首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
Hung WC  Chen FY  Lee CC  Sun Y  Lee MT  Huang HW 《Biophysical journal》2008,94(11):4331-4338
Interaction of curcumin with lipid bilayers is not well understood. A recent experiment showed that curcumin significantly affected the single-channel lifetime of gramicidin in a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer without affecting its single-channel conductance. We performed two experiments to understand this result. By isothermal titration calorimetry, we measured the partition coefficient of curcumin binding to DOPC bilayers. By x-ray lamellar diffraction, we measured the thickness change of DOPC bilayers as a function of the curcumin/lipid ratio. A nonlinear membrane-thinning effect by curcumin was discovered. The gramicidin data were qualitatively interpreted by the combination of isothermal titration calorimetry and x-ray results. We show that not only does curcumin thin the lipid bilayer, it might also weaken its elasticity moduli. The result implies that curcumin may affect the function of membrane proteins by modifying the properties of the host membrane.  相似文献   

2.
The interactions with and effects of five chemically distinct, bioactive phenolic compounds on the lipid bilayers of model dipalmitoylphosphatidylcholine (DPPC) liposomes were investigated. Complementary analytical techniques, including differential scanning calorimetry (DSC) and phosphorus and proton nuclear magnetic resonance spectroscopy (NMR), were employed in order to determine the location of the compounds within the bilayer and to correlate location with their effects on bilayer characteristics and liposomal stability. As compared to the phenolic compounds localized in the glycerol region of the DPPC head group within the bilayer, which enhanced the colloidal stability of the liposomes, compounds located closer to the center of the bilayer reduced vesicle stability as a function of time. Molecules present in the upper region of liposomal DPPC acyl chains (C1–C10) inhibited liposomal aggregation and size increase, perhaps due to tighter packing of adjoining DPPC molecules and increased surface exposure of DPPC phosphate head groups. These data may be useful for designing liposomal systems containing hydrophobic phenols and other small molecules, selecting appropriate analytical methods for determining their location within liposomal bilayers, and predicting their effects on liposome characteristics early in the liposome formulation development process.  相似文献   

3.
Nymeyer H  Woolf TB  Garcia AE 《Proteins》2005,59(4):783-790
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model, which is that a surface-bound helix is an obligatory intermediate for the insertion of alpha-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (>100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration.  相似文献   

4.
Drug permeability determines the oral availability of drugs via cellular membranes. Poor permeability makes a drug unsuitable for further development. The permeability may be estimated as the free energy change that the drug should overcome through crossing membrane. In this paper the drug permeability was simulated using molecular dynamics method and the potential energy profile was calculated with potential of mean force (PMF) method. The membrane was simulated using DPPC bilayer and three drugs with different permeability were tested. PMF studies on these three drugs show that doxorubicin (low permeability) should pass higher free energy barrier from water to DPPC bilayer center while ibuprofen (high permeability) has a lower energy barrier. Our calculation indicates that the simulation model we built is suitable to predict drug permeability.  相似文献   

5.
Curcumin, a polyphenol molecule, presents a wide range of biological activities as antioxidant, anticancer, anti-inflammatory, antimicrobial and wound healing. Although some strengths attributed to curcumin derive from promiscuous biological activity, possibly because curcumin can interfere on many membrane located processes, knowledge of underlying interactions are lacking. Mammalian cell membranes characteristically contain 25 to 50% cholesterol/phospholipid ratio; however, most studies involving lipid bilayers and curcumin consider pure phosphatidylcholine and compare effects of curcumin on membranes with those of cholesterol. We investigated the interaction of curcumin with lipid bilayers containing cholesterol mimicking mammalian cells, and used spectroscopy techniques to determine partition coefficients, rigidity parameters and lytic activity. We found that curcumin partitions into different lipid bilayers (104 order coefficients that vary by less than a factor of two), containing cholesterol or not, and in the presence of sphingomyelin or phosphatidylserine. Curcumin decreases rigidity in all tested compositions, except that containing 40% cholesterol in which it increases the lipid packing order. In addition, curcumin induces leakage from giant unilamellar vesicles on a cholesterol concentration dependent way. Our results are compatible with the hypothesis of curcumin interaction with membranes being modulated by the liquid disordered phase and by the coexistence of liquid-ordered/liquid disordered phases. In bilayers containing cholesterol, curcumin assumes a more superficial location, drastically stiffens the 40% cholesterol bilayer and decreases the lytic effect. Our study may help researchers in the analysis of the biological effects of curcumin and curcumin-derived formulations by calling the attention to the discriminating role of the cholesterol content.  相似文献   

6.
A molecular dynamics (MD) simulation with atomistic details was performed to examine the partitioning and transport behavior of moderately cytotoxic ionic liquids (ILs), namely choline bis(2-ethylhexyl) phosphate (CBEH), choline bis(2,4,4-trimethylpentyl) phosphinate (CTMP) and choline O,O-diethyl dithiophosphate (CDEP) in a fully hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer in the fluid phase at 323?K. The structure of ILs was so selected to understand if the role of dipole and dispersion forces in the ILs distribution in the membrane can be possible. Several analyses including mass density, electrostatic potential, order parameter, diffusion coefficients and hydrogen bond formation, was carried out to determine the precise location of the anionic species inside the membrane. Moreover, the potential of the mean force (PMF) method was used to calculate free energy profile for transferring anionic species from the DPPC membrane into the bulk water. While less cytotoxic DEP is located within the bulk water, more cytotoxic TMP and BEH ILs were found to remain in the membrane and the energy barrier for crossing through the bilayer center of BEH was higher. Various ILs have no significant effect on P–N vector. The thickness of lipid bilayer decreased in all systems comprising ILs, while area per lipid increased.  相似文献   

7.
M Lüscher-Mattli 《Biopolymers》1987,26(9):1509-1526
The nonspecific interaction of the mitogenic lectin Concanavalin A (Con A) with glycosyl-free liposomes of various composition has been investigated by microcalorimetric titration measurements. The results obtained show the following features of main interest: (1) the affinity constants (Ka) of the interaction of Con A with liposomal bilayers are in the order of magnitude 105–106M?1. The reaction enthalpies (ΔH) are positive, and small (approximately 0.1 KJ mol?1 lipid), compared to the free energy terms (?ΔG = 30–40 KJ mol?1 lipid). All lectin–lipid interactions are strongly entropy-controlled (ΔH/TΔS < 1.0). These thermodynamic features are characteristic for hydrophobic interaction processes. (2) The liposomal head-group charge does not significantly affect the lipid-affinity of Con A. Electrostatic forces thus appear to play a minor role in lectin–lipid interactions. (3) The lipid affinity of Con A is sensitive to the fluidity of the liposomal bilayers, increasing with increasing fluidity. Below the gel to liquid-crystal phase transition temperature, the lectin binding to liposomal bilayers is inhibited. (4) The binding isotherms, corresponding to the interaction of Con A with liposomes, composed of tightly packed, saturated phospholipids, exhibit pronounced positive cooperativity. This phenomenon is absent in the binding curves, corresponding to the interaction of Con A with more fluid liposomal bilayers. (5) The Con A specific inhibitor α-D -methylmannopyranoside (50 mM) drastically increases the molar reaction enthalpy. The Ka term is significantly reduced in presence of the inhibitor sugar. Urea induces analogous changes in the thermodynamic parameters of the lectin–lipid interaction. The effects of α-D -methylmannopyranoside are thus not Con A specific, but are attributable to solvent effects. (6) It was shown that the binding of one Con A molecule affects a large number (approximately 1000) of phospholipid molecules in the liposomal bilayer. (7) The affinity constants (Ka) of the interaction of Con A with glycosyl-free lipids are smaller by a factor of approximately 10, compared to the Ka terms, reported for Con A binding to biological membranes. The presence of glycosidic receptor groups thus controls the specificity of lectin–membrane interactions, whereas the nonspecific lectin–lipid interactions appear to represent the main driving force for the strong attachment of the lectin to membrane surfaces.  相似文献   

8.
The interactions of the antimicrobial peptide maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH2) with model phospholipid membranes were studied by use of dual polarisation interferometry and neutron reflectometry and dimyristoylphosphatidylcholine (DMPC) and mixed DMPC–dimyristoylphosphatidylglycerol (DMPG)-supported lipid bilayers chosen to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC bilayers concentration-dependent binding and increasing perturbation of bilayer order by maculatin were observed. By contrast, in mixed DMPC–DMPG bilayers, maculatin interacted more strongly and in a concentration-dependent manner with retention of bilayer lipid order and structure, consistent with pore formation. These results emphasise the importance of membrane charge in mediating antimicrobial peptide activity and emphasise the importance of using complementary methods of analysis in probing the mode of action of antimicrobial peptides.  相似文献   

9.
The interactions between three liposomal formulations and Pseudomonas aeruginosa cells were evaluated by a lipid mixing assay and electron paramagnetic resonance (EPR) spectroscopy. The effect of the bacteria on the liposomal phase characteristics, the release of the liposomes’ content, and the uptake rate of gentamicin by bacteria were monitored as a function of time, using EPR spectroscopy. The [16-DSA uptake]Total from DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) liposomes reached 93?±?12% over a 3-hour assay period, of which 9% crossed the bacterial inner membrane. A small amount of 16-DSA uptake from DPPC/Chol (cholesterol) vesicles was found throughout the 3-hour period of time. Although DPPC/DMPG (dimyristoylphosphatidylglycerol) vesicles showed a smaller value of [16-DSA uptake]Total with respect to that of DPPC vesicles, they appeared to be effective in disrupting the bacterial membrane, resulting in a greater accumulation of 16-DSA inside the inner membrane. Exposure to bacteria caused the DPPC/Chol, DPPC, and DPPC/DMPG formulations to release 4.6?±?1.5, 17.6?±?1.2, and 34?±?3.7% of their content, respectively. Time-dependent fluid regions were developed within the vesicles when mixed with bacteria, and their growth over time depended on liposomal formulations. Incubation of gentamicin with bacteria for 3 hours resulted in 87?±?3% of the drug crossing the bacterial inner membrane. In conclusion, interaction between the liposome drug carriers and the bacterial cells result in vesicle fusion, disruption of the bacterial membrane, release of the liposomal content in the close vicinity of the bacteria cells, and the subsequent intracellular uptake of the released liposomal content.  相似文献   

10.
Molecular shape and its impact on bilayer curvature stress are powerful concepts for describing the effects of lipids and fatty acids on fundamental membrane properties, such as passive permeability and derived properties like drug transport across liposomal membranes. We illustrate these relationships by studying the effects of fatty acids and lysolipids on the permeation of a potent anti-cancer drug, doxorubicin, across the bilayer of a liposome in which the drug is encapsulated. Using a simple fluorescence assay, we have systematically studied the passive permeation of doxorubicin across liposomal membranes in different lipid phases: the solid-ordered phase (DPPC bilayers), the liquid-disordered phase (POPC lipid bilayers), and the liquid-ordered phase induced by high levels of cholesterol (DOPC + cholesterol lipid bilayers). The effect of different free fatty acids (FA) and lysolipids (LL), separately and in combination, on permeability was assessed to elucidate the possible mechanism of phospholipase A2-triggered release in cancer tissue of liposomal doxorubicin formulations. In all cases, FAs applied separately lead to significant enhancement of permeability, most pronounced in liquid-disordered bilayers and less pronounced in solid and solid-ordered bilayers. LLs applied separately had only a marginal effect on permeability. FA and LL applied in combination lead to a synergistic enhancement of permeability in solid bilayers, whereas in liquid-disordered bilayers, the combined effect suppressed the otherwise strong permeability enhancement due to the FAs.  相似文献   

11.
The interaction of α-helical peptides with lipid bilayers is central to our understanding of the physicochemical principles of biological membrane organization and stability. Mutations that alter the position or orientation of an α-helix within a membrane, or that change the probability that the α-helix will insert into the membrane, can alter a range of membrane protein functions. We describe a comparative coarse-grained molecular dynamics simulation methodology, based on self-assembly of a lipid bilayer in the presence of an α-helical peptide, which allows us to model membrane transmembrane helix insertion. We validate this methodology against available experimental data for synthetic model peptides (WALP23 and LS3). Simulation-based estimates of apparent free energies of insertion into a bilayer of cystic fibrosis transmembrane regulator-derived helices correlate well with published data for translocon-mediated insertion. Comparison of values of the apparent free energy of insertion from self-assembly simulations with those from coarse-grained molecular dynamics potentials of mean force for model peptides, and with translocon-mediated insertion of cystic fibrosis transmembrane regulator-derived peptides suggests a nonequilibrium model of helix insertion into bilayers.  相似文献   

12.
In this work, molecular dynamics (MD) simulations with atomistic details were performed to examine the influence of the cholesterol on the interactions and the partitioning of the hydrophobic drug ibuprofen in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. Analysis of MD simulations indicated that ibuprofen molecules prefer to be located in the hydrophobic acyl chain region of DMPC/cholesterol bilayers. This distribution decreases the lateral motion of lipid molecules. The presence of ibuprofen molecules in the bilayers with 0 and 25 mol% cholesterol increases the ordering of hydrocarbon tails of lipids whereas for the bilayers with 50 mol% cholesterol, ibuprofen molecules perturb the flexible chains of DMPC lipids which leads to the reduction of the acyl chain order parameter. The potential of the mean force (PMF) method was used to calculate the free energy profile for the transferring of an ibuprofen molecule from the bulk water into the DMPC/cholesterol membranes. The PMF studies indicated that the presence of 50 mol% cholesterol in the bilayers increases the free energy barrier and slows down the permeation of the ibuprofen drug across the DMPC bilayer. This can be due to the condensing and ordering effects of the cholesterol on the bilayer.  相似文献   

13.
Structure of Sphingomyelin Bilayers: A Simulation Study   总被引:3,自引:1,他引:2       下载免费PDF全文
We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50°C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC.  相似文献   

14.
There seems little doubt now that intravenous liposomal amphotericin B can be a useful treatment modality for the management of immunocompromised patients with suspected or proven disseminated fungal infections. Interestingly, the very significant reduction in toxicity reported when amphotericin B is part of a bilayer membrane is closely tied to the physical characteristics of the liposomes involved, although these are poorly understood at the molecular level. We record here an examination by spectroscopy and freeze-etch electron microscopy of unsonicated amphotericin B multilamellar vesicles prepared along the lines that we and others have followed for samples used in clinical trials and preclinical in vivo or in vitro studies. Our study has focussed on liposomes of 7:3 dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) bearing 0-25 mol% amphotericin B, since this lipid mixture has been the choice for the first clinical trials. Phase transition behaviour of these liposomes was examined by electron paramagnetic resonance (EPR) spectroscopy of a nitroxide spin label partitioning into the bilayers. The same experiments were then performed on similarly prepared liposomes of the disaturated species, dipalmitoylphosphatidylcholine (DPPC), and the diunsaturated species, dielaidoylphosphatidylcholine (DEPC). Partial phase diagrams were constructed for each of the lipid/drug mixtures. Melting curves and derived phase diagrams showed evidence that amphotericin B is relatively immiscible with the solid phase of bilayer membranes. The phase diagram for DEPC/amphotericin B was very similar to that of DPPC/amphotericin B, and both exhibited less extensive temperature ranges of phase separation than did the 7:3 DMPC/DMPG mixture with amphotericin B. Between 25 and 37 degrees C the measured fluidity of the 7:3 DMPC/DMPG liposomes was similar to that of the (unsaturated fatty acid) DEPC liposomes, and considerably higher than that seen for (saturated fatty acid) DPPC liposomes. Preparations of 7:3 DMPC/DMPG, DPPC, and DEPC containing 0-25 mol% amphotericin B were examined by freeze-etch electron microscopy at 35 and 22 degrees C (to cover the temperature range of the mammalian body core and periphery). The same liposome features were present in all three liposome types studied. The appearance of individual liposomes at x 100,000 magnification reflected their molecular characteristics, which were found to be significantly heterogeneous within each batch. The lipid/drug structures were bilayer in nature, although liposomes showing considerable disruption were common, particularly at the highest drug concentrations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Effective antimicrobial peptides (AMPs) distinguish between the host and microbial cells, show selective antimicrobial activity and exhibit a fast killing mechanism. Although understanding the structure-function characteristics of AMPs is important, the impact of the peptides on the architecture of membranes with different lipid compositions is also critical in understanding the molecular mechanism and specificity of membrane destabilisation. In this study, the destabilisation of supported lipid bilayers (SLBs) by the AMP aurein 1.2 was quantitatively analysed by dual polarisation interferometry. The lipid bilayers were formed on a planar silicon oxynitride chip, and composed of mixed synthetic lipids, or Escherichiacoli lipid extract. The molecular events leading sequentially from peptide adsorption to membrane lysis were examined in real time by changes in bilayer birefringence (lipid molecular ordering) as a function of membrane-bound peptide mass. Aurein 1.2 bound weakly without any change in membrane ordering at low peptide concentration (5 μM), indicating a surface-associated state without significant perturbation in membrane structure. At 10 μM peptide, marked reversible changes in molecular ordering were observed for all membranes except DMPE/DMPG. However, at 20 μM aurein 1.2, removal of lipid molecules, as determined by mass loss with a concomitant decrease in birefringence during the association phase, was observed for DMPC and DMPC/DMPG SLBs, which indicates membrane lysis by aurein. The membrane destabilisation induced by aurein 1.2 showed cooperativity at a particular peptide/lipid ratio with a critical mass/molecular ordering value. Furthermore, the extent of membrane lysis for DMPC/DMPG was nearly double that for DMPC. However, no lysis was observed for DMPC/DMPG/cholesterol, DMPE/DMPG and E. coli SLBs. The extent of birefringence changes with peptide mass suggested that aurein 1.2 binds to the membrane without inserting through the bilayer and membrane lysis occurs through detergent-like micellisation above a critical P/L ratio. Real-time quantitative analysis of the structural properties of membrane organisation has allowed the membrane destabilisation process to be resolved into multiple steps and provides comprehensive information to determine the molecular mechanism of aurein 1.2 action.  相似文献   

16.
We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosphatidyl-serine (DMPS) bilayers as well as a protonated di-myristoyl-phosphatidyl-serine (DMPSH) bilayer. We were particularly interested in calcium ions due to their important role in biological systems. Simulations performed in the presence of calcium ions (DMPG, DMPS) or sodium ions (DMPS) were run for 45-60 ns. Simulation results for DMPG are compared with fluorescence measurements. The average areas per molecule were 47.4+/-0.5 A2 (DMPG with calcium), 47.3+/-0.5 A2 (DMPS with calcium), 51.3+/-1.0 A2 (DMPS with sodium) and 45.3+/-0.5 A2 (DMPSH). The structure of the negatively charged lipids is significantly affected by the counterions, where calcium ions have a more pronounced effect than sodium ions. Calcium ions were found to be tightly bound to the anionic groups of the lipid molecules and as such appear to constitute an integral part of the membrane interface on nanoseconds time scales. In contrast to sodium ions, calcium ions are localised in a narrow (approximately 10 A) band around the phosphate group. The interaction of calcium with the lipid molecules enhances the molecular packing of the PG and PS lipids. This observation is in good agreement with emission spectra of the membrane partitioning probe Laurdan in DMPG multilamellar vesicles that indicate an increase in the ordering of the DMPG bilayer due to the presence of calcium. Our results indicate that calcium ions, which often function as a second messengers in living cells have a pronounced effect on membrane structures, which may have implications during signal transduction events.  相似文献   

17.
Liposomal cytarabine, DepoCyt, is a chemotherapy agent which is used in cancer treatment. This form of cytarabine has more efficacy and fewer side effects relative to the other forms. Since DepoCyt contains the cytarabine encapsulated within phosphatidylcholine and the sterol molecules, we modeled dioleoylphosphatidylcholine (DOPC)/cholesterol bilayer membrane as a carrier for cytarabine to study drug–bilayer interactions. For this purpose, we performed a series of united-atom molecular dynamics (MD) simulations for 25?ns to investigate the interactions between cytarabine and cholesterol-containing DOPC lipid bilayers. Only the uncharged form of cytarabine molecule was investigated. In this study, different levels of the cholesterol content (0, 20, and 40%) were used. MD simulations allowed us to determine dynamical and structural properties of the bilayer membrane and to estimate the preferred location and orientation of the cytarabine molecule inside the bilayer membrane. Properties such as membrane thickness, area per lipid, diffusion coefficient, mass density, bilayer packing, order parameters, and intermolecular interactions were examined. The results show that by increasing the cholesterol concentration in the lipid bilayers, the bilayer thickness increases and area per lipid decreases. Moreover, in accordance with the experiments, our calculations show that cholesterol molecules have ordering effect on the hydrocarbon acyl chains. Furthermore, the cytarabine molecule preferentially occupies the polar region of the lipid head groups to form specific interactions (hydrogen bonds). Our results fully support the experimental data. Our finding about drug–bilayer interaction is crucial for the liposomal drug design.  相似文献   

18.
Sun Y  Lee CC  Hung WC  Chen FY  Lee MT  Huang HW 《Biophysical journal》2008,95(5):2318-2324
Drug-membrane interactions are well known but poorly understood. Here we describe dual measurements of membrane thickness change and membrane area change due to the binding of the amphipathic drug curcumin. The combined results allowed us to analyze the binding states of a drug to lipid bilayers, one on the water-membrane interface and another in the hydrocarbon region of the bilayer. The transition between the two states is strongly affected by the elastic energy of membrane thinning (or, equivalently, area stretching) caused by interfacial binding. The data are well described by a two-state model including this elastic energy. The binding of curcumin follows a common pattern of amphipathic peptides binding to membranes, suggesting that the binding states of curcumin are typical for amphipathic drugs.  相似文献   

19.
Deuterium (2H) NMR has been used to observe perturbation of dipalmitoylphosphatidylcholine (DPPC) bilayers by the pulmonary surfactant protein B (SP-B) at concentrations up to 17% (w/w). Previous 2H NMR studies of DPPC/dipalmitoylphosphatidylglycerol (DPPG) (7:3) bilayers containing up to 11% (w/w) SP-B and DPPC bilayers containing up to 11% (w/w) synthetic SP-B indicated a slight effect on bilayer chain order and a more substantial effect on motions that contribute to decay of quadrupole echoes obtained from bilayers of deuterated DPPC. This is consistent with the perturbation of headgroup-deuterated DPPC reported here for bilayers containing 6 and 9% (w/w) SP-B. For the higher concentrations of SP-B investigated in the present work, 2H NMR spectra of DPPC deuterated in both the headgroup and chain display a prominent narrow component consistent with fast, large amplitude reorientation of some labeled lipid. Similar spectral perturbations have been reported for bilayers in the presence of the antibiotic polypeptide nisin. The observation of large amplitude lipid reorientation at high SP-B concentration could indicate that SP-B can induce regions of high bilayer curvature and thus provides some insight into local interaction of SP-B with DPPC. Such local interactions may be relevant to the formation, in vitro and in vivo, of tubular myelin, a unique structure found in extracellular pulmonary surfactant, and to the delivery of surfactant material to films at the air–water interface.Abbreviations DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine - DPPG 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol - DPPC-d62 1,2-perdeuterodipalmitoyl-sn-glycero-3-phosphocholine - DPPC-d4 1,2-dipalmitoyl-sn-glycero-3-phospho-(, perdeutero)-choline  相似文献   

20.
We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosphatidyl-serine (DMPS) bilayers as well as a protonated di-myristoyl-phosphatidyl-serine (DMPSH) bilayer. We were particularly interested in calcium ions due to their important role in biological systems. Simulations performed in the presence of calcium ions (DMPG, DMPS) or sodium ions (DMPS) were run for 45-60 ns. Simulation results for DMPG are compared with fluorescence measurements. The average areas per molecule were 47.4 ± 0.5 Å2 (DMPG with calcium), 47.3 ± 0.5 Å2 (DMPS with calcium), 51.3 ± 1.0 Å2 (DMPS with sodium) and 45.3 ± 0.5 Å2 (DMPSH). The structure of the negatively charged lipids is significantly affected by the counterions, where calcium ions have a more pronounced effect than sodium ions. Calcium ions were found to be tightly bound to the anionic groups of the lipid molecules and as such appear to constitute an integral part of the membrane interface on nanoseconds time scales. In contrast to sodium ions, calcium ions are localised in a narrow (∼ 10 Å) band around the phosphate group. The interaction of calcium with the lipid molecules enhances the molecular packing of the PG and PS lipids. This observation is in good agreement with emission spectra of the membrane partitioning probe Laurdan in DMPG multilamellar vesicles that indicate an increase in the ordering of the DMPG bilayer due to the presence of calcium. Our results indicate that calcium ions, which often function as a second messengers in living cells have a pronounced effect on membrane structures, which may have implications during signal transduction events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号