首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aetiology of most neurodegenerative disorders is multifactorial and consists of an interaction between environmental factors and genetic predisposition. Free radicals derived primarily from molecular oxygen have been implicated and considered as associated risk factors for a variety of human disorders including neurodegenerative diseases and aging. Damage to tissue biomolecules, including lipids, proteins and DNA, by free radicals is postulated to contribute importantly to the pathophysiology of oxidative stress. The potential of environmental exposure to metals, air pollution and pesticides as well as diet as risk factors via the induction of oxidative stress for neurodegenerative diseases and aging is discussed. The role of genetic background is discussed on the light of the oxidative stress implication, focusing on both complex neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis) and monogenic neurological disorders (Huntington's disease, Ataxia telangiectasia, Friedreich Ataxia and others). Emphasis is given to role of the repair mechanisms of oxidative DNA damage in delaying aging and protecting against neurodegeneration. The emerging interplay between environmental-induced oxidative stress and epigenetic modifications of critical genes for neurodegeneration is also discussed.  相似文献   

2.
Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism.  相似文献   

3.
4.
Among age-related neurodegenerative diseases, Parkinson's disease (PD) represents the best example for which oxidative stress has been strongly implicated. The etiology of PD remains unknown, yet recent epidemiological studies have linked exposure to environmental agents, including pesticides, with an increased risk of developing the disease. As a result, the environmental hypothesis of PD has developed, which speculates that chemical agents in the environment are capable of producing selective dopaminergic cell death, thus contributing to disease development. The use of environmental agents such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, rotenone, paraquat, dieldrin, and maneb in toxicant-based models of PD has become increasingly popular and provided valuable insight into the neurodegenerative process. Understanding the unique and shared mechanisms by which these environmental agents act as selective dopaminergic toxicants is critical in identifying pathways involved in PD pathogenesis. In this review, we discuss the neurotoxic properties of these compounds with specific focus on the induction of oxidative stress. We highlight landmark studies along with recent advances that support the role of reactive oxygen and reactive nitrogen species from a variety of cellular sources as potent contributors to the neurotoxicity of these environmental agents. Finally, human risk and the implications of these studies in our understanding of PD-related neurodegeneration are discussed.  相似文献   

5.
Chung KK 《Neuro-Signals》2006,15(6):307-313
Nitric oxide (NO) is an important signaling molecule that controls a wide range of biological processes. One of the signaling mechanisms of NO is through the S-nitrosylation of cysteine residues on proteins. S-nitrosylation is now regarded as an important redox signaling mechanism in the regulation of different cellular and physiological functions. However, deregulation of S-nitrosylation has also been linked to various human diseases such as neurodegenerative disorders. Nitrosative stress has long been considered as a major mediator in the development of neurodegeneration, but the molecular mechanism of how NO can contribute to neurodegeneration is not completely clear. Early studies suggested that nitration of proteins, which can induce protein aggregation might contribute to the neurodegenerative process. However, several recent studies suggest that S-nitrosylation of proteins that are important for neuronal survival contributes substantially in the development of various neurodegenerative disorders. Thus, in-depth understanding of the mechanism of neurodegeneration in relation to S-nitrosylation will be critical for the development of therapeutic treatment against these neurodegenerative diseases.  相似文献   

6.
There are 50 ways to leave your lover (Simon 1987) but many more to kill your brain cells. Several neurodegenerative diseases in humans, like Alzheimer’s disease, have been intensely studied but the underlying cellular and molecular mechanisms are still unknown for most of them. For those syndromes where associated gene products have been identified their biochemistry and physiological as well as pathogenic function is often still under debate. This is in part due to the inherent limitations of genetic analyses in humans and other mammals and therefore experimentally accessible invertebrate in vivo models, such as Caenorhabditis elegans and Drosophila melanogaster, have recently been introduced to investigate neurodegenerative syndromes. Several laboratories have used transgenic approaches in Drosophila to study the human genes associated with neurodegenerative diseases. This has added substantially to our understanding of the mechanisms leading to neurodegenerative diseases in humans. The isolation and characterization of Drosophila mutants, which display a variety of neurodegenerative phenotypes, also provide valuable insights into genes, pathways, and mechanisms causing neurodegeneration. So far only about two dozen such mutants have been described but already their characterization reveals an involvement of various cellular functions in neurodegeneration, ranging from preventing oxidative stress to RNA editing. Some of the isolated genes can already be associated with human neurodegenerative diseases and hopefully the isolation and characterization of more of these mutants, together with an analysis of homologous genes in vertebrate models, will provide insights into the genetic and molecular basis of human neurodegenerative diseases.  相似文献   

7.
Pesticides entering our body, either directly or indirectly, are known to increase the risk of developing neurodegenerative disorders. The pesticide-induced animal models of Parkinson's disease and Alzheimer's disease recapitulates many of the pathologies seen in human patients and have become popular models for studying disease biology. However, the specific effect of pesticides at the cellular and molecular levels is yet to be fully established. Here we investigated the cellular effect of three commonly used pesticides: DEET, fipronil and maneb. Specifically, we looked at the effect of these pesticides in the formation of stress granules and the concomitant translational arrest in a neuronal cell line. Stress granules represent an ensemble of non-translating mRNAs and appear in cells under physiological stress. Growing evidence indicates that chronic stress may covert the transient stress granules into amyloids and may thus induce neurodegeneration. We demonstrate here that all three pesticides tested induce stress granules and translation arrest through the inactivation of the eukaryotic initiation factor, eIF2α. We also show that oxidative stress could be one of the major intermediary factors in the pesticide-induced stress granule formation and that it is a reversible process. Our results suggest that prolonged pesticide exposure may result in long-lived stress granules, thus compromising the neuronal stress response pathway and leading to neurodegeneration.  相似文献   

8.
The synuclein family and particularly alpha-synuclein takes a central part in etiology and pathogenesis of Parkinson's disease--one of the most common human neurodegenerative diseases. The pathological changes in certain other neurodegenerative diseases are also linked to changes in metabolism and function of alpha-synuclein, hence comprising a new group of diseases--synucleinopathies. The molecular and cellular mechanisms that are involved in the development of neurodegeneration in synucleinopathies are still largely unknown. As a result, the therapeutic approaches to the treatment of synucleinopathies are inadequately tampered. The development of models of neurodegenerative process in laboratory animals plays a crucial role in the study of these molecular mechanisms. Recently a special emphasis was placed on transgenic animal models with modified expression of genes, which mutations are associated with inherited forms of human neurodegenerative diseases. Current review is devoted to the analysis of different models of synucleinopathies as a result of genetic modifications of alpha-synuclein expression.  相似文献   

9.
Kimura Y  Kakizuka A 《IUBMB life》2003,55(6):337-345
The polyglutamine diseases, a group of diseases currently thought to consist of nine inherited neurodegenerative diseases, are caused by the expansion of unstable CAG trinucleotide repeats that code for polyglutamine tracts in the responsible genes. These diseases are now recognized as being of a type with conformationally abnormal or amyloid-related proteins, and thus are called 'conformational diseases'. Recently, many studies using cell cultures and model organisms have suggested that the two major machineries for protein quality control (the molecular chaperone and the protein degradation machineries) play important roles in the pathogenesis of the polyglutamine diseases. Interestingly, molecular chaperones have been shown to behave in totally different ways in these studies, namely in suppressing as well as enhancing neurodegeneration or cell death. These apparently opposite actions of molecular chaperones suggest that a certain balance between the activities of molecular chaperones and the expression level of polyglutamine is an important determinant of the pathogenesis. In this review, we summarize recent findings on such ambiguous effects of molecular chaperones on polyglutamine diseases, and discuss possible mechanisms by which molecular chaperones, especially VCP, are involved in the pathogenesis.  相似文献   

10.
稻田水质模型研究和应用进展   总被引:3,自引:0,他引:3  
贺文艳  毛萌 《应用生态学报》2019,30(11):3963-3970
水稻生产环境特殊、生产过程中病虫草害严重,导致农药使用品种多、频次高.部分农药会淋失到周围水体中,对水体的潜在污染风险较高.随着农药监测和田间试验成本的不断提高,数学模型已成为农药登记过程中不可或缺的一部分.稻田水质模型(RICEWQ模型)作为欧洲稻田农药暴露评估最可靠和应用最广泛的模型,主要用于预测淹水稻田土壤和积水中的农药浓度,在我国也得到了初步应用.本文简要介绍了RICEWQ模型的系统结构、农药归趋的主要过程、模型的输入输出,综述了国内外相关的研究进展,以期推进RICEWQ模型在我国的应用,并为相关研究提供参考.  相似文献   

11.
The synuclein family and particularly α-synuclein takes a central part in aetiology and pathogenesis of Parkinson’s disease—one of the most common human neurodegenerative diseases. The pathological changes in certain other neurodegenerative diseases are also linked to changes in the metabolism and function of α-synuclein, hence comprising a new group of diseases—synucleinopathies. The molecular and cellular mechanisms that are involved in the development of neurodegeneration in synucleinopathies are still largely unknown. As a result, the therapeutic approaches to the treatment of synucleinopathies are inadequately tampered. The development of models of neurodegenerative process in laboratory animals plays a crucial role in the study of these molecular mechanisms. Recently a special emphasis was placed on transgenic animal models with modified expression of genes, whose mutations are associated with inherited forms of human neurodegenerative diseases. The current review is devoted to the analysis of different models of synucleinopathies as a result of genetic modifications of α-synuclein expression.  相似文献   

12.
Significant evidence has been accumulated linking exposure to heavy metals and/or distortion of metal homeostasis with the development of various neurodegenerative diseases. α-Synuclein is known to be involved in pathogenesis of a subset of neurodegenerative diseases collectively known as synucleinopathies. Therefore the interplay between metals, α-synuclein and neurodegeneration has attracted significant attention of researchers. This review discusses some of the aspects of the α-synuclein metalloproteomics and represents the peculiarities and consequences of α-synuclein interaction with various metal ions. Both non-specific and specific binding of this protein to metals is considered together with the analysis of the effects of such interactions on α-synuclein structure and aggregation propensity.  相似文献   

13.
The insulin paradox: aging, proteotoxicity and neurodegeneration   总被引:2,自引:0,他引:2  
Distinct human neurodegenerative diseases share remarkably similar temporal emergence patterns, even though different toxic proteins are involved in their onset. Typically, familial neurodegenerative diseases emerge during the fifth decade of life, whereas sporadic cases do not exhibit symptoms earlier than the seventh decade. Recently, mechanistic links between the aging process and toxic protein aggregation, a common hallmark of neurodegenerative diseases, have been revealed. The insulin/insulin-like growth factor 1 (IGF1) signalling pathway - a lifespan, metabolism and stress-resistance regulator - links neurodegeneration to the aging process. Thus, although a reduction of insulin signalling can result in diabetes, its reduction can also increase longevity and delay the onset of protein-aggregation-mediated toxicity. Here we review this apparent paradox and delineate the therapeutic potential of manipulating the insulin/IGF1 signalling pathway for the treatment of neurodegenerative diseases.  相似文献   

14.
Protein misfolding and aggregation are central events in many disorders including several neurodegenerative diseases. This suggests that alterations in normal protein homeostasis may contribute to pathogenesis, but the exact molecular mechanisms involved are still poorly understood. The budding yeast Saccharomyces cerevisiae is one of the model systems of choice for studies in molecular medicine. Modeling human neurodegenerative diseases in this simple organism has already shown the incredible power of yeast to unravel the complex mechanisms and pathways underlying these pathologies. Indeed, this work has led to the identification of several potential therapeutic targets and drugs for many diseases, including the neurodegenerative diseases. Several features associated with these diseases, such as formation of protein aggregates, cellular toxicity mediated by misfolded proteins, oxidative stress and hallmarks of apoptosis have been faithfully recapitulated in yeast, enabling researchers to take advantage of this powerful model to rapidly perform genetic and compound screens with the aim of identifying novel candidate therapeutic targets and drugs. Here we review the work undertaken to model human brain disorders in yeast, and how these models provide insight into novel therapeutic approaches for these diseases.  相似文献   

15.
The misfolding and progressive aggregation of specific proteins in selective regions of the nervous system is a seminal occurrence in many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic and experimental differences, increasing evidence indicates considerable overlap between synucleinopathies, tauopathies and other protein-misfolding diseases. Inclusions, often characteristic hallmarks of these disorders, suggest interactions of pathological proteins enganging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Alzheimer, Parkinson, Huntington and prion diseases, have confirmed correlations/overlaps between these and other neurodegenerative disorders. Emerging evidence, in addition to synergistic effects of tau protein, amyloid-β, α-synuclein and other pathologic proteins, suggests that prion-like induction and spreading, involving secreted proteins, are major pathogenic mechanisms in various neurodegenerative diseases, depending on genetic backgrounds and environmental factors. The elucidation of the basic molecular mechanisms underlying the interaction and spreading of pathogenic proteins, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, is a major challenge for modern neuroscience, to provide a deeper insight into their pathogenesis as a basis of effective diagnosis and treatment.  相似文献   

16.
Neuromelanin (NM) accumulates as a function of age in normal human substantia nigra (SN) but is relatively depleted in the SN of patients with Parkinson disease (PD). Several studies have been performed to further our understanding of the role of NM in neuronal aging and neurodegenerative mechanisms of PD. To this purpose, NM from human SN was isolated and its structure and molecular interactions were investigated. Cysteinyl-dopamine was shown to be one precursor of NM synthesis. A striking affinity of NM for specific metals, lipids, drugs and pesticides was found in vitro, and in animal and human brain postmortem studies. Because of these affinities, NM seems to play a protective role in the human brain by blocking toxic molecules. On the other hand, experiments in cell culture indicate that NM can activate microglia, eliciting the release of cytotoxic factors that can induce neurodegeneration.  相似文献   

17.
We have reported that transgenic (Tg) mice overexpressing human tau protein develop filamentous tau aggregates in the CNS. We overexpressed the smallest human tau isoform (T44) in the mouse CNS to model tauopathies. These tau Tg mice acquire age-dependent CNS pathologies, including insoluble, hyperphosphorylated tau and argyrophilic intraneuronal inclusions formed by tau-immunoreactive filaments. Therefore, these Tg mice are a model that can be exploited for drug discovery in studies that target amelioration of tau-induced neurodegeneration as well as for elucidating mechanisms of tau pathology in various neurodegenerative tauopathies. Oxidative stress has been implicated in the pathogenesis of various neurodegenerative diseases, including tauopathies, and many epidemiological, clinical, and basic studies have suggested the neuroprotective effects of vitamin E in neurodegenerative diseases. To elucidate the role of oxidative damage in the pathological mechanisms of these Tg mice, we fed them alpha-tocopherol, the major component of antioxidant vitamin E. Supplementation of alpha-tocopherol suppressed and/or delayed the development of tau pathology, which correlated with improvement in the health and attenuation of motor weakness in the Tg mice. These results suggest that oxidative damage is involved in the pathological mechanisms of the tau Tg mice and that treatment with antioxidative agents like alpha-tocopherol may prevent neurodegenerative tauopathies.  相似文献   

18.
Transglutaminases are ubiquitous enzymes, which catalyze post-translational modifications of proteins. Recently, transglutaminases and tranglutaminase-catalyzed post-translational modification of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for human neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, supranuclear palsy, Huntington’s disease and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. In this review, we focus on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.  相似文献   

19.
20.
Dendrites and axons are delicate neuronal membrane extensions that undergo degeneration after physical injuries. In neurodegenerative diseases, they often degenerate prior to neuronal death. Understanding the mechanisms of neurite degeneration has been an intense focus of neurobiology research in the last two decades. As a result, many discoveries have been made in the molecular pathways that lead to neurite degeneration and the cell-cell interactions responsible for the subsequent clearance of neuronal debris. Drosophila melanogaster has served as a prime in vivo model system for identifying and characterizing the key molecular players in neurite degeneration, thanks to its genetic tractability and easy access to its nervous system. The knowledge learned in the fly provided targets and fuel for studies in other model systems that have further enhanced our understanding of neurodegeneration. In this review, we will introduce the experimental systems developed in Drosophila to investigate injuryinduced neurite degeneration, and then discuss the biological pathways that drive degeneration. We will also cover what is known about the mechanisms of how phagocytes recognize and clear degenerating neurites, and how recent findings in this area enhance our understanding of neurodegenerative disease pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号