首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The widespread natural sources‐derived cationic peptides have been reported to reveal bacterial killing and/or growth‐inhibiting properties. Correspondingly, a number of artificial peptides have been designed to understand antibacterial mechanism of the cationic peptides. These peptides are expected to be an alternative antibiotic against drug‐resistant pathogenic bacteria because major antimicrobial mechanism of cationic peptides involves bacterial membrane disorder, although those availabilities have not been well evaluated. In this study, cationic peptides containing Aib were prepared to evaluate the availability as an antimicrobial agent, especially against representative pathogenic bacteria. Among them, BRBA20, consisting of five repeated Aib‐Arg‐Aib‐Ala sequences, showed strong antibacterial activity against both Gram‐negative and Gram‐positive bacteria, including methicillin‐resistant Staphylococcus aureus. Additionally, growth of Serratia marcescens and multidrug‐resistant Pseudomonas aeruginosa, known as proteases‐secreting pathogenic bacteria, were also completely inhibited by BRBA20 under 20 µg/ml peptide concentrations. Our results suggested availabilities of Aib‐derived amphiphilicity and protease resistance in the design of artificial antimicrobial peptides. Comparing BRBA20 with BKBA20, it was also concluded that Arg residue is the preferred cationic source than Lys for antimicrobial action of amphiphilic helices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Aims: To isolate the biologically active fraction of the lipopeptide biosurfactant produced by a marine Bacillus circulans and study its antimicrobial potentials. Methods and Results: The marine isolate B. circulans was cultivated in glucose mineral salts medium and the crude biosurfactant was isolated by chemical isolation method. The crude biosurfactants were solvent extracted with methanol and the methanol extract was subjected to reverse phase high‐performance liquid chromatography (HPLC). The crude biosurfactants resolved into six major fractions in HPLC. The sixth HPLC fraction eluting at a retention time of 27·3 min showed the maximum surface tension‐reducing property and reduced the surface tension of water from 72 mNm?1 to 28 mNm?1. Only this fraction was found to posses bioactivity and showed a pronounced antimicrobial action against a panel of Gram‐positive and Gram‐negative pathogenic and semi‐pathogenic micro‐organisms including a few multidrug‐resistant (MDR) pathogenic clinical isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of this antimicrobial fraction of the biosurfactant were determined for these test organisms. The biosurfactant was found to be active against Gram‐negative bacteria such as Proteus vulgaris and Alcaligens faecalis at a concentration as low as 10 μg ml?1. The biosurfactant was also active against methicillin‐resistant Staphylococcus aureus (MRSA) and other MDR pathogenic strains. The chemical identity of this bioactive biosurfactant fraction was determined by post chromatographic detection using thin layer chromatography (TLC) and also by Fourier transform infrared (FTIR) spectroscopy. The antimicrobial HPLC fraction resolved as a single spot on TLC and showed positive reaction with ninhydrin, iodine and rhodamine‐B reagents, indicating its lipopeptide nature. IR absorption by this fraction also showed similar and overlapping patterns with that of other lipopeptide biosurfactants such as surfactin and lichenysin, proving this biosurfactant fraction to be a lipopeptide. The biosurfactant did not show any haemolytic activity when tested on blood agar plates, unlike the lipopeptide biosurfactant surfactin produced by Bacillus subtilis. Conclusions: The biosurfactant produced by marine B. circulans had a potent antimicrobial activity against Gram‐positive and Gram‐negative pathogenic and semi‐pathogenic microbial strains including MDR strains. Only one of the HPLC fractions of the crude biosurfactants was responsible for its antimicrobial action. The antimicrobial lipopeptide biosurfactant fraction was also found to be nonhaemolytic in nature. Significance and impact of the study: This work presents a nonhaemolytic lipopeptide biosurfactant produced by a marine micro‐organism possessing a pronounced antimicrobial action against a wide range of bacteria. There is a high demand for new antimicrobial agents because of the increased resistance shown by pathogenic micro‐organisms against the existing antimicrobial drugs. This study provides an insight into the search of new bioactive molecules from marine micro‐organisms.  相似文献   

3.
A 3.4 kDa of antimicrobial peptide was purified from an acidified skin extract of skipjack tuna, Katsuwonus pelamis, by preparative acid-urea–polyacrylamide gel electrophoresis and C18 reversed-phase HPLC. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high sequence homology with the YFGAP (Yellowfin tuna Glyceraldehyde-3-phosphate dehydrogenase-related Antimicrobial Peptide); thus, this peptide was identified as the skipjack tuna GAPDH-related antimicrobial peptide (SJGAP). SJGAP showed potent antimicrobial activity against Gram-positive bacteria, such as Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentrations [MECs], 1.2–17.0 μg/mL), Gram-negative bacteria, such as Aeromonas hydrophila, Escherichia coli D31, and Vibrio parahaemolyticus (MECs, 3.1–12.0 μg/mL), and against Candida albicans (MEC, 16.0 μg/mL) without significant hemolytic activity. Antimicrobial activity of this peptide is heat-stable but salt-sensitive. According to the secondary structural prediction and the homology modeling, this peptide consists of three secondary structural motifs, including one α-helix and two parallel β-strands, and forms an amphipathic structure. This peptide showed neither membrane permeabilization ability nor killing ability, but did display a small degree of leakage ability. These results suggest that SJGAP acts through a bacteriostatic process rather than bactericidal one. SJGAP is another GAPDH-related antimicrobial peptide isolated from skipjack tuna and likely plays an important role for GAPDH in the innate immune defense of tuna fish.  相似文献   

4.
The adoption of a helical conformation in a membrane environment effectively increases the "apparent hydrophobicity" of a peptide segment by satisfying the backbone H-bonding potential, thus stabilizing it in this environment. Here we sought to explore whether destabilizing the helical conformation would have a measurable effect on the apparent hydrophobicity of such segments in both aqueous and membrane-mimetic environments. In order to uncouple peptide hydrophobicity from helicity, we used the prototypic KKAAAAAAAAAAAAWAAAAAAKKKKNH(2) peptide as a template, and performed pairwise DD-scanning mutagenesis over the length of the sequence. Studies on this library of 13 peptides show that the DD replacements at positions near the center of peptide sequence had the most significant effects on the peptides' retention time in high performance liquid chromatography experiments. Decreased retention times correlate well with decreased helicity as measured by CD spectroscopy in the aqueous environment. Trp fluorescence measurements indicated that the peptides displayed a significant red shift in LPC (but not LPG) with peptides having DD replacements near the middle of the peptide sequence, emphasizing the importance of the anionic membrane in promoting peptide insertion. When tested against a laboratory strain of Escherichia coli, antimicrobial activity of the DD-peptides correlated with the apparent hydrophobicity but not with the overall micelle-based helical content of the peptides per se. Further analysis of the DD-positional dependence of the antimicrobial activity suggests that the presence of a local, uninterrupted stretch of helical structure (10-12 residues) may be a prerequisite for peptide biological activity. The overall findings support the notion that one should distinguish between the hydrophobicity of individual residues and the apparent hydrophobicity of the peptide as a whole, as the latter will ultimately have a greater influence on the properties of the full-length species.  相似文献   

5.
To obtain active and metabolically stable analogues, peptide backbone modifications have been incorporated into many biologically active peptides. In this study, we designed and synthesized pseudopeptides corresponding to the antimicrobial peptide that acted on the lipid membrane of the pathogen. Most pseudopeptides exhibited a longer half-life than the peptide in the presence of serum as well as a considerable activity against test bacteria and fungi. Circular dichroism spectra and retention times of the pseudopeptides helped us to elucidate the effect of the incorporation of backbone modifications on the structural parameters necessary for the activity, indicating that alpha-helical structure was the most important factor for the activity and hydrophobicity had a considerable effect on the activity. Backbone modifications employed in this study can be a useful tool for structure-activity relationship studies and the development of therapeutic agents from membrane-active antimicrobial peptides.  相似文献   

6.
UyCT peptides are antimicrobial peptides isolated from the venom of the Australian scorpion. The activity of the UyCT peptides against Gram positive and Gram negative bacteria and red blood cells was determined. The membrane interactions of these peptides were evaluated by dye release (DR) of the fluorophore calcein from liposomes and isothermal titration calorimetry (ITC); and their secondary structure was determined by circular dichroism (CD). Three different lipid systems were used to mimic red blood cells, Escherichia coli and Staphylococcus aureus membranes. UyCT peptides exhibited broad spectrum antimicrobial activity with low MIC for S. aureus and multi-drug resistant Gram negative strains. Peptide combinations showed some synergy enhancing their potency but not hemolytic activity. The UyCT peptides adopted a helical structure in lipid environments and DR results confirmed that the mechanism of action is by disrupting the membrane. ITC data indicated that UyCT peptides preferred prokaryotic rather than eukaryotic membranes. The overall results suggest that UyCT peptides could be pharmaceutical leads for the treatment of Gram negative multiresistant bacterial infections, especially against Acinetobacter baumanni, and candidates for peptidomimetics to enhance their potency and minimize hemolysis. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

7.
A number of shortened derivatives of the lactoferrin model peptide L12, PAWRKAFRWAKRMLKKAA, were designed in order to elucidate the structural basis for antitumour activity of lactoferrin derivatives. Three tumour cell lines were included in the study and toxicity determined by measuring lysis of human red blood cells and fibroblasts. The results demonstrated a strong correlation between antitumour activity and net positive charge, in which a net charge close to +7 was essential for a high antitumour activity. In order to increase the antitumour activity of the shortest peptide with a net charge less than +7, the hydrophobicity had to be increased by adding a bulky Trp residue. None of the peptides were haemolytic, but toxicity against fibroblasts was observed. However, modifications of the peptides had a higher effect on reducing fibroblast toxicity than antitumour activity and thereby resulted in peptides displaying an almost 7-fold selectivity for tumour cells compared with fibroblasts. The antimicrobial activity against the Gram-negative bacteria Escherichia coil and the Gram-positive bacteria Staphylococcus aureus was also included in order to compare the structural requirements for antitumour activity with those required for a high antimicrobial activity. The results showed that most of the peptides were highly active against both bacterial strains. Less modification by shortening the peptide sequences was tolerated for maintaining a high antitumour activity and selectivity compared with antimicrobial activity. The order of the amino acid residues and thereby the conformation of the peptides was highly essential for antitumour activity, whereas the antimicrobial activity was hardly influenced by changes in this parameter. Thus, in addition to a certain net positive charge and hydrophobicity, the ability to adopt an amphipathic conformation was a more critical structural parameter for antitumour activity than for antimicrobial activity, and implied that a higher flexibility or number of active conformations was tolerated for the peptides to exert a high antimicrobial activity.  相似文献   

8.
Aims: To explore the relationship between chemical structures and antimicrobial activities of quaternary ammonium salts (QASs), particularly the impact of hydrophobicity of the salts on the antimicrobial functions. Methods and Results: Four QASs, i.e. 4‐aminododecylpyridinium chloride, 4‐acetylaminododecylpyridinium chloride, 4‐benzoylaminododecylpyridinium bromide and 4‐(1‐naphthoyl) aminododecylpyridinium bromide were employed in antimicrobial tests against both Gram‐negative and Gram‐positive bacteria, Escherichia coli and Staphylococcus aureus. These four QASs possess the same long alkyl chain but different hydrophobic substituents at the 4‐amino group. Antimicrobial activity of QASs was measured in liquid phases by growing bacterial cultures in the presence and absence of the QAS. The most hydrophobic compound exhibited the strongest antimicrobial activity than other salts. Conclusions: All of the quaternary pyridinium salts exhibited significant antimicrobial activities but in different extents according to their hydrophobicity at the 4‐amino position. QASs having larger hydrophobic groups were significantly more effective than that with smaller groups. Significance and Impact of the Study: This research revealed that hydrophobic and aromatic ring structures at 4‐amino position on quaternary aminopyridinium ring could improve antimicrobial activity of the salts. The results could assist understanding and development of antimicrobial QASs.  相似文献   

9.
Antibacterial activities of temporin A analogs   总被引:1,自引:0,他引:1  
Temporin A (TA) is a small, basic, highly hydrophobic, antimicrobial peptide amide (FLPLIGRVLSGIL-NH2) found in the skin of the European red frog, Rana temporaria. It has variable antibiotic activities against a broad spectrum of microorganisms, including clinically important methicillin-sensitive and -resistant Staphylococcus aureus as well as vancomycin-resistant Enterococcus faecium strains. In this investigation the antimicrobial activity and structural characteristics of TA synthetic analogs were studied. For antibacterial activity against S. aureus and enterococcal strains, the hydrophobicity of the N-terminal amino acid of TA was found to be important as well as a positive charge at amino acid position 7, and bulky hydrophobic side chains at positions 5 and 12. Replacing isoleucine with leucine at amino acid positions 5 and 12 resulted in the greatest enhancement of antibacterial activity. In addition, there was little difference between the activities of TA and its all-D enantiomer, indicating that the peptide probably exerts its effect on bacteria via non-chiral interactions with membrane lipids.  相似文献   

10.
Phenolic extract of leaves of Basilicum polystachyon (L) Moench was tested for in vitro antimicrobial activity against five bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Micrococcus leuteus) and three fungi (Fusarium oxysporum, Aspergillus niger, Helminthosporium oryzae). Efficacy of organic solvents, methanol and ethanol, as agents for extraction was compared with acidic water (2M; HCl). High-pressure liquid chromatographic (HPLC) data showed that acidic extraction (2M; HCl) resulted in higher yield of caffeic acid (0.437 mg g(-1)) and rosmarinic acid (0.919 mg g(-1)). Acidic extract showed high activity against Gram (+) ve bacteria, but was less active against Gram (-) ve bacteria. Amongst the tested fungi, maximum activity was exhibited against Aspergillus niger. This is the first report on the phenolic constituents and bioactivity of B. polystachyon.  相似文献   

11.
Cationic antimicrobial peptides are able to kill a broad variety of Gram-negative and Gram positive bacteria and thus are good candidates for a new generation of antibiotics to treat multidrug-resistant bacteria. Here we describe a high-throughput method to screen large numbers of peptides for improved antimicrobial activity. The method relies on peptide synthesis on a cellulose support and a Pseudomonas aeruginosa strain that constitutively expresses bacterial luciferase. A complete substitution library of 12-amino-acid peptides based on a linearized variant (RLARIVVIRVAR-NH(2)) of the bovine peptide bactenecin was screened and used to determine which substitutions at each position of the peptide chain improved activity. By combining the most favorable substitutions, we designed optimized 12-mer peptides showing broad spectrum activities with minimal inhibitory concentrations (MIC) as low as 0.5 microg/ml against Escherichia coli. Similarly, we generated an 8-mer substituted peptide that showed broad spectrum activity, with an MIC of 2 microg/ml, against E. coli and Staphylococcus aureus.  相似文献   

12.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
【目的】鉴定家蝇 Musca domestica (Linnaeus)中一种新型抗菌肽(Muscin)基因,并分析其功能。【方法】通过数字基因表达谱和生物信息学分析,在家蝇转录组中筛选得到一条抗菌肽基因,命名为 muscin。以实时荧光定量PCR技术研究该基因的组织分布以及用大肠杆菌Escherichia coli和金黄色葡萄球菌Staphylococcus aureus混合细菌刺激后的表达量变化。并对合成肽Muscin进行抑菌活性检测及溶血率测定。【结果】muscin基因cDNA序列全长379 bp,包含完整的开放阅读框153 bp。推导Muscin多肽序列由50个氨基酸残基组成,N端含有由25个氨基酸残基组成的信号肽。成熟肽中富含疏水性氨基酸残基和带正电荷的氨基酸残基,理论等电点为9.39。基因定量结果显示 muscin 基因在血细胞和脂肪体中表达量最高。通过细菌刺激进行免疫诱导后,幼虫体内该基因的表达水平明显上调,并在6 h达到高峰。抑菌和溶血实验显示c-Muscin对革兰氏阳性菌和革兰氏阴性菌具有广谱抑菌活性,且溶血活性较低。【结论】Muscin是一种新型的广谱抗菌肽,可能参与家蝇抗菌免疫反应,且具有一定药物开发潜质。  相似文献   

14.
Defensins are a class of cysteine‐rich proteins, which exert broad spectrum antimicrobial activity. In this work, we used a bioinformatic approach to identify putative defensins in the tomato genome. Fifteen proteins had a mature peptide that includes the well‐conserved tetradisulfide array. We selected a representative member of the tomato defensin family; we chemically synthesized its γ‐motif and tested its antimicrobial activity. Here, we demonstrate that the synthetic peptide exhibits potent antibacterial activity against Gram‐positive bacteria, such as Staphylococcus aureus A170, Staphylococcus epidermidis, and Listeria monocytogenes, and Gram‐negative bacteria, including Salmonella enterica serovar Paratyphi, Escherichia coli, and Helicobacter pylori. In addition, the synthetic peptide shows minimal (<5%) hemolytic activity and absence of cytotoxic effects against THP‐1 cells. Finally, SolyC exerts an anti‐inflammatory activity in vitro, as it downregulates the level of the proinflammatory cytokines TNF‐α and IFN‐γ. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Worldwide efforts are underway to develop new antimicrobial agents against bacterial resistance. To identify new compounds with a good antimicrobial profile, we designed and synthesized two series of small cationic antimicrobial peptidomimetics (1–8) containing unusual arginine mimetics (to introduce cationic charges) and several aromatic amino acids (bulky moieties to improve lipophilicity). Both series were screened for in vitro antibacterial activity against a representative panel of Gram‐positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram‐negative (Escherichia coli and Klebsiella pneumoniae) bacterial strains, and Candida albicans. The biological screening showed that peptidomimetics containing tryptophan residues are endowed with the best antimicrobial activity against S. aureus and S. epidermidis in respect to the other synthesized derivatives (MIC values range 7.5–50 µg/ml). Moreover, small antimicrobial peptidomimetics derivatives 2 and 5 showed an appreciable activity against the tested Gram‐negative bacteria and C. albicans. The most active compounds (1–2 and 5–6) have been tested against Gram‐positive established biofilm, too. Results showed that the biofilm inhibitory concentration values of these compounds were never up to 200 µg/ml. The replacement of tryptophan with phenylalanine or tyrosine resulted in considerable loss of the antibacterial action (compounds 3–4 and 7–8) against both Gram‐positive and Gram‐negative bacterial strains. Furthermore, by evaluating hemolytic activity, the synthesized compounds did not reveal cytotoxic activities, except for compound 5. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
The antimicrobial peptide fowlicidin‐2 identified in chicken is a member of the cathelicidins family. The mature fowlicidin‐2 possesses high antibacterial efficacy and lipopolysaccharide (LPS) neutralizing activity, and also represents an excellent candidate as an antimicrobial agent. In the present study, the recombinant fowlicidin‐2 was successfully produced by Escherichia coli (E. coli) recombinant expression system. The gene encoding fowlicidin‐2 with the codon preference of E. coli was designed through codon optimization and synthesized in vitro. The gene was then ligated into the plasmid pET‐32a(+), which features fusion protein thioredoxin at the N‐terminal. The recombinant plasmid was transformed into E. coli BL21(DE3) and cultured in Luria‐Bertani (LB) medium. After isopropyl‐β‐D‐thiogalactopyranoside (IPTG) induction, the fowlicidin‐2 fusion protein was successfully expressed as inclusion bodies. The inclusion bodies were dissolved and successfully released the peptide in 70% formic acid solution containing cyanogen bromide (CNBr) in a single step. After purification by reverse‐phase high‐performance liquid chromatography (RP‐HPLC), ~6.0 mg of fowlicidin‐2 with purity more than 97% was obtained from 1 litre of bacteria culture. The recombinant peptide exhibited high antibacterial activity against the Gram‐positive and Gram‐negative bacteria, and even drug‐resistant strains. This system could be used to rapidly and efficiently produce milligram quantities of a battery of recombinant antimicrobial peptides as well as for large‐scale production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:369–374, 2015  相似文献   

18.
A novel antimicrobial peptide derived from ovalbumin has been discovered. First, the peptide fragment RKIKVYLPRMK (TK9.1) was identified based on computerized predictions of the secondary structure of peptides in a protein data bank. Using HeliQuest, the sequence was developed into RKIKRYLRRMI (TK9.1.3), which was synthesized using Fmoc‐solid phase peptide synthesis, and found to have strongly antimicrobial activity against Gram‐positive and Gram‐negative bacteria, and fungi but not cytotoxic to HeLa cells and hemolysis in mouse red blood cells. Although ovalbumin itself does not have an antibacterial activity, our results suggest that it may supply the organisms that consume it with antimicrobial peptides, in support of their immunodefence.  相似文献   

19.
A novel antimicrobial peptide, designated macropin (MAC‐1) with sequence Gly‐Phe‐Gly‐Met‐Ala‐Leu‐Lys‐Leu‐Leu‐Lys‐Lys‐Val‐Leu‐NH2, was isolated from the venom of the solitary bee Macropis fulvipes. MAC‐1 exhibited antimicrobial activity against both Gram‐positive and Gram‐negative bacteria, antifungal activity, and moderate hemolytic activity against human red blood cells. A series of macropin analogs were prepared to further evaluate the effect of structural alterations on antimicrobial and hemolytic activities and stability in human serum. The antimicrobial activities of several analogs against pathogenic Pseudomonas aeruginosa were significantly increased while their toxicity against human red blood cells was decreased. The activity enhancement is related to the introduction of either l ‐ or d ‐lysine in selected positions. Furthermore, all‐d analog and analogs with d ‐amino acid residues introduced at the N‐terminal part of the peptide chain exhibited better serum stability than did natural macropin. Data obtained by CD spectroscopy suggest a propensity of the peptide to adopt an amphipathic α‐helical secondary structure in the presence of trifluoroethanol or membrane‐mimicking sodium dodecyl sulfate. In addition, the study elucidates the structure–activity relationship for the effect of d ‐amino acid substitutions in MAC‐1 using NMR spectroscopy. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Thanatin, a 21-residue peptide, is an inducible insect peptide with a broad range of activity against bacteria and fungi. It has a C-terminal disulfide loop, like the frog skin secretion antimicrobial peptides of the brevinin family. In this study, we tried to find the effect of a number of amino acids between the disulfide bond. Thanatin showed stronger antibacterial activity to Gram negative bacteria than other mutants, except Th1; whereas, the mutant peptides with deletion had higher activity to Gram positive bacteria than thanatin. An increase in the number of amino acid(s) using the alanine residue decreased the antibacterial activity in all of the bacteria. Th1 with deletion of threonine at position 15 (Thr(1)(2)) showed similar antibacterial activity against Gram-negative bacteria, but had higher activity against the Gram positive bacteria. In order to study the structure-function relationship, we measured liposome disruption by the peptides and CD spectra of the peptides. Th1 also showed the highest liposome leaking activity and alpha-helical propensity in the sodium dodecyl sulfate solution, compared with other peptides. Liposome disruption activity was closely correlated with the anti-Gram positive bacterial activity. All of the peptides showed no hemolytic activity. Th1 was considered to be useful as an antimicrobial peptide with broad spectrum without toxicity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号