced efficacy of protease inhibitors (PI) including darunavir (DRV). To identify the structural mechanisms associated with the DRV resistance mutation L33F, we performed X-ray crystallographic studies with a multi-drug resistant HIV-1 protease isolate that contains the L33F mutation (MDR769 L33F). In contrast to other PR L33F DRV complexes, the structure of MDR769 L33F complexed with DRV reported here displays the protease flaps in an open conformation. The L33F mutation increases noncovalent interactions in the hydrophobic pocket of the PR compared to the wild-type (WT) structure. As a result, L33F appears to act as a molecular anchor, reducing the flexibility of the 30s loop (residues 29–35) and the 80s loop (residues 79–84). Molecular anchoring of the 30s and 80s loops leaves an open S1/S1′ subsite and distorts the conserved hydrogen-bonding network of DRV. These findings are consistent with previous reports despite structural differences with regards to flap conformation.  相似文献   

2.
The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.  相似文献   

3.
HIV-1 (human immunodeficiency virus type 1) protease (PR) and its mutants are important antiviral drug targets. The PR flap region is critical for binding substrates or inhibitors and catalytic activity. Hence, mutations of flap residues frequently contribute to reduced susceptibility to PR inhibitors in drug-resistant HIV. Structural and kinetic analyses were used to investigate the role of flap residues Gly48, Ile50, and Ile54 in the development of drug resistance. The crystal structures of flap mutants PRI50V (PR with I50V mutation), PRI54V (PR with I54V mutation), and PRI54M (PR with I54M mutation) complexed with saquinavir (SQV) as well as PRG48V (PR with G48V mutation), PRI54V, and PRI54M complexed with darunavir (DRV) were determined at resolutions of 1.05-1.40 Å. The PR mutants showed changes in flap conformation, interactions with adjacent residues, inhibitor binding, and the conformation of the 80s loop relative to the wild-type PR. The PR contacts with DRV were closer in PRG48V-DRV than in the wild-type PR-DRV, whereas they were longer in PRI54M-DRV. The relative inhibition of PRI54V and that of PRI54M were similar for SQV and DRV. PRG48V was about twofold less susceptible to SQV than to DRV, whereas the opposite was observed for PRI50V. The observed inhibition was in agreement with the association of G48V and I50V with clinical resistance to SQV and DRV, respectively. This analysis of structural and kinetic effects of the mutants will assist in the development of more effective inhibitors for drug-resistant HIV.  相似文献   

4.
Dimerization of HIV protease is essential for the acquisition of protease's proteolytic activity. We previously identified a group of HIV protease dimerization inhibitors, including darunavir (DRV). In the present work, we examine whether loss of DRV's protease dimerization inhibition activity is associated with HIV development of DRV resistance. Single amino acid substitutions, including I3A, L5A, R8A/Q, L24A, T26A, D29N, R87K, T96A, L97A, and F99A, disrupted protease dimerization, as examined using an intermolecular fluorescence resonance energy transfer (FRET)-based HIV expression assay. All recombinant HIV(NL4-3)-based clones with such a protease dimerization-disrupting substitution failed to replicate. A highly DRV-resistant in vitro-selected HIV variant and clinical HIV strains isolated from AIDS patients failing to respond to DRV-containing antiviral regimens typically had the V32I, L33F, I54M, and I84V substitutions in common in protease. None of up to 3 of the 4 substitutions affected DRV's protease dimerization inhibition, which was significantly compromised by the four combined substitutions. Recombinant infectious clones containing up to 3 of the 4 substitutions remained sensitive to DRV, while a clonal HIV variant with all 4 substitutions proved highly resistant to DRV with a 205-fold 50% effective concentration (EC(50)) difference compared to HIV(NL4-3). The present data suggest that the loss of DRV activity to inhibit protease dimerization represents a novel mechanism contributing to HIV resistance to DRV. The finding that 4 substitutions in PR are required for significant loss of DRV's protease dimerization inhibition should at least partially explain the reason DRV has a high genetic barrier against HIV's acquisition of DRV resistance.  相似文献   

5.
The mature protease from Group N human immunodeficiency virus Type 1 (HIV‐1) (PR1N) differs in 20 amino acids from the extensively studied Group M protease (PR1M) at positions corresponding to minor drug‐resistance mutations (DRMs). The first crystal structure (1.09 Å resolution) of PR1N with the clinical inhibitor darunavir (DRV) reveals the same overall structure as PR1M, but with a slightly larger inhibitor‐binding cavity. Changes in the 10s loop and the flap hinge propagate to shift one flap away from the inhibitor, whereas L89F and substitutions in the 60s loop perturb inhibitor‐binding residues 29–32. However, kinetic parameters of PR1N closely resemble those of PR1M, and calorimetric results are consistent with similar binding affinities for DRV and two other clinical PIs, suggesting that minor DRMs coevolve to compensate for the detrimental effects of drug‐specific major DRMs. A miniprecursor (TFR 1 - 54 ‐PR1N) comprising the transframe region (TFR) fused to the N‐terminus of PR1N undergoes autocatalytic cleavage at the TFR/PR1N site concomitant with the appearance of catalytic activity characteristic of the dimeric, mature enzyme. This cleavage is inhibited at an equimolar ratio of precursor to DRV (~6 μM), which partially stabilizes the precursor dimer from a monomer. However, cleavage at L34/W35 within the TFR, which precedes the TFR 1 - 54 /PR1N cleavage at pH ≤ 5, is only partially inhibited. Favorable properties of PR1N relative to PR1M include its suitability for column fractionation by size under native conditions and >10‐fold higher dimer dissociation constant (150 nM). Exploiting these properties may facilitate testing of potential dimerization inhibitors that perturb early precursor processing steps.  相似文献   

6.
Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV.  相似文献   

7.
HIV-1 protease (HIV-1PR) is an essential drug target in the treatment of patients infected with HIV-1. Mutations are found to arise in over 38 of 99 amino acid sites in this protein in response to drug therapy or natural selection, where many are found combinations that alter enzyme kinetics or inhibitor susceptibility without a clear structural mechanism. In efforts to understand how these mutations alter the flexibility and dynamics of HIV-1PR, we report the backbone 1H, 13C, and 15N chemical shift assignments for subtypes C, circulating recombinant form CRF01_AE and a multi-drug resistant variant MDR 769. These assignments are essential for future work aimed at characterizing backbone dynamics, exchange dynamics and dynamics of protein/substrate or protein/inhibitor interactions.  相似文献   

8.
Purification and in vitro protein‐folding schemes were developed to produce monodisperse samples of the mature wild‐type HIV‐2 protease (PR2), enabling a comprehensive set of biochemical and biophysical studies to assess the dissociation of the dimeric protease. An E37K substitution in PR2 significantly retards autoproteolytic cleavage during expression. Furthermore, it permits convenient measurement of the dimer dissociation of PR2E37K (elevated Kd ~20 nM) by enzyme kinetics. Differential scanning calorimetry reveals a Tm of 60.5 for PR2 as compared with 65.7°C for HIV‐1 protease (PR1). Consistent with weaker binding of the clinical inhibitor darunavir (DRV) to PR2, the Tm of PR2 increases by 14.8°C in the presence of DRV as compared with 22.4°C for PR1. Dimer interface mutations, such as a T26A substitution in the active site (PR2T26A) or a deletion of the C‐terminal residues 96–99 (PR21–95), drastically increase the Kd (>105‐fold). PR2T26A and PR21–95 consist predominantly of folded monomers, as determined by nuclear magnetic resonance (NMR) and size‐exclusion chromatography coupled with multiangle light scattering and refractive index measurements (SMR), whereas wild‐type PR2 and its active‐site mutant PR2D25N are folded dimers. Addition of twofold excess active‐site inhibitor promotes dimerization of PR2T26A but not of PR21–95, indicating that subunit interactions involving the C‐terminal residues are crucial for dimer formation. Use of SMR and NMR with PR2 facilitates probing for potential inhibitors that restrict protein folding and/or dimerization and, thus, may provide insights for the future design of inhibitors to circumvent drug resistance.  相似文献   

9.
Mutations in the spike protein of SARS-CoV-2 are the major causes for the modulation of ongoing COVID-19 infection. Currently, the D614G substitution in the spike protein has become dominant worldwide. It is associated with higher infectivity than the ancestral (D614)variant. We demonstrate using Gaussian network model-based normal mode analysis that the D614G substitution occurs at the hinge region that facilitates domain-domain motions between receptor binding domain and S2 region of the spike protein. Computer-aided mutagenesis and inter-residue energy calculations reveal that contacts involving D614 are energetically frustrated. However, contacts involving G614 are energetically favourable, implying the substitution strengthens residue contacts that are formed within as well as between protomers. We also find that the free energy difference (ΔΔG) between two variants is -2.6 kcal/mol for closed and -2.0 kcal/mol for 1-RBD up conformation. Thus, the thermodynamic stability has increased upon D614G substitution. Whereas the reverse mutation in spike protein structures having G614 substitution has resulted in the free energy differences of 6.6 kcal/mol and 6.3 kcal/mol for closed and 1-RBD up conformations, respectively, indicating that the overall thermodynamic stability has decreased. These results suggest that the D614G substitution modulates the flexibility of spike protein and confers enhanced thermodynamic stability irrespective of conformational states. This data concurs with the known information demonstrating increased availability of the functional form of spikeprotein trimer upon D614G substitution.  相似文献   

10.
The antiretroviral chemotherapy helps to reduce the mortality of HIVs infected patients. However, RNA dependant virus replication has a high mutation rate. Human immunodeficiency virus Type 1 protease plays an essential role in viral replication cycle. This protein is an important target for therapy with viral protein inhibitors. There are few works using normal mode analysis to investigate this problem from the structural changes viewpoint. The investigation of protein flexibility may be important for the study of processes associated with conformational changes and state transitions. The normal mode analysis allowed us to investigate structural changes in the protease (such as flexibility) in a straightforward way and try to associate these changes with the increase of fitness for each positively selected HIV‐1 mutant protease of patients treated with several protease inhibitors (saquinavir, indinavir, ritonavir, nelfinavir, lopinavir, fosamprenavir, atazanavir, darunavir, and tripanavir) in combination or separately. These positively selected mutations introduce significant flexibility in important regions such as the active site cavity and flaps. These mutations were also able to cause changes in accessible solvent area. This study showed that the majority of HIV‐1 protease mutants can be grouped into two main classes of protein flexibility behavior. We presented a new approach to study structural changes caused by positively selected mutations in a pathogen protein, for instance the HIV‐1 protease and their relationship with their resistance mechanism against known inhibitors. The method can be applied to any pharmaceutically relevant pathogen proteins and could be very useful to understand the effects of positively selected mutations in the context of structural changes. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Drug resistant mutations have severely restricted the success of HIV therapy. These mutations frequently involve the aspartic protease encoded by the virus. Knowledge of the molecular mechanisms underlying the conformational changes of HIV-1 protease mutants may be useful in developing more effective and longer lasting treatment regimes. The flap regions of the protease are the target of a particular type of mutations occurring far from the active site, which are able to produce significant resistance against the anti-HIV drug TMC-114. We provide insight into the molecular basis of TMC-114 resistance major flap mutations (I50V and I54M) in HIV-1 protease. It reports the shape complementarity and receptor-ligand interaction analysis supported by unrestrained all-atom molecular dynamics simulations of wild and major flap mutants of HIV-1 protease that sample large conformational changes of the flaps and active site binding residues. Both resistant flap mutants showed less atomic interaction toward TMC-114 and more structural deviation compared to wild HIV-protease. It is due to increasing flexibility at TMC-114 binding cavity and deviation of binding residues in 3-D space. Distortion in binding cavity and deviation in binding residues are the result of alteration in hydrogen bonding. Flap region also exhibited similar behaviour due to changes in number of hydrogen bonds during simulations.  相似文献   

12.
13.
An infectious chimeric feline immunodeficiency virus (FIV)/HIV strain carrying six HIV-like protease (PR) mutations (I37V/N55M/V59I/I98S/Q99V/P100N) was subjected to selection in culture against the PR inhibitor lopinavir (LPV), darunavir (DRV), or TL-3. LPV selection resulted in the sequential emergence of V99A (strain S-1X), I59V (strain S-2X), and I108V (strain S-3X) mutations, followed by V37I (strain S-4X). Mutant PRs were analyzed in vitro, and an isogenic virus producing each mutant PR was analyzed in culture for LPV sensitivity, yielding results consistent with the original selection. The 50% inhibitory concentrations (IC50s) for S-1X, S-2X, S-3X, and S-4X were 95, 643, 627, and 1,543 nM, respectively. The primary resistance mutations, V9982A, I5950V, and V3732I, are consistent with the resistance pattern developed by HIV-1 under similar selection conditions. While resistance to LPV emerged readily, similar PR mutations causing resistance to either DRV or TL-3 failed to emerge after passage for more than a year. However, a G37D mutation in the nucleocapsid (NC) was observed in both selections and an isogenic G37D mutant replicated in the presence of 100 nM DRV or TL-3, whereas parental chimeric FIV could not. An additional mutation, L92V, near the PR active site in the folded structure recently emerged during TL-3 selection. The L92V mutant PR exhibited an IC50 of 50 nM, compared to 35 nM for 6s-98S PR, and processed the NC-p2 junction more efficiently, consistent with increased viral fitness. These findings emphasize the role of mutations outside the active site of PR in increasing viral resistance to active-site inhibitors and suggest additional targets for inhibitor development.  相似文献   

14.
Abstract

HIV protease inhibitors (PIs) approved by the FDA (US Food and Drug Administration) are a major class of antiretroviral. HIV-2 protease (PR2) is naturally resistant to most of them as PIs were designed for HIV-1 protease (PR1). In this study, we explored the impact of amino-acid substitutions between PR1 and PR2 on the structure of protease (PR) by comparing the structural variability of 13 regions using 24 PR1 and PR2 structures complexed with diverse ligands. Our analyses confirmed structural rigidity of the catalytic region and highlighted the important role of three regions in the conservation of the catalytic region conformation. Surprisingly, we showed that the flap region, corresponding to a flexible region, exhibits similar conformations in PR1 and PR2. Furthermore, we identified regions exhibiting different conformations in PR1 and PR2, which could be explained by the intrinsic flexibility of these regions, by crystal packing, or by PR1 and PR2 substitutions. Some substitutions induce structural changes in the R2 and R4 regions that could have an impact on the properties of PI-binding site and could thus modify PI binding mode. Substitutions involved in structural changes in the elbow region could alter the flexibility of the PR2 flap regions relative to PR1, and thus play a role in the transition from the semi-open form to the closed form, and have an impact on ligand binding. These results improve the understanding of the impact of sequence variations between PR1 and PR2 on the natural resistance of HIV-2 to commercially available PIs.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
Protease inhibitors (PIs) are crucial drugs in highly active antiretroviral therapy for human immunodeficiency virus-1 (HIV-1) infections. However, resistance owing to mutations challenge the long-term efficacy in the medication of HIV-1-infected individuals. Lopinavir (LPV) and darunavir (DRV), two second-generation drugs are the most potent among PIs, hustling the drug resistance when mutations occur in the active and nonactive site of the protease (PR). Herein, we strive for compounds that can stifle the function of wild-type (WT) HIV-1 PR along with four major single mutants (I54M, V82T, I84V, and L90M) instigating resistance to the PIs using in silico approach. Six common compounds are retrieved from six databases using combined pharmacophore-based and structure-based virtual screening methodology. LPV and DRV are docked and the binding free energy is calculated to set the cut-off value for selecting compounds. Further, to gain insight into the stability of the complexes the molecular dynamics simulation (MDS) is carried out, which uncovers two lead molecules namely NCI-524545 and ZINC12866729. Both the lead molecules connect with WT and mutant HIV-1 PRs through strong and stable hydrogen bond interactions when compared with LPV and DRV throughout the trajectory analysis. Interestingly, NCI-524545 and ZINC12866729 exhibit direct interactions with I50/50′ by replacing the conserved water molecule as evidenced by MDS, which indicates the credible potency of these compounds. Hence, we concluded that NCI-524545 and ZINC12866729 have great puissant to restrain the role of drug resistance HIV-1 PR variants, which can also show better activity through in vivo and in vitro conditions.  相似文献   

16.
GS-8374 is a potent HIV protease inhibitor (PI) with a unique diethyl-phosphonate moiety. Due to a balanced contribution of enthalpic and entropic components to its interaction with the protease (PR) active site, the compound retains activity against HIV mutants with high-level multi-PI resistance. We report here the in vitro selection and characterization of HIV variants resistant to GS-8374. While highly resistant viruses with multiple mutations in PR were isolated in the presence of control PIs, an HIV variant displaying moderate (14-fold) resistance to GS-8374 was generated only after prolonged passaging for >300 days. The isolate showed low-level cross-resistance to darunavir, atazanavir, lopinavir, and saquinavir, but not other PIs, and contained a single R41K mutation in PR combined with multiple genotypic changes in the Gag matrix, capsid, nucleocapsid, and SP2 domains. Mutations also occurred in the transframe peptide and p6* domain of the Gag-Pol polyprotein. Analysis of recombinant HIV variants indicated that mutations in Gag, but not the R41K in PR, conferred reduced susceptibility to GS-8374. The Gag mutations acted in concert, since they did not affect susceptibility when introduced individually. Analysis of viral particles revealed that the mutations rendered Gag more susceptible to PR-mediated cleavage in the presence of GS-8374. In summary, the emergence of resistance to GS-8374 involved a combination of substrate mutations without typical resistance mutations in PR. These substrate changes were distributed throughout Gag and acted in an additive manner. Thus, they are classified as primary resistance mutations indicating a unique mechanism and pathway of resistance development for GS-8374.  相似文献   

17.
The protease (PR) from human immunodeficiency virus (HIV) is essential for viral replication: this aspartyl protease, active only as a dimer, is responsible for cleavage of the viral polyprotein precursors (Gag and Gag-Pol), to release the functional mature proteins. In this work, we have studied the structure-function relationships of the HIV PR by combining a genetic test to detect proteolytic activity in Escherichia coli and a bacterial two-hybrid assay to analyze PR dimerization. We showed that a drug-resistant PR variant isolated from a patient receiving highly active antiretroviral therapy is impaired in its dimerization capability and, as a consequence, is proteolytically inactive. We further showed that the polypeptide regions adjacent to the PR coding sequence in the Gag-Pol polyprotein precursor, and in particular, the transframe polypeptide (TF), located at the N terminus of PR, can facilitate the dimerization of this variant PR and restore its enzymatic activity. We propose that the TF protein could help to compensate for folding and/or dimerization defects in PR arising from certain mutations within the PR coding sequence and might therefore function to buffer genetic variations in PR.  相似文献   

18.
A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

19.
Hydrophobic residues outside the active site of HIV-1 protease frequently mutate in patients undergoing protease inhibitor therapy; however, the mechanism by which these mutations confer drug resistance is not understood. From analysis of molecular dynamics simulations, 19 core hydrophobic residues appear to facilitate the conformational changes that occur in HIV-1 protease. The hydrophobic core residues slide by each other, exchanging one hydrophobic van der Waal contact for another, with little energy penalty, while maintaining many structurally important hydrogen bonds. Such hydrophobic sliding may represent a general mechanism by which proteins undergo conformational changes. Mutation of these residues in HIV-1 protease would alter the packing of the hydrophobic core, affecting the conformational flexibility of the protease. Therefore these residues impact the dynamic balance between processing substrates and binding inhibitors, and thus contribute to drug resistance.  相似文献   

20.
HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号