首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
The aim of the present work was to investigate the production of aflatoxin byAspergillus parasiticus and to find out the possible ways to control it. Of 40 food samples collected from Abha region, Saudi Arabia, only 25% were contaminated with aflatoxins. Oil-rich commodities had the highly contaminated commodities by fungi and aflatoxins while spices were free from aflatoxins.Bacillus megatertum andB cereus were suitable for microbiological assay of aflatoxins. Czapek’s-Dox medium was found a suitable medium for isolation of fungi from food samples. The optimal pH for the growth ofA. parasiticus and its productivity of aflatoxin B1 was found at 6.0, while the best incubation conditions were found at 30°C for 10 days. D-glucose was the best carbon source for fungal growth, as well as aflatoxin production. Corn steep liquor, yeast extract and peptone were the best nitrogen sources for both fungal growth and toxin production (NH4)2HPO4 (1.55 gL-1) and NaNO2 (1.6 gL-1) reduced fungal growth and toxin production with 37.7% and 85%, respectively. Of ten amino acids tested, asparagine was the best for aflatoxin B1 production. Zn2+ and Co2+ supported significantly both fungal growth, as well as, aflatoxin B1 production at the different tested concentrations. Zn2+ was effective when added toA. parasiticus growth medium at the first two days of the culture age. The other tested metal ions expressed variable effects depending on the type of ion and its concentration. Water activity (aw) was an important factor controlling the growth ofA. parasiticus and toxin production. The minimum aw for the fungal growth was 0.8 on both coffee beans and rice grains, while aw of 0.70 caused complete inhibition for the growth and aflatoxin B1 production. H2O2 is a potent inhibitor for growth ofA. parasiticus and its productivity of toxins. NaHCO3 and C6H5COONa converted aflatoxin B1 to water-soluble form which returned to aflatoxin B1 by acidity. Black pepper, ciliated heath, cuminum and curcuma were the most inhibitory spices on toxin production. Glutathione, quinine, EDTA, sodium azide, indole acetic acid, 2,4-dichlorophenoxy acetic acid, phenol and catechol were inhibitory for both growth, as well as, aflatoxin B1 production. Stearic acid supported the fungal growth and decreased the productivity of AFB1 gradually. Lauric acid is the most suppressive fatty acid for both fungal growth and aflatoxin production, but oleic acid was the most potent supporter. Vitamin A supported the growth but inhibited aflatoxin B1 production. Vitamins C and D2 were also repressive particularly for aflatoxin production The present study included studying the activities of some enzymes in relation to aflatoxin production during 20-days ofA. parasiticus age in 2-days intervals. Glycolytic enzymes and pyruvate-generating enzymes seems to be linked with aflatoxin B1 production. Also, pentose-phosphate pathway enzymes may provide NADPH for aflatoxin B1 synthesis. The decreased activities of TCA cycle enzymes particularly from 4th day of growth up to 10th day were associated with the increase of aflatoxin B1 production. All the tested enzymes as well as aflatoxin B1 production were inhibited by either catechol or phenol.  相似文献   

2.
Dillapiol was isolated from the essential oil of dill as a specific inhibitor of aflatoxin G1 production. It inhibited aflatoxin G1 production by Aspergillus parasiticus with an IC50 value of 0.15 μM without inhibiting aflatoxin B1 production or fungal growth. Apiol and myristicin, congeners of dillapiol, showed similar activity with IC50 values of 0.24 and 3.5 μM, respectively.  相似文献   

3.
AflatoxigenicAspergillus flavus andAspergillus parasiticus were subjected to solid substrate fermentation process for 6 days to determine the formation of aflatoxins and production of extracellular enzymes (amyloglucosidase, cellulase, invertase and proteinase). Both organisms produced enzymes which generally increased with fermentation.Aspergillus flavus produced four enzymes whereasA. parasiticus produced three with no proteinase activity.Aspergillus parasiticus produced aflatoxins B1, B2 and G1 but no G2 andA. flavus produced aflatoxins B1 and B2. Invertase showed the highest activity withA. parasiticus and that corresponded with the highest total toxin produced. The enzyme activities were higher withA. parasiticus thanA. flavus although total toxins produced byA. parasiticus were lower than total toxins produced byA. flavus under the same environmental conditions.  相似文献   

4.
Steaming one-half of a lot of 9-day-old mycelia of Aspergillus parasiticus NRRL 2999 for 6 min resulted in little or no subsequent degradation of aflatoxin B1 or G1 by these mycelia. The other half of these mycelia was not heat-treated and degraded aflatoxins B1 and G1 Filtrates of the growth substrate which remained after the mycelium was removed from 8- to 15-day old cultures of A. parasiticus NRRL 2999 did not degrade substantial amounts of aflatoxin B1 or G1, whereas mycelia originally produced on these filtrates degraded substantial amounts of both aflatoxins. The supernatant fluid from homogenates of 9-day-old mycelia of A. parasiticus NRRL 2999 degraded aflatoxins B1 and G1 when 0.1 M or 1.0 M phosphate buffer, pH 6.5, was used to suspend the homogenate. These data support the hypothesis that the aflatoxin degrading factor(s) present in the mycelium of A. purasiticus is/are enzyme(s) or at least influenced by enzyme(s).  相似文献   

5.
We detected biosynthetic activity for aflatoxins G1 and G2 in cell extracts of Aspergillus parasiticus NIAH-26. We found that in the presence of NADPH, aflatoxins G1 and G2 were produced from O-methylsterigmatocystin and dihydro-O-methylsterigmatocystin, respectively. No G-group aflatoxins were produced from aflatoxin B1, aflatoxin B2, 5-methoxysterigmatocystin, dimethoxysterigmatocystin, or sterigmatin, confirming that B-group aflatoxins are not the precursors of G-group aflatoxins and that G- and B-group aflatoxins are independently produced from the same substrates (O-methylsterigmatocystin and dihydro-O-methylsterigmatocystin). In competition experiments in which the cell-free system was used, formation of aflatoxin G2 from dihydro-O-methylsterigmatocystin was suppressed when O-methylsterigmatocystin was added to the reaction mixture, whereas aflatoxin G1 was newly formed. This result indicates that the same enzymes can catalyze the formation of aflatoxins G1 and G2. Inhibition of G-group aflatoxin formation by methyrapone, SKF-525A, or imidazole indicated that a cytochrome P-450 monooxygenase may be involved in the formation of G-group aflatoxins. Both the microsome fraction and a cytosol protein with a native mass of 220 kDa were necessary for the formation of G-group aflatoxins. Due to instability of the microsome fraction, G-group aflatoxin formation was less stable than B-group aflatoxin formation. The ordA gene product, which may catalyze the formation of B-group aflatoxins, also may be required for G-group aflatoxin biosynthesis. We concluded that at least three reactions, catalyzed by the ordA gene product, an unstable microsome enzyme, and a 220-kDa cytosol protein, are involved in the enzymatic formation of G-group aflatoxins from either O-methylsterigmatocystin or dihydro-O-methylsterigmatocystin.  相似文献   

6.
J. Reiss 《Mycopathologia》1982,77(2):99-102
The growth of Aspergillus parasiticus NRRL 2999, A. parasiticus NRRL 3000 and A. flavus NRRL 3251 on whole wheat bread and on cake (Rührkuchen) was compared and the formation of the aflatoxins B1, B2, G1, G2 and M1 on these substrates and, for purpose of comparison, on malt extract agar was determined. On cake the moulds grew better than on bread and formed the highest yields of aflatoxins. Malt extract agar was the most unfavourable substrate for toxin production. The ratio M1/B1 on bread and cake was in the order of 0.1–0.4 and was higher than the data reported for grains. The highest yields of aflatoxin B1 (1.0 g/g) were produced by A. flavus NRRL 3251 on cake.  相似文献   

7.
Summary Blended 9-day-old mycelia of Aspergillus parasiticus NRRL 2999 were tested for their ability to degrade aflatoxins B1 and G1 at 7,19,28,36, and 45°C. Rates for degradation of aflatoxin B1 and G1 were maximum at 28°C. Intermediate rates of aflatoxin degradation were observed at 19 and 36°C while little aflatoxin was degraded at 7 and 45°C. Five different pH values (2.0, 3.0, 4.0, 5.0, and 6.5) were also tested to determine the effect of pH on ability of blended 9-day-old mycelia of A. parasiticus NRRL 2999 to degrade aflatoxins. The ability of mycelia to degrade aflatoxin was pH-dependent. Of the pH values tested, greatest rates of aflatoxin B1 and G1 degradation occurred when pH was in the range of 5 to 6.5. Little aflatoxin was degraded at pH 4.0 and essentially no aflatoxin was degraded by mycelia at pH 2.0 or 3.0 although some aflatoxin was degraded by acid conditions only at pH values of 4 or less.  相似文献   

8.
Aims: To evaluate the ability of Streptomyces sp. (strain ASBV‐1) to restrict aflatoxin accumulation in peanut grains. Methods and Results: In the control of many phytopathogenic fungi the Streptomyces sp. ASBV‐1 strain showed promise. An inhibitory test using this strain and A. parasiticus was conducted in peanut grains to evaluate the effects of this interaction on spore viability and aflatoxin accumulation. In some treatments the Streptomyces sp ASBV‐1 strain reduced the viability of A. parasiticus spores by c. 85%, and inhibited aflatoxin accumulation in peanut grains. The values of these reductions ranged from 63 to 98% and from 67% to 96% for aflatoxins B1 and G1, respectively. Conclusions: It was demonstrated that Streptomyces sp. ASBV‐1 is able to colonize peanut grains and thus inhibit the spore viability of A. parasiticus, as well as reducing aflatoxin production. Significance and Impact of the Study: The positive finding for aflatoxin accumulation reduction in peanut grains seems promising and suggests a wider use of this actinobacteria in biological control programmes.  相似文献   

9.
Two aflatoxin-producing isolates of Aspergillus flavus were grown for 5 days on Wort media at 2, 7, 13, 18, 24, 29, 35, 41, 46, and 52 C. Maximal production of aflatoxins occurred at 24 C. Maximal growth of A. flavus isolates occurred at 29 and 35 C. The ratio of the production of aflatoxin B1 to aflatoxin G1 varied with temperature. Aflatoxin production was not related to growth rate of A. flavus; one isolate at 41 C, at almost maximal growth of A. flavus, produced no aflatoxins. At 5 days, no aflatoxins were produced at temperatures lower than 18 C or higher than 35 C. Color of CHCl3 extracts appeared to be directly correlated with aflatoxin concentrations. A. flavus isolates grown at 2, 7, and 41 C for 12 weeks produced no aflatoxins. At 13 C, both isolates produced aflatoxins in 3 weeks, and one isolate produced increasing amounts with time. The second isolate produced increasing amounts through 6 weeks, but at 12 weeks smaller amounts of aflatoxins were recovered than at 6 weeks.  相似文献   

10.
The conversion of O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin to aflatoxins B1, G1, B2, and G2 requires a cytochrome P-450 type of oxidoreductase activity. ordA, a gene adjacent to the omtA gene, was identified in the aflatoxin-biosynthetic pathway gene cluster by chromosomal walking in Aspergillus parasiticus. The ordA gene was a homolog of the Aspergillus flavus ord1 gene, which is involved in the conversion of OMST to aflatoxin B1. Complementation of A. parasiticus SRRC 2043, an OMST-accumulating strain, with the ordA gene restored the ability to produce aflatoxins B1, G1, B2, and G2. The ordA gene placed under the control of the GAL1 promoter converted exogenously supplied OMST to aflatoxin B1 in Saccharomyces cerevisiae. In contrast, the ordA gene homolog in A. parasiticus SRRC 2043, ordA1, was not able to carry out the same conversion in the yeast system. Sequence analysis revealed that the ordA1 gene had three point mutations which resulted in three amino acid changes (His-400→Leu-400, Ala-143→Ser-143, and Ile-528→Tyr-528). Site-directed mutagenesis studies showed that the change of His-400 to Leu-400 resulted in a loss of the monooxygenase activity and that Ala-143 played a significant role in the catalytic conversion. In contrast, Ile-528 was not associated with the enzymatic activity. The involvement of the ordA gene in the synthesis of aflatoxins G1, and G2 in A. parasiticus suggests that enzymes required for the formation of aflatoxins G1 and G2 are not present in A. flavus. The results showed that in addition to the conserved heme-binding and redox reaction domains encoded by ordA, other seemingly domain-unrelated amino acid residues are critical for cytochrome P-450 catalytic activity. The ordA gene has been assigned to a new cytochrome P-450 gene family named CYP64 by The Cytochrome P450 Nomenclature Committee.  相似文献   

11.
Two mutant strains of Aspergillus parasiticus, both deficient in aflatoxin production, were used to elucidate the biosynthetic pathway of this mycotoxin. One of the mutants, A. parasiticus ATCC 24551, was capable of accumulating large amounts of averufin, and the other, A. parasiticus 1-11-105 wh-1, accumulated versicolorin A. The averufin producing mutant efficiently converted 14C-labeled versiconal acetate, versicolorin A, and sterigmatocystin into aflatoxin B1 and G1, indicating that averufin preceded these compounds in the aflatoxin biosynthetic pathway. In the presence of dichlorvos (dimethyl 2,2-dichlorovinyl phosphate), a known inhibitor of aflatoxin biosynthesis, the conversion of versicolorin A and sterigmatocystin was unaffected, but the conversion of versiconal acetate was markedly inhibited. The mutant accumulating versicolorin A incorporated 14C-labeled acetate, averufin, and versiconal acetate into versicolorin A. In the presence of dichlorvos, however, the major conversion product was versiconal acetate. This strongly suggested that dichlorvos inhibited the conversion step of versiconal acetate into versicolorin A. This mutant resumed production of aflatoxin B1 if sterigmatocystin was added to the resting cell cultures, indicating that the mutant was blocked at the enzymatic step catalyzing the conversion of versicolorin A into sterigmatocystin, and as a result was incapable of aflatoxin production. The experimental evidence is thus provided for the involvement and interrelationship of three anthraquinones (averufin, versiconal acetate, and versicolorin A) and a xanthone (sterigmatocystin) in aflatoxin biosynthesis. A pathway for the biosynthesis of aflatoxin B1 is proposed to be: acetate →→→ averufin → versiconal acetate → versicolorin A → sterigmatocystin → aflatoxin B1.  相似文献   

12.
Summary A convenient miniassay for aflatoxin has been developed for cultures ofAspergillus flavus andA. parasiticus grown for 3–10 days in 10 ml of a coconut extract medium. The sensitivity of the assay, as measured by photofluorometry (365 nm maximum excitation; 445 nm maximum emission), is of the order of 0.01 M (3.12 ng/ml) for aflatoxin B1 dissolved in aqueous iodine (0.26 mM). High performance liquid chromatography, monitored by fluorometric analysis of both an aflatoxin B1 standard and selected culture filtrates, confirmed the sensitivity of the assay and indicated specificity for iodine-enhanced fluorescence of aflatoxin in the coconut extract medium. Thin layer chromatography further confirmed the aflatoxin titers and the specificity for enhancement of aflatoxins B1 and G1 in culture filtrates.Alabama Agricultural Experiment Station Journal No. 6-871297.  相似文献   

13.
Twenty commercial mixed herbal drugs were examined for mycological profile. Aspergillus species were the predominant fungi found in the drugs. Other fungi harboured in the drugs with less frequency were Paecilomyces species, Eurotium species, Monascus species, Acremonium species, Penicillium species, Cladosporium species, Scopulariopsis species, Phialophora species and Fonseceae species. Fungal count was between 1.0 log10 CFU and 2.4 log10 CFU per gram of sample. When the drugs were incubated in 85% humidity at 25°C, fungal colonies grew on only two of the drugs. The mixed herbal drugs were extracted with water and the extracts were used to grow Aspergillus parasiticus. All extracts reduced aflatoxin B1 and aflatoxin G1 production by 62–97%. All but two of the extracts reduced aflatoxin B2 and aflatoxin G2 production by 39–95%. It can be concluded that the commercial powdered mixed herbal drugs contained low number of endogenous fungi, and these drugs are inhibitory to the growth of its endogenous fungi and aflatoxins production by aflatoxigenic fungi.  相似文献   

14.
Sharma  Yash Pal  Sumbali  Geeta 《Mycopathologia》2000,148(2):103-107
An investigation was undertaken to obtain data on the occurrence of aflatoxins and the aflatoxin producing potential of Aspergillus flavus strains isolated from dry fruit slices of quinces produced in jammu and Kashmir, India. A total of 147 A. flavus isolates recovered from dr fruit slices were grown in liquid rice flour medium and screened for the production of various aflatoxins by thin layer chromatography. The results showed that 23.14% of the tested isolates were aflatoxigenic, producing aflatoxins B1and B2 in varying amounts. Aflatoxins G1 and G2 were not detected. All 25 of the investigated market samples were also found to be aflatoxin B1 positive and the level of contamination ranged from 96 to 8164 g/kg of the dry fruit which is quite high in comparison to the permissible level of 30 ppb. As per these results biochemical composition of dry fruit slices of quinces, along with climatic conditions seem to be very favourable for aflatoxin production by the toxigenic A. flavus strains. Therefore,monitoring of aflatoxins in dry fruit slices of quincesis recommended for this region.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

15.
Aflatoxins B1, B2, G1 and G2 produced by Aspergillus parasiticus var. globosus IMI 120920 in detannin-caffeinated coffee and black tea were five times more concentrated than in normal tea and coffee. Extracts of normal coffee and tea powders significantly reduced aflatoxins production in liquid broth at 1 and 3 % concentrations, with tea extract. having a more pronounced effect than coffee extract Relevant anti-aflatoxigenic properties appear to be due to tannin and caffeine. These induced 95 % inhibition in aflatoxins at 0.3 % and 0.6 %, respectively. Roasting of contaminated coffee beans at 200 °C for 20 min is effective in the reduction of aflatoxins.  相似文献   

16.
The mold incidence, moisture contents, pH and levels of mycotoxins (aflatoxins B1, G1 and ochratoxin A) on/of/in rootstock snack (tubers ofCyperus esculentus L.) samples were monitored during a 150-day storage period. Whereas the mold incidence, moisture and mycotoxin levels increased with storage time, the pH declined during the same period. Altogether, 12 fungal species, mostly toxigenic, includingAspergillus flavus, A. parasiticus andA. ochraceus were isolated. At collection period only 3 of the 9 snack samples analysed contained trace amounts of aflatoxins. By 120th day, all the 9 samples were contaminated and the average levels were 454 and 80 ppb for aflatoxin B1 and aflatoxin G1 respectively on the 150th day. Ochratoxin A was not detected before 120th day and then only at low levels, occuring in a maximum of four samples and ranging between 10 and 80 ppb.  相似文献   

17.
The influence of various inhibitors of hyphal growth, sporulation and biosynthesis of aflatoxin B1 in Aspergillus parasiticus NRRL 2999 was studied. 6-Thioguanine, dl-ethionine, fluoroacetic acid and phenylboric acid, inhibitors of maturation of fungal conidiophores and of conidiogenesis, were added at various concentrations to malt extract agar. Lower concentrations of 6-thioguanine and dl-ethionine did not inhibit the growth of hyphae and the sporulation. Phenylboric acid reduced conidiogenesis more than hyphal growth. The yields of aflatoxin B1 were significantly reduced. Additions of fluoroacetic acid did not greatly affect the growth of hyphae but totally inhibited the production of conidia and concurrently significantly reduced the formation of aflatoxin B1. An interrelation between conidiogenesis and onset of secondary metabolism in A. parasiticus is evident.  相似文献   

18.
N-carboxymethylchitosan inhibition of aflatoxin production: Role of zinc   总被引:3,自引:0,他引:3  
Aqueous Solutions of N-carboxymethylchitosan (NCMC) suppressed both growth and aflatoxin production byAspergillus flavus andA. parasiticus in submerged culture (Adye and Mateles A&M). Test media were amended with various concentrations of zinc (15, 30, 45, 60 uM), and NCMC solution (0.62 uM). After 8 days incubation NCMC-treated cultures showed marked reduction of aflatoxin production and fungal growth. Enhanced levels of zinc did not overcome the NCMC-mediated inhibition of fungal growth or aflatoxin production.  相似文献   

19.
High Aflatoxin Production on a Chemically Defined Medium   总被引:28,自引:20,他引:8       下载免费PDF全文
Aspergillus parasiticus ATCC 15517 produced 28 to 30 mg of aflatoxin per 100 ml of a medium containing sucrose, asparagine, and salts in stationary and shaken cultures. In the absence of asparagine in the medium, the toxin yields fell drastically, and the thin-layer chromatograms of the chloroform extracts of the cultures indicated the total absence of aflatoxin G1 and the presence of new intense blue and green fluorescent bands having RF values lower than aflatoxins. Initial pH was critical and had to be around 4.5 for good growth and high toxin production on this medium. Optimum concentrations of KH2PO4 and MgSO4·7H2O in the medium were much lower than those normally used in fungal growth media.  相似文献   

20.
Summary The moulds Aspergillus parasiticus (aflatoxins B1, B2, G1, G2, and M1), A. ochraceus (ochratoxin A) and Penicillium chrysogenum (citrinin) were grown on whole wheat bread either in the presence or absence of oxygen. In the presence of oxygen, both A. parasiticus and A. ochraceus developed dense colonies and formed considerable amounts of mycotoxins whereas Penicillium chrysogenum only grew and produced citrinin on the surface of the bread. In the absence of oxygen fungal growth did not occur and most of the toxins were undetectable even in regions of bread immediately adjacent to the moulds although a very slight diffusion of the aflatoxins B1 and G1 through 1 cm was observed. It is concluded that diffusion of the tested mycotoxins from hyphae into bread is not a problem for food safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号