首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Few studies have evaluated the effectiveness of riparian buffers in the tropics, despite their potential to reduce the impacts of deforestation on stream communities. We examined macroinvertebrate assemblages and stream habitat characteristics in small lowland streams in southeastern Costa Rica to assess the impacts of deforestation on benthic communities and the influence of riparian forest buffers on these effects. Three different stream reach types were compared in the study: (i) forested reference reaches, (ii) stream reaches adjacent to pasture with a riparian forest buffer at least 15 m in width on both banks and (iii) stream reaches adjacent to pasture without a riparian forest buffer. 2. Comparisons between forest and pasture reaches suggest that deforestation, even at a very local scale, can alter the taxonomic composition of benthic macroinvertebrate assemblages, reduce macroinvertebrate diversity and eliminate the most sensitive taxa. The presence of a riparian forest buffer appeared to significantly reduce the effects of deforestation on benthic communities, as macroinvertebrate diversity and assemblage structure in forest buffer reaches were generally very similar to those in forested reference reaches. One forest buffer reach was clearly an exception to this pattern, despite the presence of a wide riparian buffer. 3. The taxonomic structure of macroinvertebrate assemblages differed between pool and riffle habitats, but contrasts among the three reach types in our study were consistent across the two habitats. Differences among reach types also persisted across three sampling periods during our 15‐month study. 4. Among the environmental variables we measured, only stream water temperature varied significantly among reach types, but trends in periphyton abundance and stream sedimentation may have contributed to observed differences in macroinvertebrate assemblage structure. 5. Forest cover was high in all of our study catchments, and more research is needed to determine whether riparian forest buffers will sustain similar functions in more extensively deforested landscapes. Nevertheless, our results provide support for Costa Rican regulations protecting riparian forests and suggest that proper riparian management could significantly reduce the impacts of deforestation on benthic communities in tropical streams.  相似文献   

2.
ABSTRACT We quantified breeding bird abundance, diversity, and indicator species in riparian and upland dry forests along 6 third- to fourth-order streams on the east slope of the Cascade Range, Washington, USA. Upland dry forest on southerly aspects was dominated by open ponderosa pine (Pinus ponderosa) and dry Douglas-fir (Pseudotsuga menziesii) plant associations. Upland mesic forest on northerly aspects was dominated by closed-canopy Douglas-fir or dry grand fir (Abies grandis) plant associations. Riparian overstory vegetation was dominated by black cottonwood (Populus trichocarpa) plant associations with a prominent hardwood tree and shrub component. We quantified bird assemblages, diversity, and abundance from parallel point transects on riparian and adjacent dry and mesic upslope forests. We detected 80 bird species from >12,000 point-transect observations during 1998–1999. Eighteen species accounted for 75% of all detections. Species richness and evenness were similar in all 3 forest types, with approximately 35 species and high evenness (0.85) in each forest type. Bird species assemblages differed among dry, mesic, and riparian forest types, with the greatest differences between riparian and both dry and mesic upland forests. Riparian forest had the greatest number (9) of strong characteristic, or indictor, species among the 3 forest types. Upland mesic forest was characterized by 7 indicator species. Upland dry forest had 4 indicator species. Our results indicate that current standards and guidelines for riparian buffers zones would allow for avian refuge and corridor functions along these streams. Forest managers could use our indicator species to predict and monitor shifts in upland forest species composition from thinning and prescribed burning practices that are used to reduce fuels in uplands and to reduce continuity of fire effects between riparian and upland zones.  相似文献   

3.
In wet eucalypt forest with a rainforest understorey the vegetation adjacent to first order streams does not form a distinct riparian strip. This study investigated the riparian response of terrestrial ground-dwelling beetles adjacent to four such streams in Tasmania, Australia. Beetle assemblages varied more between the four sites than they did with distance from stream within sites, where they exhibited a measurable but subtle riparian response. The extent of the riparian zone varied between the four study sites, with a 1–5 m riparian zone at three sites and a gradually changing community up to 50–100 m upslope at one site. There was a trend for greater between plot variability immediately adjacent to the streams, possibly because this is a more highly disturbed environment. None of the habitat variables measured were consistently associated with riparian or upslope assemblages of beetles, probably explaining the subtlety of the beetles’ riparian response. Forest conservation efforts for terrestrial species should not necessarily be focused on the riparian zone in preference to upslope areas.  相似文献   

4.
Data on the response of bird communities to surface mining and habitat modification are limited, with virtually no data examining the effects of mining on bird communities in and along riparian forest corridors. Bird community composition was examined using line transects from 1994 to 2000 at eight sites within and along a riparian forest corridor in southwestern Indiana that was impacted by an adjacent surface mining operation. Three habitats were sampled: closed canopy, riparian forest with no open water; fragmented canopy, riparian forest with flood plain oxbows; and reclaimed mined land with constructed ponds. Despite shifts in species composition, overall bird species richness, measured as the mean number of bird species recorded/transect route, did not differ among habitats and remained unchanged across years. More species were recorded solely on mined land than in either closed forest or forested oxbow habitats. Mined land provided stopover habitat for shorebirds and waterfowl not recorded in other habitats, and supported an assemblage of grassland-associated bird species weakly represented in the area prior to mining. A variety of wood warblers and other migrants were recorded in the forest corridor throughout the survey period, suggesting that, although surface mining reduced the width of the forest corridor, the corridor was still important habitat for movement of forest-dependent birds and non-resident bird species in migration. We suggest that surface mining and reclamation practices can be implemented near riparian forest and still provide for a diverse assemblage of bird species. These data indicate that even narrow (0.4 km wide) riparian corridors are potentially valuable in a landscape context as stopover habitats and routes of dispersal and movement of forest-dependent and migratory bird species.  相似文献   

5.
Deforestation has resulted in the fragmentation of forests. Remnant fragments are widely assumed to be sources of seeds for forest regeneration in abandoned pastures. The seed rain in 12 pastures at Los Tuxtlas, Mexico, their relationship with riparian vegetation adjacent to them, and their closeness to the reserve is described. For all the species found in the seed rain, we classified them by typical habitat (pasture or rain forest), life form, dispersal syndrome, and plant strategy (pioneer or non-pioneer species). In addition, germinability was evaluated for all seeds. We also assessed the correlation in composition of the seed rain and the riparian vegetation. Only 11% of the total species that occur in the Los Tuxtlas region reach pastures via dispersal from forest fragments. However, nearly 80% of the species in the seed rain did not come from the fruiting individuals in the adjacent riparian vegetation. The proportion of dispersal syndromes, life forms and plant strategies of the species in the seed rain was similar to those observed in the rain forest. On average, the germinability of forest species was less than 30%.The forest species richness was similar in the seed rain in pastures and inside the forest, but the pasture seed rain contained fewer seeds per species. Pastures have a high potential for natural regeneration because of seed dispersal from adjacent forest. However, the forest that regenerates in pastures close to the reserve is expected to contain different species than the forest regenerating far away from it.  相似文献   

6.
We compared the structure of 12 Central African primate communities, 6 in riparian forests and 6 in adjacent terra firma forests and discussed the implications for primate conservation. The communities in riparian forests included on average 1.5 times more primate species than those in terra firma forests due to the fact that riparian forests shelter 4 specialist species and 6–7 generalist species. The results differ from findings in Amazonia where riparian forests consistently have fewer primate species than terra firma forests accommodate. This may be partly explained by the water level amplitude in Amazonian riparian forests, which deterred the radiation of semiterrestrial species. In Africa, most riparian-specialist primates are terrestrially-adapted and have access to an enlarged food niche. In terms of African primate conservation, we recommend protecting riparian forests and adjacent terra firma forests so that most of the lowland forest diversity is captured. The linear shape of riparian forests (which allows gene flow over long distance) and their persistence in anthropic landscape (because they represent lands of lesser value for agriculture and logging than mainland forests) predispose them to act as biodiversity sanctuaries.  相似文献   

7.
We currently have the opportunity to restore one of the most threatened tropical ecosystems on the Pacific coast of Panama as a consequence of land use change. Factors that influence succession must be understood in order to capitalize on natural regeneration mechanisms. In this study, we determined the effects of exotic grass removal, cattle removal, proximity to forested riparian zones, and topography (upslope vs. downslope) on the initial stages of forest regeneration from pasture in a dry tropical region. After 3 years, basal area, stem density, and species richness of plants (trees, shrubs, vines, and herbs) were significantly and positively affected by exclusion of cattle, presence of exotic grass (no herbicide application), and presence of adjacent forested riparian zones ( p < 0.01). Interactions between factors were not significant. Cattle foraged and stomped on vegetation, whereas herbicide application, although effectively removing grass, also killed tree and shrub sprouts, the major source of regrowth. Proximity to forested riparian zones had the greatest effect on species diversity. Shannon's index for diversity ( H ) equaled 3.23 in plots adjacent to forested riparian zones as compared to 2.78 in plots not associated with these areas. Our recommendations during the early stages of forest succession are to (1) exclude cattle, (2) make site-specific decisions about herbicide application based on the presence or absence of forested riparia and prevalence of coppicing, and (3) actively conserve and protect riparian zones, which function as a critical source of diverse propagules.  相似文献   

8.
I examined the effect of riparian forest restoration on plant abundance and diversity, including weed species, on agricultural lands along the Sacramento River in California (United States). Riparian forest restoration on the Sacramento River is occurring on a large‐scale, with a goal of restoring approximately 80,000 ha over 160 km of the river. In multiuse habitats, such as the Sacramento River, effects of adjoining habitat types and movement of species across these habitats can have important management implications in terms of landscape‐scale patterns of species distributions. Increased numbers of pest animals and weeds on agricultural lands associated with restored habitats could have negative economic impacts, and in turn affect support for restoration of natural areas. In order to determine the distribution and abundance of weeds associated with large‐scale restoration, I collected seed bank soil samples on orchards between 0 and 5.6 km from adjacent restored riparian, remnant riparian, and agricultural habitats. I determined the abundance, species richness, and dispersal mode of plant species in the seed bank and analyzed these variables in terms of adjacent habitat type and age of restored habitat. I found that agricultural weed species had higher densities at the edge of restored riparian habitat and that native plants had higher densities adjacent to remnant riparian habitat. Weed seed abundance increased significantly on walnut farms adjacent to restored habitat with time since restored. I supply strong empirical evidence that large areas of natural and restored habitats do not lead to a greater penetration of weed species into agricultural areas, but rather that weed penetration is both temporally and spatially limited.  相似文献   

9.
In headwater streams, many aquatic insects rely on terrestrial detritus, while their emergence from streams often subsidizes riparian generalist predators. However, spatial variations in such reciprocal trophic linkages remain poorly understood. The present study, conducted in a northern Japanese stream and the surrounding forest, showed that pool–riffle structure brought about heterogeneous distributions of detritus deposits and benthic aquatic insects. The resulting variations in aquatic insect emergence influenced the distributions of riparian web-building spiders. Pools with slow current stored greater amounts of detritus than riffles, allowing more benthic aquatic insects to develop in pools. The greater larval biomass in pools and greater tendency for riffle insects to drift into pools at metamorphosis resulted in an emergence rate of aquatic insects from pools that was some four to five times greater than from riffles. In the riparian forest, web-building spiders (Tetragnathidae and Linyphiidae) were distributed in accordance with the emergence rates of aquatic insects, upon which both spider groups heavily depended. Consequently, the riparian strips bordering pools had a density of tetragnathid spiders that was twice as high as that of the riparian strips adjacent to riffles. Moreover, although limitations of vegetation structure prevented the aggregation of linyphiid spiders around pools, linyphiid density normalized by shrub density was higher in habitats adjacent to pools than those adjacent to riffles. The results indicated that stream geomorphology, which affects the storage of terrestrial organic material and the export of such material to riparian forests via aquatic insect emergence, plays a role in determining the strength of terrestrial–aquatic linkages in headwater ecosystems.  相似文献   

10.
Riparian forest plantings are a well‐established restoration technique commonly used to stabilize banks and intercept nutrient flow from adjacent agricultural fields. Tree species planted for these efforts may not reflect mature forest communities within the same region. Given contemporary research on links between biodiversity and ecosystem functioning, we conducted a leaf‐litter decomposition study to investigate how mixing of detrital resources that reflect forest community composition would regulate in‐stream leaf litter. Leaf litter bags containing material from a mature forest (Liriodendron tulipifera, Acer rubrum, Quercus rubra, full factorial treatments = 7) and a restored riparian forest (Cornus sericea, Fraxinus pennsylvanica, Platanus occidentalis, full factorial treatments = 7) were deployed in a stream reach that experienced riparian reforestation in 2004. Litter from the restored riparian community had less mass remaining (45.28 ± 2.27%) than that from the mature riparian community (54.95 ± 2.19%) after 5 weeks. In addition, mixed litter treatments in the restored riparian community had less mass remaining (40.54 ± 2.37%) than single‐species treatments (51.80 ± 4.05%), a pattern not observed in the mature forest community. Results highlight the importance of planting mixed‐species assemblages as this structure may regulate processes such as decomposition and food‐web structure, processes often not targeted in the restoration plans.  相似文献   

11.
Abstract. The relative sizes and composition of soil seed banks, the influence of fire and the post-fire deposition of seeds were investigated in a riparian forest and adjacent fynbos and transitional vegetation in Swartboskloof. Brief complementary studies of soil seed banks were conducted in poorly-developed forest and scree forest soils. Numbers of species in each vegetation type were very similar, but there were fewer seeds in riparian forest soil than in the transitional and fynbos zones. These patterns were not repeated in poorly-developed forest and scree forest. No effects of fire on soil seed banks were detected. Forest soil had relatively large numbers of seeds stored at 10 to 15 cm deep, with many zoochorous and few myr-mecochorous seeds. Anemochorous and ornithochorous seeds of forest species formed a major component of seed deposition within the transitional and fynbos zones in the first year after fire. The numbers of anemochorous forest seeds in the fynbos declined with distance from the forest edge. The deposition of ornithochorous forest seeds was less closely related to distance from the source, and was not exclusively associated with the presence of tall or fruit-bearing shrubs. Regeneration after canopy-destroying disturbance in the forest is likely to emanate from the soil seed banks of pioneer species which now or previously occurred on forest margins. Seed availability does not appear to limit colonization of fynbos by forest species soon after fire.  相似文献   

12.
1. The hydrologic connectivity between landscape elements and streams means that fragmentation of terrestrial habitats could affect the distribution of stream faunas at multiple spatial scales. We investigated how catchment‐ and site‐scale influences, including proportion and position of forest cover within a catchment, and presence of riparian forest cover affected the distribution of a diadromous fish. 2. The occurrence of koaro (Galaxias brevipinnis) in 50‐m stream reaches with either forested or non‐forested riparian margins at 172 sites in 24 catchments on Banks Peninsula, South Island, New Zealand was analysed. Proportions of catchments forested and the dominant position (upland or lowland) of forest within catchments were determined using geographical information system spatial analysis tools. 3. Multivariate analysis of variance indicated forest position and proportion forested at the catchment accounted for the majority of the variation in the overall proportion of sites in a catchment with koaro. 4. Where forest was predominantly in the lower part of the catchments, the presence of riparian cover was important in explaining the proportion of sites with koaro. However, where forest was predominantly in the upper part of the catchment, the effect of riparian forest was not as strong. In the absence of riparian forest cover, no patterns of koaro distribution with respect to catchment forest cover or forest position were detected. 5. These results indicate that landscape elements, such as the proportion and position of catchment forest, operating at catchment‐scales, influence the distribution of diadromous fish but their influence depends on the presence of riparian vegetation, a site‐scale factor.  相似文献   

13.
One of the largest riparian restoration projects in the United States is currently taking place in California on the Sacramento River. Nearly 2,000 ha of land adjacent to the river channel have been revegetated with native riparian species in an effort to reestablish riparian forests. The objective of this study was to compare leaf litter decomposition rates in restored riparian forests to those in mature, naturally established riparian forests, in order to monitor the development of this ecosystem function in restored forests. Leaf litter decomposition rates were measured over 1 year in six restored riparian forests (4, 7, and 9 years old) and two mature remnant riparian forests (>50 years old), in order to test two hypotheses: (1) decomposition rates of restored and mature forests are significantly different and (2) decomposition rates in the chronosequence of restored forests are moving along a trajectory, approaching the decomposition rates characteristic of mature forests as they age. Statistical analyses revealed no significant differences in annual decay rates among the four different forest ages and no trajectory among leaf litter decomposition rates in restored forests. These results suggest that a functionally equivalent process of leaf litter decomposition occurs in both restored and naturally established forests and show promise for the efficiency of nutrient cycling processes in these restored forests.  相似文献   

14.
Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest‐dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm‐dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the need for further research into spatial variation in biodiversity–ecosystem function relationships and how the results of such studies are affected by methodological choices.  相似文献   

15.
Extensive land-use changes in Iowa have increased erosional processes and the amount of fines deposited on stream beds. Large amounts of fines cover the other bed substrate that are essential habitat for invertebrates and fish. In Iowa and other agricultural Midwestern states, riparian conservation land-uses are being established to minimize sediment inputs to streams. This study compared stream bed substrate composition in reaches adjacent to: riparian forest buffers, grass filters, row-cropped fields, pastures with cattle fenced out of the stream and continuous, rotational and intensively grazed rotational pastures, in three regions of Iowa. The objective was to examine the impacts of the adjacent riparian land-uses on stream bed substrate composition. The percentages of fines in this study ranged from: 36 to 63% in the central region; 10 to 31% in the northeast region; and 22 to 85% in the southeast region. The high percentage of fines in most stream bed reaches indicates high embeddedness. The high embeddedness resulted in the few significant differences in substrate percentages among riparian land-uses. Decades of agricultural land-uses have heavily impacted stream beds and only significant reductions in surface and bank erosion at the watershed scale can begin to reverse this trend. There were indications that riparian forest buffers and to a lesser degree, pastures with cattle fenced out of the stream, could decrease fines resulting in a more diverse substrate composition. Overall, more targeted approaches for the establishment of conservation land-uses in combination with other restoration practices (e.g. in-stream enhancements) are required to successfully decrease fines on stream beds.  相似文献   

16.
Restoration of deforested and degraded landscapes is a globally recognized strategy to sequester carbon, improve ecological integrity, conserve biodiversity, and provide additional benefits to human health and well‐being. Investment in riparian forest restoration has received relatively little attention, in part due to their relatively small spatial extent. Yet, riparian forest restoration may be a particularly valuable strategy because riparian forests have the potential for rapid carbon sequestration, are hotspots of biodiversity, and provide numerous valuable ecosystem services. To inform this strategy, we conducted a global synthesis and meta‐analysis to identify general patterns of carbon stock accumulation in riparian forests. We compiled riparian biomass and soil carbon stock data from 117 publications, reports, and unpublished data sets. We then modeled the change in carbon stock as a function of vegetation age, considering effects of climate and whether or not the riparian forest had been actively planted. On average, our models predicted that the establishment of riparian forest will more than triple the baseline, unforested soil carbon stock, and that riparian forests hold on average 68–158 Mg C/ha in biomass at maturity, with the highest values in relatively warm and wet climates. We also found that actively planting riparian forest substantially jump‐starts the biomass carbon accumulation, with initial growth rates more than double those of naturally regenerating riparian forest. Our results demonstrate that carbon sequestration should be considered a strong co‐benefit of riparian restoration, and that increasing the pace and scale of riparian forest restoration may be a valuable investment providing both immediate carbon sequestration value and long‐term ecosystem service returns.  相似文献   

17.
文峪河上游河岸林群落类型及其生态适应性   总被引:7,自引:2,他引:5  
以文峪河上游河岸林为研究对象,采用TWINSPAN法对研究地区河岸林进行群落分类,对各群落类型特征进行分析.在提出河岸林群落生态功能适应性指标的基础上,对研究地区河岸林群落进行生态功能适应性分组.通过研究,文峪河上游河岸林可划分为阔叶混交林、华北落叶松阔叶混交林、云杉落叶松混交林、云杉阔叶混交林、阔针混交林、油松阔叶混交林、青杨林、沙棘灌丛和柳树灌丛等9个群落类型,但群落类型之间的分异性总体表现不高,且表现出突出的多样性特征;群落乔木层和灌木层的物种组成复杂,草本层多为一些耐干扰种和耐水湿种,总体上越远离河岸,高地群落中的物种比例越高,表现出高地森林与河流之间生态过渡带的典型特点和河岸带生态环境的高度异质性;根据本文构建的群落的生态功能适应性指标,研究地区9个河岸林群落类型可以划分为强入侵性功能组、中等入侵性功能组、弱入侵性功能组和高逃避性功能组等4个生态适应性功能组,不同生态适应性功能组的群落中,乔木层和灌木层的主要物种具有明显不同的生态对策,而草本层物种的差异不明显.  相似文献   

18.
Recently we reported on the expansion of riparian forests into savannas in central Brazil. To enlarge the scope of the earlier study we investigated whether upland deciduous and xeromorphic forests behaved similarly. We investigated past vegetation changes that occurred in forest/savanna transitions using carbon isotope ratios (δ13C) measured in the soil organic matter as a tracer. We analyzed the 14C activity where δ13C showed major shifts in vegetation. The role of soil chemical and physical attributes in defining vegetation distribution is discussed. Structural changes in vegetation were found to be associated with shifts in the isotope composition (δ13C) of soil organic matter. This was attributed to intrinsic differences in the biomass of trees and grasses and allowed for the determination of past shifts in vegetation by evaluating δ13C at different depths. The deciduous forest decreased in area approximately 980 years ago. Tree cover increased in the xeromorphic forest, but the border stayed stable through time. The deciduous forest and adjacent savanna have eutrophic soils while the xeromorphic forest and adjacent savanna have dystrophic soils. However, greater organic carbon, nitrogen and phosphorus concentrations are observed in the forests. We provide concrete evidence of deciduous forest retreat unlike the stability observed in the xeromorphic forest/savanna boundary. These results contrast with the expansion of riparian forests recently reported in the same region.  相似文献   

19.
Agricultural practices lead to losses of natural resources and biodiversity. Maintaining forests alongside streams (riparian forest strips) has been used as a mechanism to minimize the impact of clearing for agriculture on biodiversity. To test the contribution of riparian forest strips to conserve biodiversity in production landscapes, we selected bats as a biodiversity model system and examined two dimensions of diversity: taxonomic and functional. We compared bat diversity and composition in forest, with and without stream habitat, and in narrow forest riparian strips surrounded by areas cleared for agriculture. We tested the hypothesis that riparian forest strips provide potential conservation value by providing habitat and serving as movement corridors for forest bat species. Riparian forest strips maintained 75% of the bat species registered in forested habitats. We found assemblage in sites with riparian forest strips were dominated by a few species with high abundance and included several species with low abundance. Bat species assemblage was more similar between sites with streams than between those sites to forests without stream habitat. These results highlight the importance of stream habitat in predicting presence of bat species. We registered similar number of guilds between forest sites and riparian forest strips sites. Relative to matrix habitats, stream and edge habitats in riparian forest strips sites were functionally more diverse, supporting our hypothesis about the potential conservation value of riparian forest strips. Results from this study suggest that maintaining riparian forest strips within cleared areas for agricultural areas helps conserve the taxonomic and functional diversity of bats. Also, it provides basic data to evaluate the efficacy of maintaining these landscape features for mitigating impacts of agricultural development on biodiversity. However, we caution that riparian forest strips alone are not sufficient for biodiversity maintenance; their value depends on maintenance of larger forest areas in their vicinity.  相似文献   

20.
塔里木河中游洪水漫溢区荒漠河岸林实生苗更新   总被引:2,自引:1,他引:1  
赵振勇  张科  卢磊  周生斌  张慧 《生态学报》2011,31(12):3322-3329
以塔里木河中游荒漠河岸林为研究对象,2008年6月至2009年8月,对洪水漫溢区河漫滩裸地、林下及林隙三种生境植物一年生实生苗进行了调查。结果表明:实生苗更新主要依赖洪水漫溢,在非漫溢区没有发现实生苗存在;洪水降低了漫溢区的土壤盐度,更重要的是其提供了宝贵的水分条件,在时间和水量上都有效地满足了胡杨等植物种子萌发和幼株生长的水分需求;河漫滩是河岸林种子实生苗产生的基地,洪水漫溢后的河漫滩种子实生苗密度显著大于其余两生境内实生苗密度,同时该生境内物种多样性也显著高于林下和林隙生境;光照决定着漫溢区实生苗能否成林,光照不同的空间样点上,实生苗发生数量和个体生长均存在显著差异,光照强的河漫滩,实生苗发生数量较多且幼苗能保持较高的生长活力和较多的生物量积累。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号