首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.

Background

The cotton (Gossypium spp.) fiber cell is an important unicellular model for studying cell differentiation. There is evidence suggesting that phosphorylation is a critical post-translational modification involved in regulation of a wide range of cell activities. Nevertheless, the sites of phosphorylation in G. hirsutum and their regulatory roles in fiber cell initiation are largely unknown. In this study, we employed a mass spectrometry-based phosphoproteomics to conduct a global and site-specific phosphoproteome profiling between ovules of a fuzzless-lintless (fl) Upland cotton (G. hirsutum) mutant and its isogenic parental wild type (WT) at -3 and 0 days post-anthesis (DPA).

Results

A total of 830 phosphopeptides and 1,592 phosphorylation sites from 619 phosphoproteins were identified by iTRAQ (isobaric tags for relative and absolute quantitation). Of these, 76 phosphoproteins and 1,100 phosphorylation sites were identified for the first time after searching the P3DB public database using the BLAST program. Among the detected phosphopeptides, 69 were differentially expressed between the fl mutant and its WT in ovules at -3 and 0 DPA. An analysis using the Motif-X program uncovered 19 phosphorylation motifs, 8 of which were unique to cotton. A further metabolic pathway analysis revealed that the differentially phosphorylated proteins were involved in signal transduction, protein modification, carbohydrate metabolic processes, and cell cycle and cell proliferation.

Conclusions

Our phosphoproteomics-based research provides the first global overview of phosphorylation during cotton fiber initiation, and also offers a helpful dataset for elucidation of signaling networks in fiber development of G. hirsutum.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-466) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
5.
6.
The aim of the investigation reported here was to assess the role of gibberellin in cotton fiber development. The results of experiments in which the gibberellin (GA) biosynthesis inhibitor paclobutrazol (PAC) was tested on in vitro cultured cotton ovules revealed that GA is critical in promoting cotton fiber development. Plant responses to GA are mediated by DELLA proteins. A cotton nucleotide with high sequence homology to Arabidopsis thaliana GAI (AtGAI) was identified from the GenBank database and analyzed with the BLAST program. The full-length cDNA was cloned from upland cotton (Gossypium hirsutum, Gh) and sequenced. A comparison of the putative protein sequence of this cDNA with all Arabidopsis DELLA proteins indicated that GhRGL is a putative ortholog of AtRGL. Over-expression of this cDNA in Arabidopsis plants resulted in the dwarfed phenotype, and the degrees of dwarfism were related to the expression levels of GhRGL. The deletion of 17 amino acids, including the DELLA domain, resulted in the dominant dwarf phenotype, demonstrating that GhRGL is a functional protein that affects plant growth. Real-time quantitative PCR results showed that GhRGL mRNA is highly expressed in the cotton ovule at the elongation stage, suggesting that GhRGL may play a regulatory role in cotton fiber elongation.  相似文献   

7.
8.
The root-knot nematode Meloidogyne incognita is a damaging pest of cotton (Gossypium hirsutum) worldwide. A major gene (rkn1) conferring resistance to M. incognita was previously identified on linkage group A03 in G. hirsutum cv. Acala NemX. To determine the patterns of segregation and phenotypic expression of rkn1, F1, F2, F2:3, BC1F1 and F2:7 recombinant inbred lines (RIL) from intraspecific crosses between Acala NemX and a closely related susceptible cultivar Acala SJ-2 were inoculated in greenhouse tests with M. incognita race 3. The resistance phenotype was determined by the extent of nematode-induced root galling and nematode egg production on roots. Suppression of root galling and egg production was highly correlated among individuals in all tests. Root galling and egg production on heterozygous plants did not differ from the susceptible parent phenotype 125 d or more after inoculation, but were slightly suppressed with shorter screening (60 d), indicating that rkn1 behaved as a recessive gene or an incompletely recessive gene, depending on the screening condition. In the RIL, rkn1 segregated in an expected 1 resistant: 1 susceptible ratio for a major resistance gene. However, within the resistant class, 21 out of 34 RIL were more resistant than the resistant parent Acala NemX, indicating transgressive segregation. These results suggest that rkn1-based resistance in G. hirsutum can be enhanced in progenies of crosses with susceptible genotypes. Allelism tests and molecular genetic analysis are needed to determine the relationship of rkn1 to other M. incognita resistance sources in cotton.  相似文献   

9.
The stability and completeness of male sterility is still a challenge in some male sterile rice lines, especially those of photoperiod/thermo-sensitive genic male sterility (P/TGMS). Leaf color marker is a widely practiced approach to reduce the impact of self-pollinated seeds of male sterile lines. The papst1 is a leaf color mutant. The newly emerged leaves of papst1 are chlorosis and have an impaired photosynthesis. But the other agronomic traits, such as germination rate, duration of maturation and seed weight, are not changed. The papst1/PAPST1 F1 showed the wild-type leaf phenotype. The papst1/PAPST1 F2 progenies displayed an approximately 3:1 segregation ratio of WT phenotype:mutant phenotype (72: 28, χ2 = 0.48, p > 0.05), suggesting that papst1 mutant phenotype is caused by a single repressive gene. Map-based cloning and sequencing analysis revealed that a point mutation was occurred in Os01 g16040 (OsPAPST1). Given these results, the Ospapst1 mutant is a useful mutant for identifying seed purity and authenticity in hybrid rice.  相似文献   

10.
11.
Leaf senescence is the final stage of leaf life history, and it can be regulated by multiple internal and external cues. La-related proteins (LARPs), which contain a well-conserved La motif (LAM) domain and normally a canonical RNA recognition motif (RRM) or noncanonical RRM-like motif, are widely present in eukaryotes. Six LARP genes (LARP1a-1c and LARP6a-6c) are present in Arabidopsis, but their biological functions have not been studied previously. In this study, we investigated the biological roles of LARP1c from the LARP1 family. Constitutive or inducible overexpression of LARP1c caused premature leaf senescence. Expression levels of several senescence-associated genes and defense-related genes were elevated upon overexpression of LARP1c. The LARP1c null mutant 1c-1 impaired ABA-, SA-, and MeJA-induced leaf senescence in detached leaves. Gene expression profiles of LARP1c showed age-dependent expression in rosette leaves. Taken together, our results suggest LARP1c is involved in regulation of leaf senescence.  相似文献   

12.
13.
Brassinosteroids (BR) promote the elongation of cotton fibers and may be a factor in determining their final length. To begin to understand the role of BR-mediated responses in the development of cotton fibers we have characterized the BIN2 genes of cotton. BIN2 is a member of the shaggy-like protein kinase family that has been identified as a negative regulator of BR signaling in Arabidopsis. Sequence analyses indicate that the tetraploid cotton genome includes four genes with strong sequence similarity to BIN2. These genes fall into two distinct subclasses based on sequence and expression patterns. Sequence comparisons with corresponding genes from cotton species that have the diploid A and D genomes, respectively, shows that each pair of genes comprises homeologs derived from the A and D sub-genomes. Transgenic Arabidopsis plants that express these cotton BIN2 cDNAs show reduced growth and similar phenotypes to the semi-dominant bin2 mutant plants. These results indicate that the cotton BIN2 genes encode functional BIN2 isoforms that can inhibit BR signaling. Further analyses of the function of BIN2 genes and their possible roles in determining fiber yield and quality are underway.  相似文献   

14.
Patterning of the polar axis during the early leaf developmental stage is established by cell-to-cell communication between the shoot apical meristem (SAM) and the leaf primordia. In a previous study, we showed that the DRL1 gene, which encodes a homolog of the Elongator-associated protein KTI12 of yeast, acts as a positive regulator of adaxial leaf patterning and shoot meristem activity. To determine the evolutionally conserved functions of DRL1, we performed a comparison of the deduced amino acid sequence of DRL1 and its yeast homolog, KTI12, and found that while overall homology was low, well-conserved domains were presented. DRL1 contained two conserved plant-specific domains. Expression of the DRL1 gene in a yeast KTI12-deficient yeast mutant suppressed the growth retardation phenotype, but did not rescue the caffeine sensitivity, indicating that the role of Arabidopsis Elongator-associated protein is partially conserved with yeast KTI12, but may have changed between yeast and plants in response to caffeine during the course of evolution. In addition, elevated expression of DRL1 gene triggered zymocin sensitivity, while overexpression of KTI12 maintained zymocin resistance, indicating that the function of Arabidopsis DRL1 may not overlap with yeast KTI12 with regards to toxin sensitivity. In this study, expression analysis showed that class-I KNOX genes were downregulated in the shoot apex, and that YAB and KAN were upregulated in leaves of the Arabidopsis drl1-101 mutant. Our results provide insight into the communication network between the SAM and leaf primordia required for the establishment of leaf polarity by mediating histone acetylation or through other mechanisms.  相似文献   

15.
16.
Phytochrome system perceives the reduction in the ratio of red to far-red light when plants are grown under dense canopy. This signal, regarded as a warning of competition, will trigger a series of phenotypic changes to avoid shade. Progress has been made for several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and promotion of flowering in shade-avoidance has been identified. Recently, a FPF1 homolog GhFPF1 was identified in upland cotton. Our data supported that transgenic Arabidopsis of over-expressing GhFPF1 displayed a constitutive shade-avoiding phenotype resembling phyB mutants in several respects such as accelerated elongation of hypocotyl and petioles, upward of leaf movement, and promoted flowering. In this addendum, by dissection of GhFPF1 acting as a component of shade-avoidance responses we suppose that GhFPF1 might influence the timing of the floral transition independently of shade-mediated early flowering. Furthermore, the opposite changes of IAA content in transgenic leaves and stems suggested that alteration of IAA storage and release took place during shade-avoidance responses.  相似文献   

17.
Both water deficit stress and Meloidogyne incognita infection can reduce cotton growth and yield, and drought can affect fiber quality, but the effect of nematodes on fiber quality is not well documented. To determine whether nematode parasitism affects fiber quality and whether the combined effects of nematode and drought stress on yield and quality are additive (independent effects), synergistic, or antagonistic, we conducted a study for 7 yr in a field infested with M. incognita. A split-plot design was used with the main plot factor as one of three irrigation treatments (low [nonirrigated], moderate irrigation, and high irrigation [water-replete]) and the subplot factor as 0 or 56 l/ha 1,3-dichloropropene. We prevented water deficit stress in plots designated as water-replete by supplementing rainfall with irrigation. Plots receiving moderate irrigation received half the water applied to the water-replete treatment. The severity of root galling was greater in nonfumigated plots and in plots receiving the least irrigation, but the amount of irrigation did not influence the effect of fumigation on root galling (no irrigation × fumigation interaction). The weights of lint and seed harvested were reduced in nonfumigated plots and also decreased as the level of irrigation decreased, but fumigation did not influence the effect of irrigation. Nematodes affected fiber quality by increasing micronaire readings but typically had little or no effect on percent lint, fiber length (measured by HVI), uniformity, strength, elongation, length (based on weight or number measured by AFIS), upper quartile length, or short fiber content (based on weight or number). Micronaire also was increased by water deficit stress, but the effects from nematodes and water stress were independent. We conclude that the detrimental effects caused to cotton yield and quality by nematode parasitism and water deficit stress are independent and therefore additive.  相似文献   

18.
Cytochrome P450 monooxygenases (P450s) are commonly involved in biosynthesis of endogenous compounds and catabolism of xenobiotics, and their activities rely on a partner enzyme, cytochrome P450 reductase (CPR, E.C.1.6.2.4). Two CPR cDNAs, GhCPR1 and GhCPR2, were isolated from cotton (Gossypium hirsutum). They are 71% identical to each other at the amino acid sequence level and belong to the Class I and II of dicotyledonous CPRs, respectively. The recombinant enzymes reduced cytochrome c, ferricyanide and dichlorophenolindophenol (DCPIP) in an NADPH-dependent manner, and supported the activity of CYP73A25, a cinnamate 4-hydroxylase of cotton. Both GhCPR genes were widely expressed in cotton tissues, with a reduced expression level of GhCPR2 in the glandless cotton cultivar. Expression of GhCPR2, but not GhCPR1, was inducible by mechanical wounding and elicitation, indicating that the GhCPR2 is more related to defense reactions, including biosynthesis of secondary metabolites.  相似文献   

19.
20.
Colorectal cancer (CRC) is one of the leading causes of death around the world. Its genetic mechanism was intensively investigated in the past decades with findings of a number of canonical oncogenes and tumor-suppressor genes such as APC, KRAS, and TP53. Recent genome-wide association and sequencing studies have identified a series of promising oncogenes including IDH1, IDH2, DNMT3A, and MYD88 in hematologic malignancies. However, whether these genes are involved in CRC remains unknown. In this study, we screened the hotspot mutations of these four genes in 305 CRC samples from Han Chinese by direct sequencing. mRNA expression levels of these genes were quantified by quantitative real-time PCR (RT-qPCR) in paired cancerous and paracancerous tissues. Association analyses between mRNA expression levels and different cancerous stages were performed. Except for one patient harboring IDH1 mutation p.I99M, we identified no previously reported hotspot mutations in colorectal cancer tissues. mRNA expression levels of IDH1, DNMT3A, and MYD88, but not IDH2, were significantly decreased in the cancerous tissues comparing with the paired paracancerous normal tissues. Taken together, the hotspot mutations of IDH1, IDH2, DNMT3A, and MYD88 gene were absent in CRC. Aberrant mRNA expression of IDH1, DNMT3A, and MYD88 gene might be actively involved in the development of CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号