首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocytosis is involved in DNA uptake in yeast   总被引:1,自引:0,他引:1  
The structurally related mammalian alpha and beta isoforms of phosphatidylinositol (PtdIns) transfer protein (PITP) bind reversibly a single phospholipid molecule, preferably PtdIns or phosphatidylcholine (PtdCho), and transport that lipid between membrane surfaces. PITPbeta, but not PITPalpha, is reported extensively in the scientific literature to exhibit the additional capacity to bind and transport sphingomyelin (CerPCho). We undertook a detailed investigation of the lipid binding and transfer specificity of the soluble mammalian PITP isoforms. We employed a variety of donor and acceptor membrane lipid compositions to determine the sensitivity of recombinant rat PITPalpha and PITPbeta isoforms toward PtdIns, PtdCho, CerPCho, and phosphatidate (PtdOH). Results indicated often striking differences in protein-phospholipid and protein-membrane interactions. We demonstrated unequivocally that both isoforms were capable of binding and transferring CerPCho; we confirmed that the beta isoform was the more active. The order of transfer specific activity was similar for both isoforms: PtdIns>PtdCho>CerPCho>PtdOH. Independently, we verified the binding of CerPCho to both isoforms by showing an increase in holoprotein isoelectric point following the exchange of protein-bound phosphatidylglycerol for membrane-associated CerPCho. We conclude that PITPalpha and PITPbeta are able to bind and transport glycero- and sphingophospholipids.  相似文献   

2.
Of many lipid transfer proteins identified, all have been implicated in essential cellular processes, but the activity of none has been demonstrated in intact cells. Among these, phosphatidylinositol transfer proteins (PITP) are of particular interest as they can bind to and transfer phosphatidylinositol (PtdIns)--the precursor of important signalling molecules, phosphoinositides--and because they have essential functions in neuronal development (PITPalpha) and cytokinesis (PITPbeta). Structural analysis indicates that, in the cytosol, PITPs are in a 'closed' conformation completely shielding the lipid within them. But during lipid exchange at the membrane, they must transiently 'open'. To study PITP dynamics in intact cells, we chemically targeted their C95 residue that, although non-essential for lipid transfer, is buried within the phospholipid-binding cavity, and so, its chemical modification prevents PtdIns binding because of steric hindrance. This treatment resulted in entrapment of open conformation PITPs at the membrane and inactivation of the cytosolic pool of PITPs within few minutes. PITP isoforms were differentially inactivated with the dynamics of PITPbeta faster than PITPalpha. We identify two tryptophan residues essential for membrane docking of PITPs.  相似文献   

3.
PtdIns is synthesized at the endoplasmic reticulum and its intracellular distribution to other organelles can be facilitated by lipid transfer proteins [PITPs (phosphatidylinositol transfer proteins)]. In this review, I summarize the current understanding of how PITPs are regulated by phosphorylation, how can they dock to membranes to exchange their lipid cargo and how cells use PITPs in signal transduction and membrane delivery. Mammalian PITPs, PITPalpha and PITPbeta, are paralogous genes that are 94% similar in sequence. Their structural design demonstrates that they can sequester PtdIns or PtdCho (phosphatidylcholine) in their hydrophobic cavity. To deliver the lipid cargo to a membrane, PITP has to undergo a conformational change at the membrane interface. PITPs have a higher affinity for PtdIns than PtdCho, which is explained by hydrogen-bond contacts between the inositol ring of PtdIns and the side-chains of four amino acid residues, Thr59, Lys61, Glu86 and Asn90, in PITPs. Regardless of species, these residues are conserved in all known PITPs. PITP transfer activity is regulated by a conserved serine residue (Ser166) that is phosphorylated by protein kinase C. Ser166 is only accessible for phosphorylation when a conformational change occurs in PITPs while docking at the membrane interface during lipid transfer, thereby coupling regulation of activity with lipid transfer function. Biological roles of PITPs include their ability to couple phospholipase C signalling to neurite outgrowth, cell division and stem cell growth.  相似文献   

4.
Eukaryotic phosphatidylinositol transfer proteins (PITPs) are composed predominantly of small ( approximately 32 kDa) soluble proteins that bind and transfer a single phospholipid, normally phosphatidylinositol or phosphatidycholine. Two forms, PITPalpha and PITPbeta, which share approximately 80% amino acid sequence similarity, are known. Rat PITPalpha was labeled at specific single reactive Cys residues with I-AEDANS and used to examine PITP-membrane interactions. Upon binding to phospholipid vesicles, PITP labeled with AEDANS at the C-terminus, a region postulated to be involved in membrane binding, shows significant decreases in both steady-state and dynamic fluorescence anisotropy. In contrast, PITPs labeled with AEDANS at sites located distal to the C-terminus show increases in both steady-state and dynamic anisotropy. These results suggest that interaction of PITP with membrane surfaces leads to significant alterations in conformation and perhaps melting of the C-terminal helix.  相似文献   

5.
Mammalian PITPbeta (phosphatidylinositol transfer protein beta) is a 272-amino-acid polypeptide capable of transferring PtdIns, PtdCho and SM (sphingomyelin) between membrane bilayers. It has been reported that Ser262 present in the C-terminus of PITPbeta is constitutively phosphorylated and determines Golgi localization. We provide evidence for the expression of an sp (splice) variant of PITPbeta (PITPbeta-sp2) where the C-terminal 15 amino acids of PITPbeta-sp1 are replaced by an alternative C-terminus of 16 amino acids. PITPbeta-sp1 is the product of the first 11 exons, whereas PITPbeta-sp2 is a product of the first 10 exons followed by the twelfth exon--exon 11 being 'skipped'. Both splice variants are capable of PtdIns and PtdCho transfer, with PITPbeta-sp2 being unable to transport SM. PITPbeta is ubiquitously expressed, with the highest amounts of PITPbeta found in HL60 cells and in rat liver; HL60 cells express only PITPbeta-sp1, whereas rat liver expresses both sp variants in similar amounts. In both cell types, PITPbeta-sp1 is constitutively phosphorylated and both the PtdIns and PtdCho forms of PITPbeta-sp1 are present. In contrast, PITPbeta-sp2 lacks the constitutively phosphorylated Ser262 (replaced with glutamine). Nonetheless, both PITPbeta variants localize to the Golgi and, moreover, dephosphorylation of Ser262 of PITPbeta-sp1 does not affect its Golgi localization. The presence of PITPbeta sp variants adds an extra level of proteome complexity and, in rat liver, the single gene for PITPbeta gives rise to seven distinct protein species that can be resolved on the basis of their charge differences.  相似文献   

6.
Phosphatidylinositol transfer proteins (PITPs) bind phosphatidylinositol (PtdIns) and phosphatidylcholine and play diverse roles in coordinating lipid metabolism/signaling with intracellular functions. The underlying mechanisms remain unclear. Genetic ablation of PITPalpha in mice results in neonatal lethality characterized by intestinal and hepatic steatosis, spinocerebellar neurodegeneration, and glucose homeostatic defects. We report that mice expressing a PITPalpha selectively ablated for PtdIns binding activity (Pitpalpha(T59D)), as the sole source of PITPalpha, exhibit phenotypes that recapitulate those of authentic PITPalpha nullizygotes. Analyses of mice with graded reductions in PITPalpha activity reveal proportionately graded reductions in lifespan, demonstrate that intestinal steatosis and hypoglycemia are apparent only when PITPalpha protein levels are strongly reduced (>or=90%), and correlate steatotic and glucose homeostatic defects with cerebellar inflammatory disease. Finally, reconstitution of PITPalpha expression in the small intestine substantially corrects the chylomicron retention disease and cerebellar inflammation of Pitpalpha(0/0) neonates, but does not rescue neonatal lethality in these animals. These data demonstrate that PtdIns binding is an essential functional property of PITPalpha in vivo, and suggest a causal linkage between defects in lipid transport and glucose homeostasis and cerebellar inflammatory disease. Finally, the data also demonstrate intrinsic neuronal deficits in PITPalpha-deficient mice that are independent of intestinal lipid transport defects and hypoglycemia.  相似文献   

7.
Miller EC  Helmkamp GM 《Biochemistry》2003,42(45):13250-13259
Both isoforms of rat phosphatidylinositol transfer protein (PITP) mediate the intermembrane transfer of sphingomyelin (CerPCho). In the plasma membrane, CerPCho often segregates with cholesterol into microdomains such as lipid rafts and caveolae. To test the hypothesis that PITP exhibits a preference for CerPCho- and cholesterol-rich membranes, we prepared unilamellar vesicles containing variable amounts of these two lipids. We also used CerPCho species with different acyl composition and treated vesicles with agents known to sequester and remove cholesterol. We observed that the beta isoform of rat PITP was more sensitive to membrane cholesterol than was the alpha isoform, as shown by increases in specific activities of lipid transfer of 2-6-fold. A relatively high membrane content of cholesterol (mole fraction > 0.4) was required to elicit such enhancements. Treatment of cholesterol-rich membranes with a series of beta cyclodextrins demonstrated that, upon depletion of cholesterol from participating membranes, the PITPbeta activity changes were fully reversible. We finally noted that the mechanism by which cholesterol enhances the activity of PITPbeta appeared to involve a decreased affinity of the protein for the membrane surface, in a manner that was independent of vesicle size and membrane microviscosity. We conclude that PITPbeta interacts transiently but productively with the liquid-ordered phase formed by CerPCho and cholesterol and discuss the possibility of PITP interactions in vivo with sphingolipid- and cholesterol-rich membrane microdomains.  相似文献   

8.
The structurally related mammalian α and β isoforms of phosphatidylinositol (PtdIns) transfer protein (PITP) bind reversibly a single phospholipid molecule, preferably PtdIns or phosphatidylcholine (PtdCho), and transport that lipid between membrane surfaces. PITPβ, but not PITPα, is reported extensively in the scientific literature to exhibit the additional capacity to bind and transport sphingomyelin (CerPCho). We undertook a detailed investigation of the lipid binding and transfer specificity of the soluble mammalian PITP isoforms. We employed a variety of donor and acceptor membrane lipid compositions to determine the sensitivity of recombinant rat PITPα and PITPβ isoforms toward PtdIns, PtdCho, CerPCho, and phosphatidate (PtdOH). Results indicated often striking differences in protein–phospholipid and protein–membrane interactions. We demonstrated unequivocally that both isoforms were capable of binding and transferring CerPCho; we confirmed that the β isoform was the more active. The order of transfer specific activity was similar for both isoforms: PtdIns>PtdCho>CerPCho≫PtdOH. Independently, we verified the binding of CerPCho to both isoforms by showing an increase in holoprotein isoelectric point following the exchange of protein-bound phosphatidylglycerol for membrane-associated CerPCho. We conclude that PITPα and PITPβ are able to bind and transport glycero- and sphingophospholipids.  相似文献   

9.
Phosphoinositides function in a diverse array of cellular activities. They include a role as substrate for lipid kinases and phospholipases to generate second messengers, regulators of the cytoskeleton, of enzymes and of ion channels, and docking sites for reversible recruitment of proteins to membranes. Mammalian phosphatidylinositol transfer proteins, PITPalpha and PITPbeta are paralogs that share 77% sequence identity and contain a hydrophobic cavity that can sequester either phosphatidylinositol or phosphatidylcholine. A string of 11 amino acid residues at the C-terminal acts as a "lid" which shields the lipid from the aqueous environment. PITPs in vitro can facilitate inter-membrane lipid transfer and this requires the movement of the "lid" to allow the lipid cargo to be released. Thus PITPs are structurally designed for delivering lipid cargo and could thus participate in cellular events that are dependent on phosphatidylinositol or derivatives of phosphatidylinositol. Phosphatidylinositol, the precursor for all phosphoinositides is synthesised at the endoplasmic reticulum and its distribution to other organelles could be facilitated by PITPs. Here we highlight recent studies that report on the three-dimensional structures of the different PITP forms and suggest how PITPs are likely to dock at the membrane surface for lipid delivery and extraction. Additionally we discuss whether PITPs are important regulators of sphingomyelin metabolism, and finally describe recent studies that link the association of PITPs with diverse functions including membrane traffic at the Golgi, neurite outgrowth, cytokinesis and stem cell growth.  相似文献   

10.
Sec14-like phosphatidylinositol transfer proteins (PITPs) play important biological functions in integrating multiple aspects of intracellular lipid metabolism with phosphatidylinositol-4-phosphate signaling. As such, these proteins offer new opportunities for highly selective chemical interference with specific phosphoinositide pathways in cells. The first and best characterized small molecule inhibitors of the yeast PITP, Sec14, are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs), and a hallmark feature of NPPMs is their exquisite targeting specificities for Sec14 relative to other closely related Sec14-like PITPs. Our present understanding of Sec14::NPPM binding interactions is based on computational docking and rational loss-of-function approaches. While those approaches have been informative, we still lack an adequate understanding of the basis for the high selectivity of NPPMs among closely related Sec14-like PITPs. Herein, we describe a Sec14 motif, which we term the VV signature, that contributes significantly to the NPPM sensitivity/resistance of Sec14-like phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer proteins. The data not only reveal previously unappreciated determinants that govern Sec14-like PITP sensitivities to NPPMs, but enable predictions of which Sec14-like PtdIns/PtdCho transfer proteins are likely to be NPPM resistant or sensitive based on primary sequence considerations. Finally, the data provide independent evidence in support of previous studies highlighting the importance of Sec14 residue Ser173 in the mechanism by which NPPMs engage and inhibit Sec14-like PITPs.  相似文献   

11.
Phosphatidylinositol transfer proteins (PITP) function in signal transduction and in membrane traffic. Studies aimed at elucidating the mechanism of action of PITP have yielded a singular theme; the activity of PITP stems from its ability to transfer phosphatidylinositol (PI) from its site of synthesis to sites of cellular activity and to stimulate the local synthesis of phosphorylated forms of PI. The participation of various phosphoinositides in EGF signal transduction and in the trafficking of the EGF receptors is well documented. Using fluorescence lifetime imaging microscopy (FLIM) to measure fluorescence resonance energy transfer (FRET) between EGFP-PITP proteins and fluorescently labeled phospholipids, we report that PITPalpha and PITPbeta can dynamically interact with PI or PC at the plasma membrane when stimulated with EGF. Additionally, PITPbeta is localized at the Golgi, and EGF stimulation resulted in enhanced FRET. Inhibitors of the PLC and the Ras/MAP kinase pathway were both able to inhibit the EGF-stimulated interaction of PITPalpha with PI at the plasma membrane. The mobility of PITP proteins was determined by using fluorescence recovery after photobleaching (FRAP), and EGF stimulation reduced the mobility at the plasma membrane. We conclude that the dynamic behavior of PITPalpha and PITPbeta in vivo is a regulated process involving multiple mechanisms.  相似文献   

12.
Phosphatidylinositol transfer protein alpha (PITP-alpha) is a bifunctional phospholipid transfer protein that is highly selective for phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho). Polar lipid metabolites, including L-alpha-glycerylphosphorylcholine (GroPCho), increasingly have been linked to changes in cellular function and to disease. In this study, polar lipid metabolites of PtdIns and PtdCho were tested for their ability to influence PITP-alpha activity. GroPCho inhibited the ability of PITP-alpha to transfer PtdIns or PtdCho between liposomes. The IC(50) of both processes was dependent on membrane composition. D-myo-inositol 1-phosphate and glycerylphosphorylinositol modestly enhanced PITP-alpha-mediated phospholipid transfer. Choline, phosphorylcholine (PCho), CDP-choline, glyceryl-3-phosphate, myo-inositol and D-myo-inositol 1,4,5-trisphosphate had little effect. Membrane surface charge was a strong determinant of the GroPCho inhibition with the inhibition being greatest for highly anionic membranes. GroPCho was shown to enhance the binding of PITP-alpha to anionic vesicles. In membranes of low surface charge, phosphatidylethanolamine (PtdEtn) was a determinant enabling the GroPCho inhibition. Anionic charge and PtdEtn content appeared to increase the strength of PITP-alpha-membrane interactions. The GroPCho-enhanced PITP-alpha-membrane binding was sufficient to cause inhibition, but not sufficient to account for the extent of inhibition observed. Processes associated with strengthened PITP-alpha-membrane binding in the presence of GroPCho appeared to impair the phospholipid insertion/extraction process.  相似文献   

13.
Phosphatidylinositol transfer proteins (PITPs) regulate the interface between lipid metabolism and specific steps in membrane trafficking through the secretory pathway in eukaryotes. Herein, we describe the cis-acting information that controls PITPbeta localization in mammalian cells. We demonstrate PITPbeta localizes predominantly to the trans-Golgi network (TGN) and that this localization is independent of the phospholipid-bound state of PITPbeta. Domain mapping analyses show the targeting information within PITPbeta consists of three short C-terminal specificity elements and a nonspecific membrane-binding element defined by a small motif consisting of adjacent tryptophan residues (the W(202)W(203) motif). Combination of the specificity elements with the W(202)W(203) motif is necessary and sufficient to generate an efficient TGN-targeting module. Finally, we demonstrate that PITPbeta association with the TGN is tolerant to a range of missense mutations at residue serine 262, we describe the TGN localization of a novel PITPbeta isoform with a naturally occurring S262Q polymorphism, and we find no other genetic or pharmacological evidence to support the concept that PITPbeta localization to the TGN is obligately regulated by conventional protein kinase C (PKC) or the Golgi-localized PKC isoforms delta or epsilon. These latter findings are at odds with a previous report that conventional PKC-mediated phosphorylation of residue Ser262 is required for PITPbeta targeting to Golgi membranes.  相似文献   

14.
Phosphatidylinositol transfer protein alpha (PITPalpha) participates in the supply of phosphatidylinositol (PI) required for many cellular events including phospholipase C (PLC) beta and gamma signaling by G-protein-coupled receptors and receptor-tyrosine kinases, respectively. Protein kinase C has been known to modulate PLC signaling by G-protein-coupled receptors and receptor-tyrosine kinases, although the molecular target has not been identified in most instances. In each case phorbol myristate acetate pretreatment of HL60, HeLa, and COS-7 cells abrogated PLC stimulation by the agonists formyl-Met-Leu-Phe, ATP, and epidermal growth factor, respectively. Here we show that phosphorylation of PITPalpha at Ser166 resulted in inhibition of receptor-stimulated PLC activity. Ser166 is localized in a small pocket between the 165-172 loop and the rest of the protein and was not solvent-accessible in either the PI- or phosphatidylcholine-loaded structures of PITPalpha. To allow phosphorylation at Ser166, a distinct structural form is postulated, and mutation of Thr59 to alanine shifted the equilibrium to this form, which could be resolved on native PAGE. The elution profile observed by size exclusion chromatography of phosphorylated PITPalpha from rat brain or in vitro phosphorylated PITPalpha demonstrated that phosphorylated PITPalpha is structurally distinct from the non-phosphorylated form. Phosphorylated PITPalpha was unable to deliver its PI cargo, although it could deliver phosphatidylcholine. We conclude that the PITPalpha structure has to relax to allow access to the Ser166 site, and this may occur at the membrane surface where PI delivery is required for receptor-mediated PLC signaling.  相似文献   

15.
The effect of a number of growth factors on phosphatidylcholine (PtdCho) turnover in Swiss-3T3 cells was studied. Phorbol 12-myristate 13-acetate (PMA), bombesin, platelet-derived growth factor (PDGF) and vasopressin rapidly stimulated PtdCho hydrolysis, diacylglycerol (DAG) production, and PtdCho synthesis. Insulin and prostaglandin F2 alpha (PGF2 alpha) stimulated PtdCho synthesis, but not its breakdown, whereas epidermal growth factor (EGF) and bradykinin were without effect. Stimulation of PtdCho hydrolysis by the above ligands resulted in increased production of phosphocholine and DAG (due to phospholipase C activity) and significant amounts of choline, suggesting activation of a phospholipase D as well. CDP-choline and glycerophosphocholine levels were unchanged. Down-regulation of protein kinase C with PMA (400 nM, 40 h) abolished the stimulation of PtdCho hydrolysis and PtdCho synthesis by PMA, bombesin, PDGF and vasopressin, but not the stimulation of PtdCho synthesis by insulin and PGF2 alpha. PtdCho hydrolysis therefore occurs predominantly by activation of protein kinase C (either by PMA or PtdIns hydrolysis) leading to elevation of DAG levels derived from non-PtdIns(4,5)P2 sources. PtdCho synthesis occurs by both a protein kinase C-dependent pathway (stimulated by PMA, PDGF, bombesin and vasopressin) and a protein kinase C-independent pathway (stimulated by insulin and PGF2 alpha). DAG production from PtdCho hydrolysis is not the primary signal to activate protein kinase C, but may contribute to long-term activation of this kinase.  相似文献   

16.
RdgB proteins: functions in lipid homeostasis and signal transduction   总被引:1,自引:0,他引:1  
The RdgBs are a group of evolutionarily conserved molecules that contain a phosphatidylinositol transfer protein (PITP) domain. However in contrast to classical PITPs (PITPalpha) with whom they share the conserved PITP domain, these proteins also contain several additional sequence elements whose functional significance remains unknown. The founding member of the family DrdgB alpha (Drosophila rdgB) appears to be essential for sensory transduction and maintenance of ultra structure in photoreceptors (retinal sensory neurons). Although proposed to support the maintenance of phosphatidylinositol 4, 5 bisphosphate [PI (4, 5) P(2)] levels during G-protein coupled phospholipase C activity in these cells, the biochemical mechanism of DrdgB alpha function remains unresolved. More recently, a mammalian RdgB protein has been implicated in the maintenance of diacylglycerol (DAG) levels and secretory function at Golgi membranes. In this review we discuss existing work on the function of RdgB proteins and set out future challenges in understanding this group of lipid transfer proteins.  相似文献   

17.
Phosphatidylinositol transfer proteins (PITPs) are lipid binding proteins that can catalyse the transfer of phosphatidylinositol (PI) from membranes enriched in PI to PI-deficient membranes. Three soluble forms of PITP of 35--38 kDa (PITP alpha, PITP beta and rdgB beta) and two larger integral proteins of 160 kDa (rdgB alpha I and II), which contain a PITP domain, are found in mammalian cells. PITPs are intimately associated with the compartmentalised synthesis of different phosphorylated inositol lipids. PI is the primary inositol lipid that is synthesised at the endoplasmic reticulum and is further phosphorylated in distinct membrane compartments by many specific lipid kinases to generate seven phosphorylated inositol lipids which are required for both signalling and for membrane traffic. PITPs play essential roles in both signalling via phospholipase C and phosphoinositide 3-kinases and in multiple aspects of membrane traffic including regulated exocytosis and vesicle biogenesis.  相似文献   

18.
Type II phosphatidylinositol (PtdIns) 4-kinases produce PtdIns 4-phosphate, an early key signaling molecule in phosphatidylinositol cycle, which is indispensable for T cell activation. Type II PtdIns 4-kinase alpha and beta have similar biochemical properties. To distinguish these isoforms Epigallocatechin gallate (EGCG) has been evaluated as a specific inhibitor. EGCG is the major active catechin in green tea having anti-inflammatory, antiatherogenic and cancer chemopreventive properties. The precise mechanism of actions and molecular targets of EGCG in early signaling cascades are not well understood. In the present study, we have shown that EGCG inhibits type II PtdIns 4-kinases (α and β isoforms) and PtdIns 3-kinase activity in vitro. EGCG directly bind to both alpha and beta isoforms of type II PtdIns 4-kinases with a Kd of 2.62 μM and 1.02 μM, respectively. Type II PtdIns 4-kinase-EGCG complex have different binding pattern at its excited state. Both isoforms showed significant change in helicity upon binding with EGCG. EGCG modulates its effect by interacting with ATP binding pocket; the residues likely to be involved in EGCG binding were predicted by Autodock. Our findings suggest that EGCG inhibits two isoforms and could be a key to regulate T cell activation.  相似文献   

19.
The alpha isoforms of mammalian phosphatidylinositol transfer protein (PITP) contain four conserved Cys residues. In this investigation, a series of thiol-modifying reagents, both alkylating and mixed disulfide-forming, was employed to define the accessibility of these residues and to evaluate their role in protein-mediated intermembrane phospholipid transport. Isolation and analysis of chemically modified peptides and site-directed mutagenesis of each Cys residue to Ala were also performed. Soluble, membrane-associated, and denatured preparations of wild-type and mutant rat PITPs were studied. Under denaturing conditions, all four Cys residues could be detected spectrophotometrically by chemical reaction with 4,4'-dipyridyl disulfide or 5,5'-dithiobis(2-nitrobenzoate). In the native protein, two of the four Cys residues were sensitive to some but not all thiol-modifying reagents, with discrimination based on the charge and hydrophobicity of the reagent and the conformation of the protein. With the soluble conformation of PITP, achieved in the absence of phospholipid vesicles, the surface-exposed Cys(188) was chemically modified without consequence to lipid transfer activity. Cys(188) exhibited an apparent pK(a) of 7.6. The buried Cys(95), which constitutes part of the phospholipid substrate binding site, was covalently modified upon transient association of PITP with a membrane surface. The Cys-to-Ala mutations showed that neither Cys(95) nor Cys(188) was essential for lipid transfer activity. However, chemical modification of Cys(95) resulted in the loss of lipid transfer activity. These results demonstrate that the Cys residues of PITP can be assigned to several different classes of chemical reactivity. Of particular interest is Cys(95), whose sulfhydryl group becomes exposed to modification in the membrane-associated conformation of PITP. Furthermore, the inhibition of PITP activity by thiol-modifying reagents is a result of steric hindrance of phospholipid substrate binding.  相似文献   

20.
Phosphatidylinositol-4-phosphate (PtdIns-P) kinase was purified approximately 30-fold from rat brain cytosol. No contaminating activity of PtdIns kinase or of phosphomonoesterase and phospholipase C using PtdIns-P or PtdIns-P2 as substrate could be detected in the enzyme preparation. The PtdIns-P kinase activity was severalfold higher when PtdIns-P/PtdEtn vesicles rather than PtdIns-P alone were used as substrate. This might be due to increased accessibility of the enzyme for the vesicular substrate, further indicated by the lower activity obtained when PtdCho or PtdIns, phospholipids with bulky head groups, was also present in the vesicles. The product PtdIns-P2 was a competitive inhibitor with respect to PtdIns-P and 50% inhibition of enzyme activity was observed at the same product concentration regardless of whether the substrate-product mixture was presented in vesicular or micellar form, or the substrate and product were added in separate vesicles. The polyamines spermine and spermidine enhanced PtdIns-P kinase activity severalfold. Spermine also caused a shift in the MgCl2 saturation curve from sigmoidal to hyperbolic, lowering the Mg2+ concentration required for optimum kinase activity to the physiological range. Myelin basic protein enhanced the enzyme activity when PtdIns-P/PtdEtn vesicles were used as substrate, whereas it was inhibitory when PtdIns-P was added alone. The possible role of polyamines and the product PtdIns-P2 in the regulation of PtdIns-P kinase activity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号