首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Diabetic nephropathy is characterized by accumulation of glomerular extracellular matrix proteins, such as fibronectin (FN). Here, we investigated whether sphingosine kinase (SphK)1 pathway is responsible for the elevated FN expression in diabetic nephropathy. The SphK1 pathway and FN expression were examined in streptozotocin-induced diabetic rat kidney and glomerular mesangial cells (GMC) exposed to high glucose (HG). FN up-regulation was concomitant with activation of the SphK1 pathway as reflected in an increase in the expression and activity of SphK1 and sphingosine 1-phosphate (S1P) production in both diabetic kidney and HG-treated GMC. Overexpression of wild-type SphK1 (SphK(WT)) significantly induced FN expression, whereas treatment with a SphK inhibitor, N,N-dimethylsphingosine, or transfection of SphK1 small interference RNA or dominant-negative SphK1 (SphK(G82D)) abolished HG-induced FN expression. Furthermore, addition of exogenous S1P significantly induced FN expression in GMC with an induction of activator protein 1 (AP-1) activity. Inhibition of AP-1 activity by curcumin attenuated the S1P-induced FN expression. Finally, by inhibiting SphK1 activity, both N,N-dimethylsphingosine and SphK(G82D) markedly attenuated the HG-induced AP-1 activity. Taken together, these results demonstrated that the SphK1 pathway plays a critical role in matrix accumulation in GMC under diabetic condition, suggesting that the SphK1 pathway could be a potential therapeutic target for diabetic nephropathy.  相似文献   

2.
3.
4.
We had found previously that neurotrophin-3 (NT-3) is a potent stimulator of cAMP-response element binding protein (CREB) phosphorylation in cultured oligodendrocyte progenitors. Here, we show that CREB phosphorylation in these cells is also highly stimulated by sphingosine-1-phosphate (S1P), a sphingolipid metabolite that is known to be a potent mediator of numerous biological processes. Moreover, CREB phosphorylation in response to NT-3 involves sphingosine kinase 1 (SphK1), the enzyme that synthesizes S1P. Immunocytochemistry and confocal microscopy indicated that NT-3 induces translocation of SphK1 from the cytoplasm to the plasma membrane of oligodendrocytes, a process accompanied by increased SphK1 activity in the membrane fraction where its substrate sphingosine resides. To examine the involvement of SphK1 in NT-3 function, SphK1 expression was down-regulated by treatment with SphK1 sequence-specific small interfering RNA. Remarkably, the capacity of NT-3 to protect oligodendrocyte progenitors from apoptotic cell death induced by growth factor deprivation was abolished by down-regulating the expression of SphK1, as assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Altogether, these results suggest that SphK1 plays a crucial role in the stimulation of oligodendrocyte progenitor survival by NT-3, and demonstrate a functional link between NT-3 and S1P signaling, adding to the complexity of mechanisms that modulate neurotrophin function and oligodendrocyte development.  相似文献   

5.
Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known.Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts.Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions.  相似文献   

6.
7.

Background

Reactive astrocytes are implicated in the development and maintenance of neuroinflammation in the demyelinating disease multiple sclerosis (MS). The sphingosine kinase 1 (SphK1)/sphingosine1-phosphate (S1P) receptor signaling pathway is involved in modulation of the inflammatory response in many cell types, but the role of S1P receptor subtype 3 (S1P3) signaling and SphK1 in activated rat astrocytes has not been defined.

Methodology/Principal Findings

Using immunohistochemistry we observed the upregulation of S1P3 and SphK1 expression on reactive astrocytes and SphK1 on macrophages in MS lesions. Increased mRNA and protein expression of S1P3 and SphK1, as measured by qPCR and Western blotting respectively, was observed after treatment of rat primary astrocyte cultures with the pro-inflammatory stimulus lipopolysaccharide (LPS). Activation of SphK by LPS stimulation was confirmed by SphK activity assay and was blocked by the use of the SphK inhibitor SKI (2-(p-hydroxyanilino)-4-(p-chlorphenyl) thiazole. Treatment of astrocytes with a selective S1P3 agonist led to increased phosphorylation of extracellular signal-regulated kinase (ERK)-1/2), which was further elevated with a LPS pre-challenge, suggesting that S1P3 upregulation can lead to increased functionality. Moreover, astrocyte migration in a scratch assay was induced by S1P and LPS and this LPS-induced migration was sensitive to inhibition of SphK1, and independent of cell proliferation. In addition, S1P induced secretion of the potentially neuroprotective chemokine CXCL1, which was increased when astrocytes were pre-challenged with LPS. A more prominent role of S1P3 signaling compared to S1P1 signaling was demonstrated by the use of selective S1P3 or S1P1 agonists.

Conclusion/Significance

In summary, our data demonstrate that the SphK1/S1P3 signaling axis is upregulated when astrocytes are activated by LPS. This signaling pathway appears to play a role in the establishment and maintenance of astrocyte activation. Upregulation of the pathway in MS may be detrimental, e.g. through enhancing astrogliosis, or beneficial through increased remyelination via CXCL1.  相似文献   

8.
The two ubiquitously expressed sphingosine kinases (SphK) 1 and 2 are key regulators of the sphingolipid signaling pathway. Despite the formation of an identical messenger, i.e. sphingosine 1-phosphate (S1P), they exert strikingly different functions. Particularly, SphK2 is necessary for the phosphorylation of the sphingosine analog fingolimod (FTY720), which is protective in rodent stroke models. Using gene deficient mice lacking either SphK1 or SphK2, we investigated the role of the two lipid kinases in experimental stroke.We performed 2 h transient middle cerebral artery occlusion (tMCAO) and analyzed lesion size and neurological function after 24 h. Treatment groups received 1 mg/kg FTY720. Neutrophil infiltration, microglia activation, mRNA and protein expression of SphK1, SphK2 and the S1P1 receptor after tMCAO were studied.Genetic deletion of SphK2 but not SphK1 increased ischemic lesion size and worsened neurological function after tMCAO. The protective effect of FTY720 was conserved in SphK1−/− mice but not in SphK2−/− mice.This suggests that SphK2 activity is an important endogenous protective mechanism in cerebral ischemia and corroborates that the protective effect of FTY720 is mediated via phospho-FTY720.  相似文献   

9.
10.
Transforming growth factor-beta (TGF-beta) is an important regulator of physiological connective tissue biosynthesis and plays a central role in pathological tissue fibrosis. Previous studies have established that a biologically active lipid mediator, sphingosine 1-phosphate (S1P), mimics some of the profibrotic functions of TGF-beta through cross-activation of Smad signaling. Here we report that another product of sphingosine kinase, dihydrosphingosine 1-phosphate (dhS1P), has an opposite role in the regulation of TGF-beta signaling. In contrast to S1P, dhS1P inhibits TGF-beta-induced Smad2/3 phosphorylation and up-regulation of collagen synthesis. The effects of dhS1P require a lipid phosphatase, PTEN, a key modulator of cell growth and survival. dhS1P stimulates phosphorylation of the C-terminal domain of PTEN and its subsequent translocation into the nucleus. We demonstrate a novel function of nuclear PTEN as a co-factor of the Smad2/3 phosphatase, PPM1A. Complex formation of PTEN with PPM1A does not require the lipid phosphatase activity but depends on phosphorylation of the serine/threonine residues located in the C-terminal domain of PTEN. Upon complex formation with PTEN, PPM1A is protected from degradation induced by the TGF-beta signaling. Consequently, overexpression of PTEN abrogates TGF-beta-induced Smad2/3 phosphorylation. This study establishes a novel role for nuclear PTEN in the stabilization of PPM1A. PTEN-mediated cross-talk between the sphingolipid and TGF-beta signaling pathways may play an important role in physiological and pathological TGF-beta signaling.  相似文献   

11.
12.
13.
It has been postulated that disturbances in the sphingolipid metabolism play a key role in the pathogenesis of Alzheimer’s disease (AD). An alteration in sphingosine kinases 1, 2 (SphK1/2) and sphingosine-1-phosphate (S1P) was recently reported in AD. However, the effect of AD-related amyloid beta (Aβ) peptides on SphK1/2 and the role of S1P in Aβ toxicity have not been fully elucidated. In this study the relationship between the Aβ concentration and SphK1/2 expression/activity was analysed in PC12 cells transfected with the Aβ precursor protein, wild-type (APPwt) or bearing a double Swedish mutation (APPsw). The role of SphK(s)/S1P in cell survival and death was also investigated. Our results indicated that endogenously liberated Aβ significantly decreases expression and activity of SphK1/2. The SphK(s) inhibitor (SKI II, 10 μM) decreased the viability of APPwt, APPsw as well as empty vector-transfected PC12 control cells. Our data demonstrated that expression of S1P receptor-1 (S1P1) was significantly reduced in APP-transfected cells. The effect of S1P applied exogenously was cell type-dependent. In control and APPwt cells S1P reduced the effect of the SphK1 inhibitor on death signalling. Conversely, it decreased the survival of APPsw cells and had no protective effect on cells treated with SKI II. Using the S1P1 agonist (SEW2871, 5 μM) and antagonist (W123, 20 μM), we demonstrated that the cytoprotective effect of S1P was receptor-independent. Summarising, we showed that Aβ peptides evoke down-regulation of gene expression and activity for SphK(s) and S1P1. Inhibition of SphK(s) significantly decreased cell survival. The effect of exogenous S1P depended on the concentration of Aβ peptides.  相似文献   

14.
The process of neurite extension after activation of the TrkA tyrosine kinase receptor by nerve growth factor (NGF) involves complex signaling pathways. Stimulation of sphingosine kinase 1 (SphK1), the enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P), is part of the functional TrkA signaling repertoire. In this paper, we report that in PC12 cells and dorsal root ganglion neurons, NGF translocates SphK1 to the plasma membrane and differentially activates the S1P receptors S1P1 and S1P2 in a SphK1-dependent manner, as determined with specific inhibitors and small interfering RNA targeted to SphK1. NGF-induced neurite extension was suppressed by down-regulation of S1P1 expression with antisense RNA. Conversely, when overexpressed in PC12 cells, transactivation of S1P1 by NGF markedly enhanced neurite extension and stimulation of the small GTPase Rac, important for the cytoskeletal changes required for neurite extension. Concomitantly, differentiation down-regulated expression of S1P2 whose activation would stimulate Rho and inhibit neurite extension. Thus, differential transactivation of S1P receptors by NGF regulates antagonistic signaling pathways that modulate neurite extension.  相似文献   

15.
Mesoangioblasts are vessel-derived progenitor cells that can be induced to differentiate into different cell types of the mesoderm such as muscle and bone. Here we examined the role of transforming growth factor-beta (TGFbeta), a pleiotropic cytokine that plays a major role in development and specifically induces smooth muscle differentiation of mesoangioblasts, in the regulation of death and survival of these cells. TGFbeta exerts a marked anti-apoptotic action in mesoangioblasts with a mechanism involving regulation of sphingosine kinase 1 (SphK1), one of the isoforms responsible for S1P formation. Treatment with the cytokine efficaciously protected mesoangioblasts from apoptosis induced by serum starvation or staurosporine treatment assessed by various means such as activation of caspase-3, determination of cytoplasmic histone-associated-DNA-fragments and PE-AnnexinV staining. The protective action of TGFbeta from staurosporine-induced apoptosis was strongly reduced when the SphK activity was inhibited by drugs, when SphK1 but not SphK2 was downregulated by specific siRNA and when a SphK1 dominant negative mutant was overexpressed. Staurosporine treatment induced down-regulation of both SphK isoforms and TGFbeta rescued SphK1 but not SphK2 expression. Interestingly, TGFbeta strongly enhanced SphK activity during staurosporine-induced cell death. Both TGFbeta-induced SphK1 up-regulation and TGFbeta anti-apoptotic action were found to be dependent on p42/44 MAPK activation.  相似文献   

16.
In this study, we report that low doses of tumor necrosis factor-alpha (TNFalpha) promote myogenesis in C2C12 myoblasts. Moreover, the cytokine increased sphingosine kinase (SphK) activity and induced SphK1 translocation to membranes. The inhibition of SphK functionality by various approaches abrogated the pro-myogenic effect of TNFalpha. Moreover, silencing of S1P(2) impaired the positive action of TNFalpha on myogenesis. These results represent the first evidence that SphK/S1P(2) axis is required for the regulation of myogenesis by TNFalpha. In view of the physiological role of TNFalpha in muscle regeneration, the present finding reinforces the notion that SphK/S1P(2) signaling is critically implicated in myogenesis.  相似文献   

17.
The balance between matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), is pivotal in the remodeling of extracellular matrix. TGF-beta has profound effects on extracellular matrix homeostasis, in part via its ability to alter this balance at the level of gene expression. The intracellular signaling pathways by which TGF-beta mediates its actions include the Smad pathway, specific to the TGF-beta superfamily, but also, for example, mitogen-activated protein kinase pathways; furthermore, cross-talk between the Smads and other signaling pathways modifies the TGF-beta response. The reciprocal effect of TGF-beta on the expression of Timp-1 and MMP-1 supports its role in matrix anabolism, yet the mechanisms by which TGF-beta induces Timp-1 and represses induced MMP-1 have remained opaque. Here, we (i) investigate the mechanism(s) by which TGF-beta1 induces expression of the Timp-1 gene and (ii) compare this with TGF-beta1 repression of phorbol ester-induced MMP-1 expression. We report that the promoter-proximal activator protein 1 (AP1) site is essential for the response of both Timp-1 and MMP-1 to TGF-beta (induction and repression, respectively). c-Fos, JunD, and c-Jun are essential for the induction of Timp-1 gene expression by TGF-beta1, but these AP1 factors transactivate equally well from both Timp-1 and MMP-1 AP1 sites. Smad-containing complexes do not interact with the Timp-1 AP1 site, and overexpression of Smads does not substitute or potentiate the induction of the gene by TGF-beta1; furthermore, Timp-1 is still induced by TGF-beta1 in Smad knockout cell lines, although to varying extents. In contrast, Smads do interact with the MMP-1 AP1 site and mediate repression of induced MMP-1 gene expression by TGF-beta1.  相似文献   

18.
The enforcement of sphingosine-1-phosphate (S1P) signaling network protects from radiation-induced pneumonitis. We now demonstrate that, in contrast to early postirradiation period, late postirradiation sphingosine kinase-1 (SphK1) and sphingoid base-1-phosphates are associated with radiation-induced pulmonary fibrosis (RIF). Using the mouse model, we demonstrate that RIF is characterized by a marked upregulation of S1P and dihydrosphingosine-1-phosphate (DHS1P) levels in the lung tissue and in circulation accompanied by increased lung SphK1 expression and activity. Inhibition of sphingolipid de novo biosynthesis by targeting serine palmitoyltransferase (SPT) with myriocin reduced radiation-induced pulmonary inflammation and delayed the onset of RIF as evidenced by increased animal lifespan and decreased expression of markers of fibrogenesis, such as collagen and α-smooth muscle actin (α-SMA), in the lung. Long-term inhibition of SPT also decreased radiation-induced SphK activity in the lung and the levels of S1P-DHS1P in the lung tissue and in circulation. In vitro, inhibition or silencing of serine palmitoyltransferase attenuated transforming growth factor-β1 (TGF-β)-induced upregulation of α-SMA through the negative regulation of SphK1 expression in normal human lung fibroblasts. These data demonstrate a novel role for SPT in regulating TGF-β signaling and fibrogenesis that is linked to the regulation of SphK1 expression and S1P-DHS1P formation.  相似文献   

19.
K Huang  W Liu  T Lan  X Xie  J Peng  J Huang  S Wang  X Shen  P Liu  H Huang 《PloS one》2012,7(8):e43874
The accumulation of glomerular extracellular matrix (ECM) is one of the critical pathological characteristics of diabetic renal fibrosis. Fibronectin (FN) is an important constituent of ECM. Our previous studies indicate that the activation of the sphingosine kinase 1 (SphK1)-sphingosine 1- phosphate (S1P) signaling pathway plays a key regulatory role in FN production in glomerular mesangial cells (GMCs) under diabetic condition. Among the five S1P receptors, the activation of S1P2 receptor is the most abundant. Berberine (BBR) treatment also effectively inhibits SphK1 activity and S1P production in the kidneys of diabetic models, thus improving renal injury. Based on these data, we further explored whether BBR could prevent FN production in GMCs under diabetic condition via the S1P2 receptor. Here, we showed that BBR significantly down-regulated the expression of S1P2 receptor in diabetic rat kidneys and GMCs exposed to high glucose (HG) and simultaneously inhibited S1P2 receptor-mediated FN overproduction. Further, BBR also obviously suppressed the activation of NF-κB induced by HG, which was accompanied by reduced S1P2 receptor and FN expression. Taken together, our findings suggest that BBR reduces FN expression by acting on the S1P2 receptor in the mesangium under diabetic condition. The role of BBR in S1P2 receptor expression regulation could closely associate with its inhibitory effect on NF-κB activation.  相似文献   

20.
Both sphingosine 1-phosphate (S1P) and estrogen have been documented to play endothelial protective roles. However, it remains unclear whether estrogen could regulate the anabolism of the bioactive molecule S1P and the underlying mechanisms. In this study, 108 healthy participants were separated into three age groups, and their plasma S1P levels were analyzed by liquid chromatography tandem mass spectrometry. Results showed that the plasma S1P levels were significantly higher in women than those in men within the age of 16–55 years old and higher in pre-menopausal than post-menopausal women. The experiment in C57 BL/6 mice confirmed the gender difference of plasma S1P level. In vitro study demonstrated that after the stimulation of 17β-estradiol (E2), S1P levels both in EA.hy926 cells and the culture media were increased about 9 and 3 times, respectively; the mRNA expression, the protein level and the activity of sphingosine kinase (SphK) 1, not SphK2, were markedly increased; the mRNA and protein expression of ATP-binding cassette transporter (ABC) C1, G2 and S1P transporter spinster homolog 2 (Spns2) were significantly elevated; furthermore, the mRNA and protein expressions of S1P receptors (S1PRs) 1–2 were increased in a time-dependent manner. This study suggests that E2 markedly improves S1P synthesis by activating SphK1 and induces S1P export via activating ABCC1, G2 and Spns2 from endothelium system, which may consequently lead to the gender difference of plasma S1P in adult human and mouse. The results of this study suggest that E2 may exert its vasculoprotective function by activation of the SphK1–S1P–S1PR signaling axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号