首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterioplankton communities are deeply diverse and highly variable across space and time, but several recent studies demonstrate repeatable and predictable patterns in this diversity. We expanded on previous studies by determining patterns of variability in both individual taxa and bacterial communities across coastal environmental gradients. We surveyed bacterioplankton diversity across the Columbia River coastal margin, USA, using amplicon pyrosequencing of 16S rRNA genes from 596 water samples collected from 2007 to 2010. Our results showed seasonal shifts and annual reassembly of bacterioplankton communities in the freshwater-influenced Columbia River, estuary, and plume, and identified indicator taxa, including species from freshwater SAR11, Oceanospirillales, and Flavobacteria groups, that characterize the changing seasonal conditions in these environments. In the river and estuary, Actinobacteria and Betaproteobacteria indicator taxa correlated strongly with seasonal fluctuations in particulate organic carbon (ρ=−0.664) and residence time (ρ=0.512), respectively. In contrast, seasonal change in communities was not detected in the coastal ocean and varied more with the spatial variability of environmental factors including temperature and dissolved oxygen. Indicator taxa of coastal ocean environments included SAR406 and SUP05 taxa from the deep ocean, and Prochlorococcus and SAR11 taxa from the upper water column. We found that in the Columbia River coastal margin, freshwater-influenced environments were consistent and predictable, whereas coastal ocean community variability was difficult to interpret due to complex physical conditions. This study moves beyond beta-diversity patterns to focus on the occurrence of specific taxa and lends insight into the potential ecological roles these taxa have in coastal ocean environments.  相似文献   

2.
Bacterioplankton in freshwater streams play a critical role in stream nutrient cycling. Despite their ecological importance, the temporal variability in the structure of stream bacterioplankton communities remains understudied. We investigated the composition and temporal variability of stream bacterial communities and the influence of physicochemical parameters on these communities. We used barcoded pyrosequencing to survey bacterial communities in 107 streamwater samples collected from four locations in the Colorado Rocky Mountains from September 2008 to November 2009. The four sampled locations harboured distinct communities yet, at each sampling location, there was pronounced temporal variability in both community composition and alpha diversity levels. These temporal shifts in bacterioplankton community structure were not seasonal; rather, their diversity and composition appeared to be driven by intermittent changes in various streamwater biogeochemical conditions. Bacterial communities varied independently of time, as indicated by the observation that communities in samples collected close together in time were no more similar than those collected months apart. The temporal turnover in community composition was higher than observed in most previously studied microbial, plant or animal communities, highlighting the importance of stochastic processes and disturbance events in structuring these communities over time. Detailed temporal sampling is important if the objective is to monitor microbial community dynamics in pulsed ecosystems like streams.  相似文献   

3.
Multiple anthropogenic disturbances to bacterial diversity have been investigated in coastal ecosystems, in which temporal variability in the bacterioplankton community has been considered a ubiquitous process. However, far less is known about the temporal dynamics of a bacterioplankton community responding to pollution disturbances such as toxic metals. We used coastal water microcosms perturbed with 0, 10, 100, and 1,000 μg liter−1 of cadmium (Cd) for 2 weeks to investigate temporal variability, Cd-induced patterns, and their interaction in the coastal bacterioplankton community and to reveal whether the bacterial community structure would reflect the Cd gradient in a temporally varying system. Our results showed that the bacterioplankton community structure shifted along the Cd gradient consistently after a 4-day incubation, although it exhibited some resistance to Cd at low concentration (10 μg liter−1). A process akin to an arms race between temporal variability and Cd exposure was observed, and the temporal variability overwhelmed Cd-induced patterns in the bacterial community. The temporal succession of the bacterial community was correlated with pH, dissolved oxygen, NO3-N, NO2-N, PO43−-P, dissolved organic carbon, and chlorophyll a, and each of these parameters contributed more to community variance than Cd did. However, elevated Cd levels did decrease the temporal turnover rate of community. Furthermore, key taxa, affiliated to the families Flavobacteriaceae, Rhodobacteraceae, Erythrobacteraceae, Piscirickettsiaceae, and Alteromonadaceae, showed a high frequency of being associated with Cd levels during 2 weeks. This study provides direct evidence that specific Cd-induced patterns in bacterioplankton communities exist in highly varying manipulated coastal systems. Future investigations on an ecosystem scale across longer temporal scales are needed to validate the observed pattern.  相似文献   

4.
Few studies of microbial biogeography address variability across both multiple habitats and multiple seasons. Here we examine the spatial and temporal variability of bacterioplankton community composition of the Columbia River coastal margin using 16S amplicon pyrosequencing of 300 water samples collected in 2007 and 2008. Communities separated into seven groups (ANOSIM, P<0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom (depth<350 m) and slope bottom (depth>850 m). The ordination of these samples was correlated with salinity (ρ=−0.83) and depth (ρ=−0.62). Temporal patterns were obscured by spatial variability among the coastal environments, and could only be detected within individual groups. Thus, structuring environmental factors (for example, salinity, depth) dominate over seasonal changes in determining community composition. Seasonal variability was detected across an annual cycle in the river, estuary and plume where communities separated into two groups, early year (April–July) and late year (August–Nov), demonstrating annual reassembly of communities over time. Determining both the spatial and temporal variability of bacterioplankton communities provides a framework for modeling these communities across environmental gradients from river to deep ocean.  相似文献   

5.
The spatial distribution of microbial communities has recently been reliably documented in the form of a distance–similarity decay relationship. In contrast, temporal scaling, the pattern defined by the microbial similarity–time relationships (STRs), has received far less attention. As a result, it is unclear whether the spatial and temporal variations of microbial communities share a similar power law. In this study, we applied the 454 pyrosequencing technique to investigate temporal scaling in patterns of bacterioplankton community dynamics during the process of shrimp culture. Our results showed that the similarities decreased significantly (P?=?0.002) with time during the period over which the bacterioplankton community was monitored, with a scaling exponent of w?=?0.400. However, the diversities did not change dramatically. The community dynamics followed a gradual process of succession relative to the parent communities, with greater similarities between samples from consecutive sampling points. In particular, the variations of the bacterial communities from different ponds shared similar successional trajectories, suggesting that bacterial temporal dynamics are predictable to a certain extent. Changes in bacterial community structure were significantly correlated with the combination of Chl a, TN, PO4 3-, and the C/N ratio. In this study, we identified predictable patterns in the temporal dynamics of bacterioplankton community structure, demonstrating that the STR of the bacterial community mirrors the spatial distance–similarity decay model.  相似文献   

6.
The ecological insurance hypothesis predicts a positive effect of species richness on ecosystem functioning in a variable environment. This effect stems from temporal and spatial complementarity among species within metacommunities coupled with optimal levels of dispersal. Despite its importance in the context of global change by human activities, empirical evidence for ecological insurance remains scarce and controversial. Here we use natural aquatic bacterial communities to explore some of the predictions of the spatial and temporal aspects of the ecological insurance hypothesis. Addressing ecological insurance with bacterioplankton is of strong relevance given their central role in fundamental ecosystem processes. Our experimental set up consisted of water and bacterioplankton communities from two contrasting coastal lagoons. In order to mimic environmental fluctuations, the bacterioplankton community from one lagoon was successively transferred between tanks containing water from each of the two lagoons. We manipulated initial bacterial diversity for experimental communities and immigration during the experiment. We found that the abundance and production of bacterioplankton communities was higher and more stable (lower temporal variance) for treatments with high initial bacterial diversity. Immigration was only marginally beneficial to bacterial communities, probably because microbial communities operate at different time scales compared to the frequency of perturbation selected in this study, and of their intrinsic high physiologic plasticity. Such local "physiological insurance" may have a strong significance for the maintenance of bacterial abundance and production in the face of environmental perturbations.  相似文献   

7.
Coastal zones encompass a complex spectrum of environmental gradients that each impact the composition of bacterioplankton communities. Few studies have attempted to address these gradients comprehensively. We generated a synoptic, 16S rRNA gene-based bacterioplankton community profile of a coastal zone by applying the fingerprinting technique denaturing gradient gel electrophoresis to water samples collected from the Columbia River, estuary, and plume, and along coastal transects covering 360 km of the Oregon and Washington coasts and extending to the deep ocean (>2,000 m). Communities were found to cluster into five distinct groups based on location in the system (ANOSIM, p < 0.003): estuary, plume, epipelagic, shelf bottom (depth < 150 m), and slope bottom (depth > 650 m). Across all environments, abiotic factors (salinity, temperature, depth) explained most of the community variability (ρ = 0.734). But within each coastal environment, biotic factors explained most of the variability. Thus, structuring physical factors in coastal zones, such as salinity and temperature, define the boundaries of many distinct microbial habitats, but within these habitats variability in microbial communities is explained by biological gradients in primary and secondary productivity.  相似文献   

8.
Uncovering which environmental factors govern community diversity patterns and how ecological processes drive community turnover are key questions related to understand the community assembly. However, the ecological mechanisms regulating long‐term variations of bacterioplankton communities in lake ecosystems remain poorly understood. Here we present nearly a decade‐long study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing with MiSeq platform. We found strong repeatable seasonal diversity patterns in terms of both common (detected in more than 50% samples) and dominant (relative abundance >1%) bacterial taxa turnover. Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is a key environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern of bacterioplankton communities across the main lake areas within season was overwhelmed by their temporal variabilities. Phylogenetic analysis further indicated that 75%–82% of community turnover was governed by homogeneous selection due to consistent environmental conditions within seasons, suggesting that the microbial communities in Lake Donghu are mainly controlled by niche‐based processes. Therefore, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout different lake areas.  相似文献   

9.
Dissolved oxygen regulates microbial distribution and nitrogen cycling and, therefore, ocean productivity and Earth's climate. To date, the assembly of microbial communities in relation to oceanographic changes due to El Niño Southern Oscillation (ENSO) remains poorly understood in oxygen minimum zones (OMZ). The Mexican Pacific upwelling system supports high productivity and a permanent OMZ. Here, the spatiotemporal distribution of the prokaryotic community and nitrogen-cycling genes was investigated along a repeated transect subjected to varying oceanographic conditions associated with La Niña in 2018 and El Niño in 2019. The community was more diverse during La Niña and in the aphotic OMZ, dominated by the Subtropical Subsurface water mass, where the highest abundances of nitrogen-cycling genes were found. The largest proportion of the Gulf of California water mass during El Niño provided warmer, more oxygenated, and nutrient-poor waters towards the coast, leading to a significant increase of Synechococcus in the euphotic layer compared with the opposite conditions during La Niña. These findings suggest that prokaryotic assemblages and nitrogen genes are linked to local physicochemical conditions (e.g. light, oxygen, nutrients), but also to oceanographic fluctuations associated with ENSO phases, indicating the crucial role of climate variability in microbial community dynamics in this OMZ.  相似文献   

10.
The Moorea Coral Reef Long Term Ecological Research (LTER) Site (17.50°S, 149.83°W) comprises the fringe of coral reefs and lagoons surrounding the volcanic island of Moorea in the Society Islands of French Polynesia. As part of our Microbial Inventory Research Across Diverse Aquatic LTERS biodiversity inventory project, we characterized microbial community composition across all three domains of life using amplicon pyrosequencing of the V6 (bacterial and archaeal) and V9 (eukaryotic) hypervariable regions of small-subunit ribosomal RNA genes. Our survey spanned eight locations along a 130-km transect from the reef lagoon to the open ocean to examine changes in communities along inshore to offshore gradients. Our results illustrate consistent community differentiation between inshore and offshore ecosystems across all three domains, with greater richness in all domains in the reef-associated habitats. Bacterial communities were more homogenous among open ocean sites spanning >100 km than among inshore sites separated by <1 km, whereas eukaryotic communities varied more offshore than inshore, and archaea showed more equal levels of dissimilarity among subhabitats. We identified signature communities representative of specific geographic and geochemical milieu, and characterized co-occurrence patterns of specific microbial taxa within the inshore ecosystem including several bacterial groups that persist in geographical niches across time. Bacterial and archaeal communities were dominated by few abundant taxa but spatial patterning was consistent through time and space in both rare and abundant communities. This is the first in-depth inventory analysis of biogeographic variation of all three microbial domains within a coral reef ecosystem.  相似文献   

11.
The South China Sea (SCS) is the largest marginal sea in the western tropical Pacific Ocean and is characterized by complex physicochemical environments. To date, the biogeographic patterns of the microbial communities have rarely been reported at a basin scale in the SCS. In this study, the bacterial assemblages inhabiting the epipelagic zone across 110°E to 119°E along 14°N latitude were uncovered. The vertical stratification of both bacterial taxa and their potential functions were revealed. These results suggest that the water depth‐specific environment is a driver of the vertical bacterioplankton distribution. Moreover, the bacterial communities were different between the eastern stations and the western stations, where the environmental conditions were distinct. However, the mesoscale eddy did not show an obvious effect on the bacterial community due to the large distance between the sampling site and the center of the eddy. In addition to the water depth and longitudinal location of the samples, the heterogeneity of the phosphate and salinity concentrations also significantly contributed to the variance in the epipelagic bacterial community in the SCS. To the best of our knowledge, this study is the first to report that the variability in epipelagic bacterioplankton is driven by the physicochemical environment at the basin scale in the SCS. Our results emphasize that the ecological significance of bacterioplankton can be better understood by considering the relationship between the biogeographic distribution of bacteria and the oceanic dynamics processes.  相似文献   

12.

Background

Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems.

Methodology/Principal Findings

The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean''s surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities.

Conclusions/Significance

This first synthesis of global bacterial distribution across different ecosystems of the World''s oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed.  相似文献   

13.
Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples. In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria. Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect, while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics. Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically inundated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.  相似文献   

14.
Although numerous studies have investigated changes in soil microbial communities across space, questions about the temporal variability in these communities and how this variability compares across soils have received far less attention. We collected soils on a monthly basis (May to November) from replicated plots representing three land-use types (conventional and reduced-input row crop agricultural plots and early successional grasslands) maintained at a research site in Michigan, USA. Using barcoded pyrosequencing of the 16S rRNA gene, we found that the agricultural and early successional land uses harbored unique soil bacterial communities that exhibited distinct temporal patterns. α-Diversity, the numbers of taxa or lineages, was significantly influenced by the sampling month with the temporal variability in α-diversity exceeding the variability between land-use types. In contrast, differences in community composition across land-use types were reasonably constant across the 7-month period, suggesting that the time of sampling is less important when assessing β-diversity patterns. Communities in the agricultural soils were most variable over time and the changes were significantly correlated with soil moisture and temperature. Temporal shifts in bacterial community composition within the successional grassland plots were less predictable and are likely a product of complex interactions between the soil environment and the more diverse plant community. Temporal variability needs to be carefully assessed when comparing microbial diversity across soil types and the temporal patterns in microbial community structure can not necessarily be generalized across land uses, even if those soils are exposed to the same climatic conditions.  相似文献   

15.
Succession is a widely studied process in plant and animal systems, but succession in microbial communities has received relatively little attention despite the ubiquity of microorganisms in natural habitats. One important microbial habitat is the phyllosphere, or leaf surface, which harbors large, diverse populations of bacteria and offers unique opportunities for the study of succession and temporal community assembly patterns. To explore bacterial community successional patterns, we sampled phyllosphere communities on cottonwood (Populus deltoides) trees multiple times across the growing season, from leaf emergence to leaf fall. Bacterial community composition was highly variable throughout the growing season; leaves sampled as little as a week apart were found to harbor significantly different communities, and the temporal variability on a given tree exceeded the variability in community composition between individual trees sampled on a given day. The bacterial communities clearly clustered into early-, mid-, and late-season clusters, with early- and late-season communities being more similar to each other than to the mid-season communities, and these patterns appeared consistent from year to year. Although we observed clear and predictable changes in bacterial community composition during the course of the growing season, changes in phyllosphere bacterial diversity were less predictable. We examined the species–time relationship, a measure of species turnover rate, and found that the relationship was fundamentally similar to that observed in plant and invertebrate communities, just on a shorter time scale. The temporal dynamics we observed suggest that although phyllosphere bacterial communities have high levels of phylogenetic diversity and rapid turnover rates, these communities follow predictable successional patterns from season to season.  相似文献   

16.
Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns.  相似文献   

17.
The Rodrigo de Freitas lagoon (RFL) is a tropical eutrophic coastal ecosystem located in the urban area of Rio de Janeiro, Brazil. This environment consists of freshwater but has communication with the ocean through a channel (Jardim de Alah’s Channel). The aim of this study was to evaluate the influence of lagoon water on the nearby ocean using molecular and traditional microbiological methods. We hypothesised that due to the eutrophic low-salinity environment, the bacterioplankton community from the RFL would have a native “brackish” composition influenced by both freshwater and marine phylotypes, and that bacterial phylotypes of this community would be detected in oceanic samples closer to the channel between the lagoon and the ocean. The cultivation and microscopy experiments clearly showed this influence. Bacterial cell counts revealed that the greater amounts of bacterial cells present in the lagoon increased the observed values seen at oceanic stations near the channel. The Denaturing gradient gel eletrophoresis community profiles also showed a clear influence of Rodrigo de Freitas lagoon waters on the adjacent beaches. The band patterns found for the stations near the channel showed that these communities were mixtures of the communities of the lagoon and sea, and as the distance from the channel increased, the samples became more similar to ocean bacterial communities. A 16S rRNA gene clone library was constructed using a sample acquired from the connection point between the lagoon and the ocean. Around 52% of the sequences in the library showed similarity to the genus Proteobacteria (1% Alpha, 21% Beta, 19% Gamma and 29% unclassified Proteobacteria), and the second most abundant genus was Bacteroidetes, with 15% of the total clones. The results showed that the structure of the bacterial community had both freshwater and marine characteristics.  相似文献   

18.
Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([(14)C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and ACTINOBACTERIA: Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.  相似文献   

19.
We investigated the influence of desiccation frequency, indicated by tidal position, on microbial community structure, diversity and richness of microbial mats. We independently characterized cyanobacterial, bacterial and archaeal communities, and their spatial variability for two distinct microbial mat systems: subtidal hypersaline mats and intertidal sand flat mats. Community fingerprints based on 16S rDNA were obtained via denaturing gradient gel electrophoresis using polymerase chain reaction primers specific for each group. Fingerprints for all three groups were consistently similar [> or =85% according to Weighted Pair Group with Arithmetic Mean (WPGMA) analysis] along a 1-km-long transect in subtidal mats. Here, pair-wise comparison analysis yielded minimal variation in diversity and richness for all groups. Fingerprints of three sites along an intertidal transect were heterogenous (> or =32% similarity according to WPGMA analysis) with clear shifts in community structure in all three microbial groups. Here, all groups exhibited statistically significant decreases in richness and diversity with tidal height (as desiccation frequency increases). Regression analysis yielded a strong correlation between diversity or richness estimates and position along the tidal gradient, for both Archaea and Bacteria, with Cyanobacteria exhibiting a weaker correlation. These results suggest that desiccation frequency can shape the structure of microbial mat communities, with Archea being least tolerant and Cyanobacteria most tolerant.  相似文献   

20.
Annual Patterns in Bacterioplankton Community Variability in a Humic Lake   总被引:4,自引:0,他引:4  
Bacterioplankton community composition (BCC) was monitored in a shallow humic lake in northern Wisconsin, USA, over 3 years using automated ribosomal intergenic spacer analysis (ARISA). Comparison of ARISA profiles of bacterial communities over time indicated that BCC was highly variable on a seasonal and annual scale. Nonmetric multidimensional scaling (MDS) analysis indicated little similarity in BCC from year to year. Nevertheless, annual patterns in bacterioplankton community diversity were observed. Trends in bacterioplankton community diversity were correlated to annual patterns in community succession observed for phytoplankton and zooplankton populations, consistent with the notion that food web interactions affect bacterioplankton community structure in this humic lake. Bacterioplankton communities experience a dramatic drop in richness and abundance each year in early summer, concurrent with an increase in the abundance of both mixotrophic and heterotrophic flagellates. A second drop in richness, but not abundance, is observed each year in late summer, coinciding with an intense bloom of the nonphagotrophic dinoflagellate Peridinium limbatum. A relationship between bacterial community composition, size, and abundance and the population dynamics of Daphnia was also observed. The noted synchrony between these major population and species shifts suggests that linkages across trophic levels play a role in determining the annual time course of events for the microbial and metazoan components of the plankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号