首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The labeling of sialidase-treated, human erythrocyte membranes with ferritin-conjugates of four plant lectins, concanavalin A, Ricinus communis hemagglutinin, Bauhinia purpurea hemagglutinin and Arachis hypogoea hemagglutinin, is reported. Among these ferritin-conjugated lectins, ferritin-conjugated concanavalin A and ferritin-conjugated R. communis hemagglutinin were found in clusters on the sialidase-treated membranes, whereas ferritin-conjugated B. purpurea hemagglutinin and ferritin-conjugated A. hypogoea hemagglutinin were found in a random distribution on the membranes. Furthermore, when the membranes were labeled with a mixutre of concanavalin A and ferritin-conjugated B. purpurea hemagglutinin, ferritin particles were found in clusters, indicating that the membrane receptors for B. purpurea hemagglutinin were forced to more together with those for concanavalin A. A method for the quantitative estimation of the clustering of ferritin particles on the membranes was also devised and applied to the labeling of sialidase-treated, human erythrocyte membranes with the above four ferritin-conjugated lectins.  相似文献   

2.
Electron microscopic cytochemical studies were made on saccharides involved in the plasma membranes of rat ascites hepatoma cells (AH7974F) using ferritin-conjugated lectins and dialysed iron (DI). In the rat hepatoma cells, saccharide receptors for each of the three lectins used (concanavalin A (ConA), wheat germ agglutinin (WGA) and Ricinus communis agglutinin (RCA)) were shown to be distributed homogeneously throughout the plasma membranes. When the cells were agglutinated, however, the saccharide receptors for each lectin appeared to form clusters on the plasma membranes. The cluster formation induced by one lectin was found to lead to a changed distribution of saccharide receptors for another lectin. None of the cluster formation types induced by lectins yield any noticeable effects upon the distribution of DI reactive acidic saccharides on the plasma membranes.  相似文献   

3.
Freeze-etch electron microscopy has been utilized to localize the binding sites for the Ricinus communis, Agaricus bisporus and wheat germ lectins on human erythrocyte membranes and to determine the relation of these different glycoprotein receptors to the intramembranous particles. A. bisporus lectin, which could be visualized directly on the surface of erythrocyte membranes, and ferritin conjugates of wheat germ agglutinin showed a distribution that correlates exactly with the intramembranous particles at all lectin concentrations tested. The binding sites for both of these lectins are located on the major sialoglycoprotein of the membrane. The R. communis agglutinin-ferritin conjugate which binds to receptors on membrane glycoproteins that are distinct from the major sialoglycoprotein showed a close correlation with the intramembranous particles at low lectin concentrations and a poor correlation at high lectin concentrations. High concentrations resulted in virtually complete coating of the surface of trypsinized ghosts which displayed marked aggregation of the intramembranous particles. We conclude that the intramembranous particles of erythrocyte membranes contain at least two glycoproteins and that some membrane lectin receptors are not associated with the intramembranous particles.  相似文献   

4.
Lectin-binding sites on the muscle cell surface of an ascidian embryo were studied using the ferritin labeling technique. The embryos at 4-cell, gastrula, late tail-bud, and larval stages were dissociated in the Ca2+- and Mg2+-free solution with or without collagenase. Dissociated cells and fragments were prefixed, reacted with ferritin-lectin conjugates and processed for electron microscopy. Lectins used were concanavalin A (ConA) and Ricinus communis agglutinin. Ferritin particles showing lectin-binding sites were found singly or in the form of clusters on the cell surface exposed directly to the conjugates. Most of the particles of both conjugates were distributed singly and sparsely on entire surface areas of the 4-cell stage cells, whereas they were rich in population and tended to form clusters when embryos reached the gastrula stage. At the succeeding stages tested, tagged ferritin, which was single or clustering particles, was less in number as compared with those at the former stage; on the surface facing neighboring muscle cells, in particular, the ferritin particles were much fewer than those in areas of notochordal and epithelial sides. It is suggested that the embryonic muscle cells of the ascidian show stage-specific changes of cell surface carbohydrates. They have high reactivity to both lectins around the gastrula stage and bring out the regional difference of both lectin-binding sites in the tail-bud stage, namely during the period of histogenesis.  相似文献   

5.
The binding sites for the lectins wheat germ agglutinin, Ricinus communis agglutinin and concanavalin A on mouse neuroblastoma cell membranes were identified using SDS-gel electrophoresis in combination with fluorescent lectins. Ricinus communis agglutinin and wheat germ agglutinin were found to bind almost exclusively to a single polypeptide with an apparent molecular weight of 30 000. Concanavalin A labeled over 20 different polypeptides, most with molecular weights greater than 50 000. However, when the neuroblastoma cells were treated with concanavalin A so as to internalize all the concanavalin A binding sites visible at the level of the fluorescent microscope and the purified plasma membranes analyzed for their concanavalin A binding polypeptides, only four of the 20 glycopolypeptides were missing or significantly reduced in amount. Thus, these four high molecular weight concanavalin A-binding polypeptides appear to be the major cell surface receptors for concanavalin A. Binding studies with iodinated concanavalin A indicated that these polypeptides represented the high affinity concanavalin A binding sites Kd = 2 · 10?7M). Low affinity concanavalin A binding sites were present on the cell surface after internalization of high affinity concanavalin A binding sites.  相似文献   

6.
The mobility of Ricinus communis lectins bound to lymphocyte cell surface was determined by fluorescence polarization of fluorescein-labeled lectins. R. communis hemagglutinin and R. communis toxin have high mobility. Furthermore, the change of membrane fluidity upon binding of the lectins to lymphocytes was measured by fluorescence polarization of fluorescent hydrocarbon embedded in the membrane. The hemagglutinin, the toxin and its binding subunit apparently increased the membrane fluidity. The hemagglutinin was also found to have mitogenic activity against human peripheral lymphocytes.  相似文献   

7.
Summary Protoplasts isolated from cell suspension cultures of carrot (Daucus carota L.) and leaves of tobacco (Nicotiana tabacum L.) were treated with three lectins specific for galactosyl residues. After incubation with RCA I (Ricinus communis agglutinin, molecular weight 120,000) conjugated to ferritin or fluorescein, freshly isolated protoplasts displayed heavy labeling of their surfaces. Moreover, they agglutinated rapidly when exposed to low concentrations of RCA I. In parallel studies, PNA (peanut agglutinin) also bound extensively to the protoplast plasma membranes whileBandeiraea simplicifolia lectin I attached relatively weakly. When protoplasts were cultured for two days and then incubated with conjugates of RCA I and PNA, additional binding sites were revealed on the regenerating walls.The results indicate that galactosyl residues are distributed densely over the surface of plant protoplasts. They also allow inferences to be made regarding the positions and linkages of the galactose groups being recognized by the lectins. Moreover, they open up the question whether the galactosyl moieties detected in the wall derive from those labeled on the plasma membrane. To conclude, we make comparisons with binding by concanavalin A, and predict that galactose-recognizing lectins will join and in certain respects prove superior to concanavalin A as probes of the plant cell surface.  相似文献   

8.
Pronase, cationic ferritin, and ferritin-conjugated plant lectins were used to study the chloroplast envelope. Negative charges (binding cationic ferritin) are fairly uniformly distributed over the envelope surfaces in contact with the hyaloplasm and are not appreciably altered by mild pronase treatment of isolated plastids. All surfaces of stroma-free thylakoids previously exposed to the stroma uniformly bind cationic ferritin. RicinII-ferritin binding to the membranes of the chloroplast envelope indicates that galactolipids are distributed in the outer membrane in such a way that their galactose moieties are exposed on the envelope surface. In addition, the outer surface of the inner membrane (the intermembrane face) contains uniformly distributed galactose which binds ricinII when this membrane is exposed to the reaction medium. Isolated vesicles of the chloroplast envelope bind ricinII, while isolated envelope vesicles as well as the envelopes of intact chloroplasts failed to bind concanavalin A. Thylakoid surfaces showed minor binding of ricinII as well as concanavalin A.  相似文献   

9.
Organelles isolated from leaves of spinach (Spinacia oleracea L.) were prefixed in glutaraldehyde and then incubated with ferritin conjugates of four lectins — Concanavalin A (Con A), Ricinus communis L. agglutinin, MW 120,000 (RCA), soybean agglutinin (SBA), and wheat germ agglutinin (WGA) — in order to probe their cytoplasmic surfaces for saccharide residues. In each case the major leaf organelles, including microbodies, mitochondria and chloroplast derivatives, failed to exhibit labeling when examined with the electron microscope. Tobacco (Nicotiana tabacum L.) leaf protoplasts, incubated simultaneously with and under identical conditions to the spinach organelles, showed specific labeling of their plasma membranes with all four lectin conjugates, thus establishing the efficacy of the procedure for demonstrating the presence of binding sites when they exist. Further attempts to show binding of one of the lectins, Con A, by labeling with fluorescein-Con A and by organelle agglutination, yielded results consistent with the absence of ultrastructural labeling. It is concluded that no saccharide residues recognized by the four lectins are present on the cytoplasmic surfaces of organelles and that those residues reported to be constituents of intracellular membranes, therefore, are most likely exposed on the luminal (extracytoplasmic) surfaces.Abbreviations Con A Concanavalin A - RCA Ricinus communis agglutinin, MW 120,000 - SBA soybean agglutinin - WGA wheat germ agglutinin  相似文献   

10.
The saxitoxin-binding component of the excitable membrane sodium channel exhibits glycoprotein characteristics as evidenced by its specific interaction with various agarose-immobilized lectins. The detergent-solubilized saxitoxin-binding component interacts quantitatively with immobilized wheat germ agglutinin and concanavalin A and fractionally with immobilized Lens culinaris hemagglutinin and Ricinus communis agglutinin. These lectins preferentially bind N-acetylglucosamine and sialic acid (wheat germ agglutinin), mannose (concanavalin A and Lens cunilaris and galactose (Ricinus communis). Removal of terminal sialic acid residues by neuraminidase markedly decreases binding to immobilized wheat germ agglutinin but uncovers sites capable of interacting with lectins specific for galactose and N-acetylgalactosamine. β-N-acetylglucosaminidase, an exoglycosidase has no effect on the binding of the channel protein to wheat germ agglutinin. Similarly, phospholipase C has no effect on binding of the solubilized toxin binding component to this lectin. Neither wheat germ agglutinin nor concanavalin A free in solution alters the number of toxin binding sites or their affinity for toxin. The sodium channel saxitoxin-binding component appears to be a glycoprotein containing terminal sialic acid residues and internal mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine residues. The toxin binding site is spatially separated from the binding sites for the lectins studied. The effect of these sugar moieties must be considered when evaluating the biophysical parameters of the sodium channel.  相似文献   

11.
Statistical procedures were utilized to evaluate the concentration dependence of labeling by ferritin-conjugated lectins on four different rat cells: hepatocytes, normal thymocytes, Friend virus-induced rat tumor cells and feline sarcoma virus-induced rat sarcoma cells. Labeling by ferritin conjugates of concanavalin A, wheat germ agglutinin and Ricinus communis agglutinins I and II was quantitated by counting the number of ferritin granules on 600 Angstrom membrane segments. Relationships between the arithmetic means and variances for sample populations from each cell and ferritin-lectin combination were used to define four types of topographical distributions: uniform/ordered, uniform/random, random and clustered. It was found that the distribution and/or density of surface-bound lectin was concentration-dependent for all four ferritin-lectins. The nature of this dependency was complex and varied with both lectin and cell type.  相似文献   

12.
Localization of cytochrome P-450 on various membrane fractions of rat liver cells was studied by direct immunoelectron microscopy using ferritin-conjugated antibody to the cytochrome. The outer surfaces of almost all the microsomal vesicles were labeled with ferritin particles. The distribution of the particles on each microsomal vesicle was usually heterogeneous, indicating clustering of the cytochrome, and phenobarbital treatment markedly increased the labeled regions of the microsomal membranes. The outer nuclear envelopes were also labeled with ferritin particles, while on the surface of other membrane structures such as Golgi complexes, outer mitochondrial membranes and plasma membranes the labeling was scanty and at the control level. The present observation indicates that cytochrome P-450 molecules are localized exclusively on endoplasmic reticulum membranes and outer nuclear envelopes where they are probably distributed not uniformly but heterogeneously, forming clusters or patches. The physiological significance of such microheterogeneity in the distribution of the cytochrome on endoplasmic reticulum membranes is discussed.  相似文献   

13.
The glycoproteinic nature of the insulin receptor was indicated using two different approaches: 1. [125I]insulin binding to soluble receptors from mouse liver was inhibited by digestion with β-galactosidase or pretreatment with Ricinus communis I or concanavalin A. An other enzyme (neuraminidase) and lectins (wheat germ agglutinin, Dolichos biflorus) did not affect the binding reaction. These data confirmed that insulin directly interacts with the galactoglycoproteins of liver membranes. 2. The galactose oxidase-sodium boro[3H]hydride technique, previously used for labeling accessible membrane galactoglycoproteins, was again utilized to discern the components that interact with insulin. When liver membranes were equilibrated with 10?7 M insulin prior to labeling, the SDS gel radioactive profiles were specifically modified within two galactoglycoproteins of apparent molecular sizes 195 000 and 145 000, compatible with their participation in the insulin binding interaction. Membrane pretreatment with β-galactosidase or Sophora japonica lectin reduced the labeling in most peaks, thus supporting the argument for labeling sensitivity. Preincubation of membranes with 10?7 M proinsulin slightly hindered labeling while pretreatment with 10?7 M glucagon was ineffective, suggesting a specificity of the insulin effect. These data indicate the glycoprotein nature of the insulin receptor for two reasons: alteration of insulin binding after modification of the galactoglycoproteins, and alteration of galactoglycoprotein labeling after insulin binding. Two galactoglycoproteins, with apparent molecular weights 145 000 and 195 000, respectively, were identified and they are suggested to have insulin binding properties.  相似文献   

14.
Localization of globoside and Forssman glycolipids on erythrocyte membranes   总被引:5,自引:0,他引:5  
Using the freeze-etch technique, the membrane localization of globoside, a principal glycolipid in human erythrocytes, and Forssman antigen, the chief glycolipid in sheep erythrocytes was evaluated using ferritin and colloidal gold as morphological markers for rabbit antibodies prepared against these glycolipids. Brief trypsinization of human red cell ghosts markedly aggregated intramembranous particles and permitted labeling of globoside, which appeared in a clustered arrangement. The aggregates of ferritin-anti-globoside differed from those of ferritin-wheat germ agglutinin, a label for glycophorin, which corresponded with the aggregates of intramembranous particles. Double-labeling of human trypsinized ghosts with anti-globoside/ Staphylococcal protein A-colloidal gold and ferritin-wheat germ agglutinin indicated that the patterns of labeling were different and that the aggregates of globoside did not bear a direct relationship to the intramembranous particles, which represent transmembrane proteins. Resealed sheep erythrocyte ghosts labeled with ferritin-conjugated rabbit anti-Forssman showed small clusters of Forssman glycolipid on the erythrocyte surface, which could be markedly aggregated with a second goat anti-rabbit antibody, indicating relative mobility of the small glycolipid domains. The distribution of ferritin-anti-Forssman label in sheep ghosts treated at pH 5.5 to aggregate intramembranous particles also did not show definite correspondence between intramembranous particles and the clusters of ferritin-anti-Forssman.  相似文献   

15.
We have studied changes in the binding of fluoresceinated lectins to human sperm during in vitro capacitation. We first determined the surface labeling pattern of viable sperm obtained by the swim-up procedure. Sperm were labeled with 100 μg/ml FITC-conjugated lectin at 4°C for 30 min. We simultaneously used Hoechst stain 33258 as a supravital stain to help differentiate surface from intracellular lectin labeling. Of 14 lectins studied, six (phytohemagglutinin-E, concanavalin A, Ricinus communis agglutinin-I, and the lectins of wheat germ, Lens culinaris, and Pisum sativum) bound to the entire surface of sperm, sometimes with minor local heterogeneity. Three lectins (from peanut, Maclura pomifera, and soybean) usually bound in a punctate manner, with more label on the tail than on the head. Five lectins (Ulex europaeus, Dolichos biflorus, Helix pomatia, and Vicia villosa lectins, and lectin II of Griffonia simplicifolia) bound very poorly or not at all to the sperm surface. Sperm were also inspected for changes in surface lectin binding patterns after 0, 5, and 23 hr of incubation in a capacitating medium. Two lectins showed reproducible changes. The labeling by Maclura pomifera agglutinin decreased by 5 hr in eight of ten experiments, and among sperm labeled with concanavalin A, the incidence of sperm with a highly fluorescent anterior margin of the sperm head increased by about 3.5-fold between 0 and 5 hr. The labeling pattern of the other lectins did not change.  相似文献   

16.
Lymphocytes from murine lymph node, cultured in the presence of an optimally mitogenic dose of phytohaemagglutinin, were stained with fluoresceinated lectins and analysed by flow cytometry. A marked increase in the ability of lymphocytes to bind wheat-germ agglutinin was observed that is particularly pronounced for the blast cells, reaching a maximum at about 40 h, when they are 5.5-times brighter than cells at zero time. The corresponding intensification of the small cells is 2-fold. Much smaller increases in binding accompanying blast transformation were observed when fluoresceinated concanavalin A or Lens culinaris haemagglutinin were used. Polyacrylamide gel electrophoresis of plasma membranes followed by treatment of the gels with radioactively labelled lectins and autoradiography also showed a very distinct increase in the binding of wheat-germ agglutinin to membranes from mitogen-stimulated porcine lymphocytes. Less marked changes in the binding of concanavalin A Lens culinaris heamagglutin and Ricinus communis agglutinin 120 were also noted. The apparent multiplicity of glycoproteins that bind each lectin, suggests that in each case the sites are heterogeneous. We conclude that lymphocytes stimulated by the T-cell mitogen phytohaemagglutinin expose new glycoprotein receptors for wheat-germ agglutinin that are most abundant on blast cells at 40 h. Attempts to characterize the receptor biochemically suggest that the carbohydrate moiety recognised by wheat-germ agglutinin is present on a glycoprotein of approx. 120 kDa molecular mass and also possibly on glycoproteins of 170–190 kDa.  相似文献   

17.
Spectrin, a major protein constituent of mammalian red blood cell membrane preparations, has been localized on the inner surface of human red blood cell membranes by techniques that utilized specific ferritin-conjugated antibodies and fixation of membranes shortly after hemolysis so as to allow penetration of the ferritin-antibody labels. The labeling of spectrin was shown to be specific by the following criteria. (a) Nonhomologous ferritin-conjugated antibodies did not specifically bind to either membrane surface. (b) Blocking the membrane-bound spectrin with excess unconjugated antispectrin antibodies prevented ferritin-antibody labeling. (c) Removal of spectrin by treating the membrane preparation with a low ionic strength buffer containing ethylenediaminetetraacetate and β-mercaptoethanol prevented labeling by specific ferritin-conjugated antibodies.  相似文献   

18.
The distributions of electric charges and Concanavalin A binding sites in autophagic vacuoles and lysosomes in mouse hepatocytes were studied by utilizing a frozen ultrathin section labeling method with cationized ferritin (CF) or anionized ferritin and ferritin-conjugated Concanavalin A (Con A-F) as visual probes. Our observations revealed that the inner surface of the autophagic vacuole membrane has more anionic sites (CF binding) than other organelle membranes. This suggests that if the limiting membranes of autophagic vacuoles originate from preexisting membranes, such membranes must undergo structural and compositional alternation during the formation of the autophagic vacuoles. In contrast to CF, Con A-F showed no distinct binding to the membranes of autophagic vacuoles, but the contents of vacuoles displayed varying Con A-F binding, depending on the stage of the autophagic process. Increased binding was seen in more mature autophagic vacuoles. Since lysosomes showed a preferential accumulation of Con A-F particles, molecules with Con A-F binding sites in autophagic vacuoles may be of lysosomal origin. Con A-F distribution varied from lysosome to lysosome in the same cell, indicating heterogeneity of lysosomal contents. These results suggest that ferritin-conjugated lectin labeling methods applied to frozen, ultrathin section are a useful new approach in analyzing the natural history of autophagic vacuoles and the heterogeneity of lysosomes.  相似文献   

19.
The involvement of glycoconjugates in the insulin-receptor interactions in mouse liver is tested by digestions of membranes with various enzymes. Trypsin decreased the binding of [125I]insulin to liver membranes. After digestion with β-galactosidase no “high affinity” receptor sites could be detected. The effects observed with plant lectins confirm the involvement of galactoconjugates in the insulin binding process. Sophora japonica and Ricinus communis lectins (with galactose specificity) and concanavalin A largely inhibit the binding process of insulin and those effects concern the “high affinity” receptor sites. Other lectins (wheat germ agglutinin, Dolichos) and enzymes (α-l-fucosidase, β-N-acetyl-hexosaminidase and neuraminidase) are without effect on insulin binding.Comparative studies performed on diabetic mouse liver membrane (KK mice), previously characterized by decreased number of insulin receptors, are in good agreement with qualitatively similar receptor sites in both non-diabetic (control) and diabetic mice. Effects of enzymes and lectins yielded same results as compared to control membranes. Plasma membrane proteins and glycoproteins in both types of mouse are indistinguishable with respect to enzymic and chemical analysis. Sodium dodecyl sulphate acrylamide gel electrophoresis shows identical patterns. Moreover, the decrease in the number of insulin receptors is easily reversed with diet restriction. These data are consistent with the similarity of receptor sites in control and diabetic liver membrane.  相似文献   

20.
The preparation, properties, and some applications of ferritin conjugates of two plant agglutinins, concanavalin A and Ricinus communis agglutinin, are reported. These conjugates serve as specific electron-dense stains for cell- and membrane-bound saccharide residues of the α-D-mannopyranosyl and β-D-galactopyranosyl configurations, respectively, and as examples of a wide range of ferritin-plant agglutinin conjugates useful as high resolution saccharide stains. By using a technique for preparing flattened membrane specimens, it was found with a variety of mammalian cell plasma membranes (lymphocyte, lymphoma, and myeloma and normal, spontaneously and virally transformed fibroblasts) that the ferritin conjugates were localized exclusively to the exterior face of the membrane, with essentially none found on the cytoplasmic face. On the exterior face the topographical distribution of ferritin conjugates appeared to be random. The asymmetrical distribution of saccharide residues to the outer membrane face can be explained by an "assembly line" process whereby new plasma membrane is made from intracellular precursor membranes. It also suggests that the saccharide-containing components of the plasma membrane do not rotate at any appreciable rate from one membrane surface to the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号