首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucokinase (GLK) and Hexokinase (HK) have been characterized as essential targets in Trypanosoma cruzi (Tc)-mediated infection. A recent study reported the propensity of the concomitant inhibition of TcGLK and TcHK by compounds GLK2-003 and GLK2-004, thereby presenting an efficient approach in Chagas disease treatment. We investigated this possibility using atomic and molecular scaling methods. Sequence alignment of TcGLK and TcHK revealed that both proteins shared approximately 33.3 % homology in their glucose/inhibitor binding sites. The total binding free energies of GLK2-003 and GLK2-004 were favorable in both proteins. PRO92 and THR185 were pivotal to the binding and stabilization of the ligands in TcGLK, likewise their conserved counterparts, PRO163 and THR237 in TcHK. Both compounds also induced a similar pattern of perturbations in both TcGLK and TcHK secondary structure. Findings from this study therefore provide insights into the underlying mechanisms of dual inhibition exhibited by the compounds. These results can pave way to discover and optimize novel dual Tc inhibitors with favorable pharmacokinetics properties eventuating in the mitigation of Chagas disease.  相似文献   

2.
Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (?113.655 kJ/mol) had better binding compared to Cmp19 (?95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.  相似文献   

3.
Binding of R(+)-bupivacaine to open-state homology models of the mammalian Kv1.5 membrane ion channel is studied using automated docking and molecular dynamics (MD) methods. Homology models of Kv1.5 are built using the 3D structures of the KcsA and MthK channels as a template. The packing of transmembrane (TM) α-helices in the KcsA structure corresponds to a closed channel state. Opening of the channel may be reached by a conformational transition yielding a bent structure of the internal S6 helices. Our first model of the Kv open state involves a PVP-type of bending hinge in the internal helices, while the second model corresponds to a Gly-type of bending hinge as found in the MthK channel. Ligand binding to these models is probed using the common local anaesthetic bupivacaine, where blocker binding from the intracellular side of the channel is considered. Conformational properties and partial atomic charges of bupivacaine are determined from quantum mechanical HF/6-31G* calculations with inclusion of solvent effects. The automated docking and MD calculations for the PVP-bend model predict that bupivacaine could bind either in the central cavity or in the PVP region of the channel pore. Linear interaction energy (LIE) estimates of the binding free energies for bupivacaine predict strongest binding to the PVP region. Surprisingly, no binding is predicted for the Gly-bend model. These results are discussed in light of electrophysiological data which show that the Kv1.5 channel is unable to close when bupivacaine is bound.  相似文献   

4.
The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R2cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R2pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.  相似文献   

5.
3-(4-Fluorophenyl)-N-((4-fluorophenyl)sulphonyl)acrylamide (FFSA) is a potential tubulin polymerisation inhibitor. In this article, a theoretical study of the binding between FFSA and tubulin in colchicine site was carried out by molecular docking, molecular dynamics (MD) simulation and binding free energy calculations. The docking calculations preliminarily indicate that there are three possible binding modes 1, 2 and 3; MD simulations and binding free energy calculations identify that binding mode 2 is the most favourable, with the lowest binding free energy of ? 29.54 kcal/mol. Moreover, our valuable results for the binding are as follows: the inhibitor FFSA is suitably located at the colchicine site of tubulin, where it not only interacts with residues Leu248β, Lys254β, Leu255β, Lys352β, Met259β and Val181a by hydrophilic interaction, but also interacts with Val181α and Thr179α by hydrogen bond interaction. These two factors are both essential for FFSA strongly binding to tubulin. These theoretical results help understanding the action mechanism and designing new compounds with higher affinity to tubulin.  相似文献   

6.
The binding of P1 variants of bovine pancreatic trypsin inhibitor (BPTI) to trypsin has been investigated by means of molecular dynamics simulations. The specific interaction formed between the amino acid at the primary binding (P1) position of the binding loop of BPTI and the specificity pocket of trypsin was estimated by use of the linear interaction energy (LIE) method. Calculations for 13 of the naturally occurring amino acids at the P1 position were carried out, and the results obtained were found to correlate well with the experimental binding free energies. The LIE calculations rank the majority of the 13 variants correctly according to the experimental association energies and the mean error between calculated and experimental binding free energies is only 0.38 kcal/mole, excluding the Glu and Asp variants, which are associated with some uncertainties regarding protonation and the possible presence of counter-ions. The three-dimensional structures of the complex with three of the P1 variants (Asn, Tyr, and Ser) included in this study have not at present been solved by any experimental techniques and, therefore, were modeled on the basis of experimental data from P1 variants of similar size. Average structures were calculated from the MD simulations, from which specific interactions explaining the broad variation in association energies were identified. The present study also shows that explicit treatment of the complex water-mediated hydrogen bonding network at the protein-protein interface is of crucial importance for obtaining reliable binding free energies. The successful reproduction of relative binding energies shows that this type of methodology can be very useful as an aid in rational design and redesign of biologically active macromolecules.  相似文献   

7.
Snake venom metalloproteinase (SVMP) (Echis coloratus (Carpet viper) is a multifunctional enzyme that is involved in producing several symptoms that follow a snakebite, such as severe local hemorrhage, nervous system effects and tissue necrosis. Because the three-dimensional (3D) structure of SVMP is not known, models were constructed, and the best model was selected based on its stereo-chemical quality. The stability of the modeled protein was analyzed through molecular dynamics (MD) simulation studies. Structure-based virtual screening was performed, and 15 potential molecules with the highest binding energies were selected. Further analysis was carried out with induced fit docking, Prime/MM–GBSA (ΔGBind calculations), quantum-polarized ligand docking, and density functional theory calculations. Further, the stability of the lead molecules in the SVMP-active site was examined using MD simulation. The results showed that the selected lead molecules were highly stable in the active site of SVMP. Hence, these molecules could potentially be selective inhibitors of SVMP. These lead molecules can be experimentally validated, and their backbone structural scaffold could serve as building blocks in designing drug-like molecules for snake antivenom.  相似文献   

8.
Context: Triosephosphate isomerase (TIM) is a ubiquitous enzyme that has been targeted for the discovery of small molecular weight compounds with potential use against Trypanosoma cruzi, the causative agent of Chagas disease. We have identified a new selective inhibitor chemotype of TIM from T. cruzi (TcTIM), 1,2,4-thiadiazol-5(4H)-one.

Objective: Study the mechanism of TcTIM inhibition by a 1,2,4-thiadiazol derivative.

Methods: We performed the biochemical characterization of the interaction of the 1,2,4-thiadiazol derivative with the wild-type and mutant TcTIMs, using DOSY-NMR and MS experiments. Studies of T. cruzi growth inhibition were additionally carried out.

Results and conclusion: At low micromolar concentrations, the compound induces highly selective irreversible inactivation of TcTIM through non-covalent binding. Our studies indicate that it interferes with the association of the two monomers of the dimeric enzyme. We also show that it inhibits T. cruzi growth in culture.  相似文献   

9.
Xu L  Li Y  Li L  Zhou S  Hou T 《Molecular bioSystems》2012,8(9):2260-2273
Macrophage migration inhibitory factor (MIF), an immunoregulatory protein, is a potential target for a number of inflammatory diseases. In the current work, the interactions between MIF and a series of phenolic hydrazones were studied by molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and binding energy decomposition analysis to determine the structural requirement for achieving favorable biological activity of phenolic hydrazones. First, molecular docking was used to predict the binding modes of inhibitors in the binding site of MIF. The good correlation between the predicted docking scores and the experimental activities shows that the binding conformations of the inhibitors in the active site of MIF are well predicted. Moreover, our results suggest that the flexibility of MIF is essential in ligand binding process. Then, MD simulations and MM/GBSA free energy calculations were employed to determine the dynamic binding process and compare the binding modes of the inhibitors with different activities. The predicted binding free energies given by MM/GBSA are not well correlated with the experimental activities for the two subsets of the inhibitors; however, for each subset, a good correlation between the predicted binding free energies and the experimental activities is achieved. The MM/GBSA free energy decomposition analysis highlights the importance of hydrophobic residues for the MIF binding of the studied inhibitors. Based on the essential factors for MIF-inhibitor interactions derived from the theoretical predictions, some derivatives were designed and the higher inhibitory activities of several candidates were confirmed by molecular docking studies. The structural insights obtained from our study are useful for designing potent inhibitors of MIF.  相似文献   

10.
11.
Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have been performed to explore the dynamic behaviors of cytochrome P450 2A6 (CYP2A6) binding with nicotine analogs (that are typical inhibitors) and to calculate their binding free energies in combination with Poisson–Boltzmann surface area (PBSA) calculations. The combined MD simulations and QM/MM-PBSA calculations reveal that the most important structural parameters affecting the CYP2A6-inhibitor binding affinity are two crucial internuclear distances, that is, the distance between the heme iron atom of CYP2A6 and the coordinating atom of the inhibitor, and the hydrogen-bonding distance between the N297 side chain of CYP2A6 and the pyridine nitrogen of the inhibitor. The combined MD simulations and QM/MM-PBSA calculations have led to dynamic CYP2A6-inhibitor binding structures that are consistent with the observed dynamic behaviors and structural features of CYP2A6-inhibitor binding, and led to the binding free energies that are in good agreement with the experimentally-derived binding free energies. The agreement between the calculated binding free energies and the experimentally-derived binding free energies suggests that the combined MD and QM/MM-PBSA approach may be used as a valuable tool to accurately predict the CYP2A6-inhibitor binding affinities in future computational design of new, potent and selective CYP2A6 inhibitors.  相似文献   

12.
A series of semicarbazone, thiosemicarbazone, and aminoguanidine derivatives were synthesized and tested as antitrypanosomal agents. The theoretical NMR of the compounds was calculated using molecular modeling techniques (density functional theory (DFT) calculations) and confirmed the formation of the compounds. The ability to inhibit cruzain and Trypanosoma cruzi epimastigote replication was evaluated. Cruzain inhibition ranged between 70 and 75% (100 μM), and IC50 values observed in epimastigote forms of T. cruzi ranged from 20 to 140 μM. Furthermore, the compounds did not present cytotoxicity at concentrations up to 50 and 250 μM in MTT tests. Molecular modeling studies were conducted using DFT method (B3LYP functional and the basis set 6-311G(d,p)) to understand the activity of the compounds, corroborating the observed cruzain inhibitory activity. In docking studies, the obtained analogs showed good complementarity with cruzain active site. In addition, docking results are in accordance with the susceptibility of these analogs to nucleophilic attack of the catalytic Cys25. Taken together, this study shows that this class of compounds can be used as a prototype in the identification of new antichagasic drugs.  相似文献   

13.
Phospholipase A2 (PLA2) is the most abundant protein found in snake venom. PLA2 induces a variety of pharmacological effects such as neurotoxicity, myotoxicity and cardiotoxicity as well as anticoagulant, hemolytic, anti-platelet, hypertensive, hemorrhagic and edema inducing effects. In this study, the three dimensional structure of PLA2 of Naja sputatrix (Malayan spitting cobra) was modeled by I-TASSER, SWISS-MODEL, PRIME and MODELLER programs. The best model was selected based on overall stereo-chemical quality. Further, molecular dynamics simulation was performed to know the stability of the modeled protein using Gromacs software. Average structure was generated during the simulation period of 10?ns. High throughput virtual screening was employed through different databases (Asinex, Hit finder, Maybridge, TOSLab and ZINC databases) against PLA2. The top seven compounds were selected based on the docking score and free energy binding calculations. These compounds were analyzed by quantum polarized ligand docking, induced fit docking and density functional theory calculation. Furthermore, the stability of lead molecules in the active site of PLA2 was employed by MD simulation. The results show that selected lead molecules were highly stable in the active site of PLA2.  相似文献   

14.
Abstract

Selective activation of the cannabinoid receptor subtype 2 (CB2) shows promise for treating pain, inflammation, multiple sclerosis, cancer, ischemic/reperfusion injury and osteoporosis. Target selectivity and off-target side effects are two major limiting factors for orthosteric ligands, and therefore, the search for allosteric modulators (AMs) is a widely used drug discovery approach. To date, only a limited number of negative CB2 AMs have been identified, possessing only micromolar activity at best, and the CB2 receptor’s allosteric site(s) are not well characterized. Herein, we used computational approaches including receptor modeling, site mapping, docking, molecular dynamics (MD) simulations and binding free energy calculations to predict, characterize and validate allosteric sites within the complex of the CB2 receptor with bound orthosteric agonist CP55,940. After docking of known negative CB2 allosteric modulators (NAMs), dihydro-gambogic acid (DHGA) and trans-β-caryophyllene (TBC) (note that TBC also shows agonist activity), at the predicted allosteric sites, the best total complex with CB2, CP55,940 and NAM was embedded into a hydrated lipid bilayer and subjected to a 200 ns MD simulation. The presence of an AM affected the CB2–CP55,940 complex, altering the relative positioning of the toggle switch residues and promoting a strong π–π interaction between Phe1173.36 and Trp2586.48. Binding of either TBC or DHGA to a putative allosteric pocket directly adjacent to the orthosteric ligand reduced the binding free energy of CP55,940, which is consistent with the expected effect of a negative AM. The identified allosteric sites present immense scope for the discovery of novel classes of CB2 AMs.  相似文献   

15.
In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca2+-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the “open” and “closed” conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM’s inhibitors correlated well with available experimental data as the r2 obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca2+-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca2+-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca2+-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.  相似文献   

16.
Cholera toxin (CT) is an AB5 protein complex secreted by the pathogen Vibrio cholera, which is responsible for cholera infection. N-acetylneuraminic acid (NeuNAc) is a derivative of neuraminic acid with nine-carbon backbone. NeuNAc is distributed on the cell surface mainly located in the terminal components of glycoconjugates, and also plays an important role in cell–cell interaction. In our current study, molecular docking and molecular dynamic (MD) simulations were implemented to identify the potent NeuNAc analogs with high-inhibitory activity against CT protein. Thirty-four NeuNAc analogs, modified in different positions C-1/C-2/C-4/C-5/C-7/C-8/C-9, were modeled and docked against the active site of CT protein. Among the 34 NeuNAc analogs, the analog Neu5Gc shows the least extra precision glide score of ?9.52 and glide energy of ?44.71?kcal/mol. NeuNAc analogs block the CT active site residues HIS:13, ASN:90, LYS:91, GLN:56, GLN:61, and TRP:88 through intermolecular hydrogen bonding. The MD simulation for CT-Neu5Gc docking complex was performed using Desmond. MD simulation of CT-Neu5Gc complex reveals the stable nature of docking interaction.  相似文献   

17.
The linear interaction energy (LIE) approach has been applied to estimate the binding free energies of representative sets of HIV-1 RT and β-Secretase inhibitors, using both molecular dynamics (MD) and tethered energy minimization sampling protocols with the OPLS-AA potential, using a range of solvation methodologies. Generalized Born (GB), ‘shell’ and periodic boundary condition (PBC) solvation were used, the latter with reaction field (RF) electrostatics. Poisson-Boltzmann (PB) and GB continuum electrostatics schemes were applied to the simulation trajectories for each solvation type to estimate the electrostatic ligand-water interaction energy in both the free and bound states. Reasonable agreement of the LIE predictions was obtained with respect to experimental binding free energy estimates for both systems: for instance, ‘PB’ fits on MD trajectories carried out with PBC solvation and RF electrostatics led to models with standard errors of 1.11 and 1.03 kcal mol−1 and coefficients of determination, r 2 of 0.76 and 0.75 for the HIV-1 RT and β-Secretase sets. However, it was also found that results from MD sampling using PBC solvation provided only slightly better fits than from simulations using shell or Born solvation or tethered energy minimization sampling. Figure Evolution of the running averages for compound H11 (binding to HIV-1RT) of the bound state ligand-water and ligand-protein interaction energies. The ligand-water electrostatic terms are twice the corresponding GB and PB electrostatic solvation free energies. The ligand-receptor van der Waals and Coulombic interaction energies are also shown, in addition to the ligand-water van der Waals interaction term. The terms were calculated (without application of a cut-off) from a trajectory sampled under PBC solvation with reaction field electrostatics Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
Hundreds of millions of people worldwide are affected by Chagas’ disease caused by Trypanosoma cruzi. Since the current treatment lack efficacy, specificity, and suffers from several side-effects, novel therapeutics are mandatory. Natural products from endophytic fungi have been useful sources of lead compounds. In this study, three lactones isolated from an endophytic strain culture were in silico evaluated for rational guidance of their bioassay screening. All lactones displayed in vitro activity against T. cruzi epimastigote and trypomastigote forms. Notably, the IC50 values of (+)-phomolactone were lower than benznidazole (0.86 vs. 30.78 μM against epimastigotes and 0.41 vs. 4.88 μM against trypomastigotes). Target-based studies suggested that lactones displayed their trypanocidal activities due to T. cruzi glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH) inhibition, and the binding free energy for all three TcGAPDH-lactone complexes suggested that (+)-phomolactone has a lower score value (−3.38), corroborating with IC50 assays. These results highlight the potential of these lactones for further anti-T. cruzi drug development.  相似文献   

20.
Binding of R(+)-bupivacaine to open-state homology models of the mammalian K(v)1.5 membrane ion channel is studied using automated docking and molecular dynamics (MD) methods. Homology models of K(v)1.5 are built using the 3D structures of the KcsA and MthK channels as a template. The packing of transmembrane (TM) alpha-helices in the KcsA structure corresponds to a closed channel state. Opening of the channel may be reached by a conformational transition yielding a bent structure of the internal S6 helices. Our first model of the K(v) open state involves a PVP-type of bending hinge in the internal helices, while the second model corresponds to a Gly-type of bending hinge as found in the MthK channel. Ligand binding to these models is probed using the common local anaesthetic bupivacaine, where blocker binding from the intracellular side of the channel is considered. Conformational properties and partial atomic charges of bupivacaine are determined from quantum mechanical HF/6-31G* calculations with inclusion of solvent effects. The automated docking and MD calculations for the PVP-bend model predict that bupivacaine could bind either in the central cavity or in the PVP region of the channel pore. Linear interaction energy (LIE) estimates of the binding free energies for bupivacaine predict strongest binding to the PVP region. Surprisingly, no binding is predicted for the Gly-bend model. These results are discussed in light of electrophysiological data which show that the K(v)1.5 channel is unable to close when bupivacaine is bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号