首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Our previous studies showed that very low density lipoproteins, Sf 60-400 (VLDL), from hypertriglyceridemia subjects, but not VLDL from normolipemic subjects, suppress HMG-CoA reductase activity in normal human fibroblasts. To determine if this functional abnormality of hypertriglyceridemic VLDL resulted from differences in uptake of the VLDL by the low density lipoprotein (LDL) receptor pathway, we isolated VLDL subclasses from the d less than 1.006 g/ml fraction of normal and hypertriglyceridemic plasma by flotation through a discontinuous salt gradient for direct and competitive binding studies in cultured human fibroblasts. VLDL from the plasma of subjects with hypertriglyceridemia types 4 and 5 were at least as effective as normal LDL in competing for 125I-labeled LDL binding, uptake, and degradation when compared either on the basis of protein content or on a particle basis. By contrast, normolipemic Sf 60-400 VLDL were ineffective in competing with the degradation of 125I-labeled LDL, and Sf 20-60 VLDL (VLDL3) were less effective in reducing specific 125I-labeled LDL degradation than were LDL, consistent with their effects on HMG-CoA reductase activity. In direct binding studies, radiolabeled VLDL from hypertriglyceridemic but not normolipemic subjects were bound, internalized, and degraded with high affinity and specificity by normal fibroblasts. Uptake and degradation of iodinated hypertriglyceridemic VLDL Sf 100-400 showed a saturable dependence on VLDL concentration. Specific degradation plateaued at approximately 25 micrograms VLDL protein/ml, with a half maximal value at 6 micrograms/ml. The most effective competitor of hypertriglyceridemic VLDL uptake and degradation was hypertriglyceridemic VLDL itself. LDL were effective only at high concentrations. Uptake of normal VLDL by normal cells was a linear rather than saturable function of VLDL concentration. By contrast, cellular uptake of the smaller normal VLDL3 was greater than uptake of larger VLDL and showed saturation dependence. After incubation of normal VLDL with 125I-labeled apoprotein E, reisolated 125I-E-VLDL were as effective as LDL in suppression of HMG-CoA reductase activity, suggesting that apoE is involved in receptor-mediated uptake of large suppressive VLDL. We conclude that 1) hypertriglyceridemic VLDL Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by the high affinity LDL receptor-mediated pathway; 2) by contrast, normal VLDL, Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by nonspecific, nonsaturable routes; and 3) of the normal VLDL subclasses, only the smallest Sf 20-60 fraction is bound and internalized via the LDL pathway.  相似文献   

2.
The catabolism of human and rat 125I-labelled very low density lipoproteins (VLDL) was compared by perfusing the lipoproteins through beating rat hearts. Triacylglycerol was removed from the VLDL to a greater extent than the protein moiety, leaving remnants containing relatively more apo-B and less apo-C. The change in apo-C content of the remnants correlated with the loss of triacylglycerol. The extent of removal of triacylglycerol from the rat and human VLDL was similar and in most cases appeared to saturate the heart lipoprotein lipase. The remnants were slightly smaller in size than the VLDL, and included particles which appeared to be partially emptied. In addition to remnants of d less than 1.019 g/ml, iodinated lipoproteins derived from rat and human VLDL were recovered at d 1.019-1.063 and 1.063-1.21 g/ml. The former contained largely cholesterol and cholesteryl esters, while phospholipids were the dominant lipid in the latter. An average of 40% of the 125I-labelled apoprotein lost from the VLDL was associated with the perfused hearts. Very little d 1.019-1.063 g/ml lipoprotein was produced from low (physiological) concentrations of rat VLDL, most of the lipoprotein being removed by the heart. However, lipoproteins of density 1.019-1.063 g/ml were formed from human VLDL at all concentrations in the perfusate, as well as from higher concentrations of the rat VLDL. Agarose gel filtration of lipoproteins following heart perfusion with human VLDL revealed large aggregates containing particles which resemble low density lipoproteins (LDL) in electron microscopic appearance and apoprotein composition, since they contain largely apo-B. These data suggest that at normal concentrations rat VLDL are almost completely catabolised and taken up by the heart without the formation of LDL, while LDL is produced from human VLDL at all concentrations.  相似文献   

3.
The mechanism of inhibition by apolipoprotein C of the uptake and degradation of triglyceride-rich lipoproteins from human plasma via the low density lipoprotein (LDL) receptor pathway was investigated in cultured human skin fibroblasts. Very low density lipoprotein (VLDL) density subfractions and intermediate density lipoprotein (IDL) with or without added exogenous recombinant apolipoprotein E-3 were used. Total and individual (C-I, C-II, C-III-1, and C-III-2) apoC molecules effectively inhibited apoE-3-mediated cell metabolism of the lipoproteins through the LDL receptor, with apoC-I being most effective. When the incubation was carried out with different amounts of exogenous apoE-3 and exogenous apoC, it was shown that the ratio of apoE-3 to apoC determined the uptake and degradation of VLDL. Excess apoE-3 overcame, at least in part, the inhibition by apoC. ApoC, in contrast, did not affect LDL metabolism. Neither apoA-I nor apoA-II, two apoproteins that do not readily associate with VLDL, had any effect on VLDL cell metabolism. The inhibition of VLDL and IDL metabolism cannot be fully explained by interference of association of exogenous apoE-3 with or displacement of endogenous apoE from the lipoproteins. IDL is a lipoprotein that contains both apoB-100 and apoE. By using monoclonal antibodies 4G3 and 1D7, which specifically block cell interaction by apoB-100 and apoE, respectively, it was possible to assess the effects of apoC on either apoprotein. ApoC dramatically depressed the interaction of IDL with the fibroblast receptor through apoE, but had only a moderate effect on apoB-100. The study thus demonstrates that apoC inhibits predominantly the apoE-3-dependent interaction of triglyceride-rich lipoproteins with the LDL receptor in cultured fibroblasts and that the mechanism of inhibition reflects association of apoC with the lipoproteins and specific concentration-dependent effects on apoE-3 at the lipoprotein surface.  相似文献   

4.
Selectively labelled lipids have been incorporated into the surface monolayer of human serum low density lipoprotein (LDL) and very low density lipoprotein (VLDL). From 3 to 17 mol% of phosphatidylcholine, selectively deuterated at various positions along the sn-2-acyl chain, was transferred from unilamellar vesicles to VLDL using a partially purified phosphatidylcholine transfer protein. Selectively deuterated palmitic acids were incorporated into LDL (6-20 mol%) and into VLDL (7-10 mol%). Electron microscopy, light scattering, and 31P nuclear magnetic resonance indicated that particle size remained unchanged. Gel exclusion chromatography and chemical analysis showed no difference in hydrodynamic properties and only slight alteration to particle component ratios. Biological activity of labelled VLDL was measured from the rate of cholesterol esterification by cultured J774A.1 cells. Effect of labelling LDL was evaluated by monitoring LDL uptake and degradation by cultured human skin fibroblasts. In all cases the lipoproteins containing labels were indistinguishable from their native counterparts.  相似文献   

5.
The plasma distribution and cellular uptake of [3H]vitamin D3 was studied in vitro using cultured human fibroblasts. Incubation of [3H]vitamin D3 (cholecalciferol) with plasma followed by sequential ultracentrifugal fractionation of the lipoproteins indicated that 2-4% of the radioactivity associated with the very low density lipoprotein (VLDL), 12% with low density lipoprotein (LDL), and approximately 60% with the high density lipoprotein (HDL). The remaining radioactivity, 25%, was associated with the sedimented plasma fractions. By comparison, an average of 86% of the radioactivity from [3H]1,25-dihydroxycholecalciferol associated with the sedimented plasma fractions. The uptake of [3H]vitamin D3 from plasma, LDL, or HDL was studied in cultured human cells; uptake by normal fibroblasts was greatest from LDL and least from plasma. The cellular association of vitamin D3 was time, concentration, and temperature dependent. At a concentration of 50 micrograms LDL/ml of medium, the uptake of [3H]vitamin D3 from LDL at 37 degrees C was rapid and reached a maximum at approximately 4 hr; it was slower from HDL but continued to increase slowly up to 24 hr. The significance of these in vitro findings is uncertain since much of the vitamin D3 absorbed from the intestine reportedly associates with chylomicrons and is rapidly taken up by the liver.  相似文献   

6.
Previous studies have shown that cultured fibroblasts derived from patients with genetic defects in lysosomal acid lipase (i. e. the Wolman Syndrome and Cholesteryl Ester Storage Disease) are defective in their ability to hydrolyze the cholesteryl esters contained in plasma low density lipoprotein (LDL). As a result, these mutant cells show a reduced responsiveness to the regulatory actions of LDL, as evidenced by a decreased LDL-mediated suppression of the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase and by a decreased LDL-mediated activation of cellular cholesteryl ester formation. In the current studies, the Wolman Syndrome and Cholesteryl Ester Storage Disease cells were grown in the same Petri dish with mutant fibroblasts derived from a patient with the homozygous form of Familial Hypercholesterolemia. Whereas pure monolayers of either the Familial Hypercholesterolemia cells (lacking cell surface LDL receptors) or the acid lipase-deficient cells (lacking cholesteryl ester hydrolase activity) responded poorly to LDL, the mixed monolayers developed lipoprotein responsiveness as measured by an enhancement of both LDL-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and LDL-mediated stimulation of cholesteryl ester formation. This effect was shown to result from the release of the lysosomal acid lipase from the Familial Hypercholesterolemia homozygote cells into the culture medium and its subsequent uptake by the acid lipase-deficient cells. The acquisition of this acid lipase activity enhanced the ability of the Wolman Syndrome and Cholesteryl Ester Storage Disease cells to respond to the lipoprotein by suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase and activation of cellular cholesteryl ester formation. These data emphasize the importance of the lysosomal acid lipase in the cellular metabolism of LDL cholesteryl esters and, in addition, demonstrate that delivery of this enzyme to genetically deficient cells can enhance the regulatory response to the lipoprotein.  相似文献   

7.
1. The metabolism of apolipoprotein B (apoB) was investigated in pigs injected with [125I]very low density lipoproteins (VLDL) to determine to which extent the two distinct low density lipoprotein subclasses (LDL1 and LDL2) derive from VLDL. 2. The lipoproteins were isolated by density gradient ultracentrifugation and the transfer of radioactivity from VLDL into LDL1 and LDL2 apoB was measured. 3. Only a minor portion of VLDL apoB was converted to LDL1 (7.7 +/- 3.2%) and LDL2 (3.6 +/- 1.5%), respectively. Thus, we conclude that the major portion of LDL, especially LDL2, is synthesized independently from VLDL catabolism.  相似文献   

8.
The purpose of this study was to determine the effects of a fish oil concentrate (FOC) on the in vitro conversion of very low density lipoproteins (VLDL) to intermediate (IDL) and low density lipoproteins (LDL). Six hypertriglyceridemic patients were randomly allocated to receive either placebo (olive oil) or FOC (1 g/14 kg body weight/day) for 4 weeks in a crossover study with a 4-week washout period. The FOC provided 3 g of eicosapentaenoic + docosahexaenoic acid per 70 kg of body weight, and it lowered plasma triglyceride and VLDL cholesterol levels by 35% and 42%, respectively. Decreases in the largest particles (VLDL(1)) were primarily responsible, with no effect noted in smaller VLDL particles (VLDL(2) and VLDL(3)). The FOC increased LDL cholesterol levels by 25% (P < 0.06) but did not affect LDL particle size. VLDL(1) and VLDL(3) were incubated in vitro with human postheparin lipases. Although triglycerides from both types of VLDL were hydrolyzed to the same extent with both treatments, particles isolated during the FOC phase were more readily converted into IDL and LDL than were control particles. These data suggest that the marine omega3 fatty acids may enhance the propensity of VLDL to be converted to LDL, partly explaining the decreased VLDL and increased LDL levels in FOC-treated patients.  相似文献   

9.
Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol/phospholipid-rich lipoproteins in the in vitro-formed LDL2 appears to be the main reason for their compositional difference from native LDL2. These results demonstrate that the formation of LP-B as the major apolipoprotein B-containing product of VLDL lipolysis only requires LPL as a catalyst and albumin as the fatty acid acceptor. However, under physiological circumstances, other modulating agents are necessary to prevent the accumulation and interaction of phospholipid/cholesterol-rich apolipoprotein C- and E-containing particles.  相似文献   

10.
We investigated the roles of lipoprotein lipase and apolipoprotein E (apoE) secreted from human monocyte-derived macrophages in the uptake of very low density lipoproteins (VLDL). ApoCII-deficient VLDL were isolated from a patient with apoCII deficiency. The lipolytic conversion to higher density and the degradation of the apoCII-deficient VLDL by macrophages were very slight, whereas the addition of apoCII enhanced both their conversion and degradation. This suggests that the lipolysis and subsequent conversion of VLDL to lipoproteins of higher density are essential for the VLDL uptake by macrophages. VLDL incubated with macrophages obtained from subjects with E3/3 phenotype (E3/3-macrophages) showed a 17-fold greater affinity in inhibiting the binding of 2 micrograms/ml 125I-low density lipoprotein (LDL) to fibroblasts than native VLDL, whereas the incubation of VLDL with macrophages obtained from a subject with E2/2 phenotype (E2/2-macrophages) did not cause any increase in their affinity. Furthermore, 3 micrograms/ml 125I-VLDL obtained from a subject with E3/3 phenotype were degraded by E3/3-macrophages to a greater extent than by E2/2-macrophages (2-fold), indicating that VLDL uptake is influenced by the phenotype of apoE secreted by macrophages. From these results, we conclude that both lipolysis by lipoprotein lipase and incorporation of apoE secreted from macrophages alter the affinity of VLDL for the LDL receptors on the cells, resulting in facilitation of their receptor-mediated endocytosis.  相似文献   

11.
We have found that in vitro lipolysis of human very low density lipoproteins (VLDL) by purified bovine milk lipoprotein lipase (LpL) promotes degradation of the apolipoprotein (apo) B moiety of VLDL. Analysis by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis showed that lipolysis of VLDL by purified LpL for 1 h at 37 degrees C induced the selective degradation of the high Mr apo-B (apo-B-100) from most hypertriglyceridemic VLDL and from a few normolipidemic VLDL into several small fragments with molecular weights ranging from 90,000-490,000. No detectable degradation of apo-B occurred in control VLDL when incubated without LpL. The apo-E moiety of VLDL from certain individuals was also degraded following lipolysis of VLDL, and the extent of degradation of apo-B and -E in VLDL was varied among the individual VLDL. The major degradation products of apo-E, identified from the gel, were 31,000- and/or 28,000-Da species. In contrast to the apo-E moiety of VLDL, purified apo-E was not degraded when incubated with LpL. Incubation of low density lipoproteins (LDL) with LpL showed only a minimal effect on the apoproteins of LDL. When high density lipoprotein (HDL) was included in the lipolysis mixture as an acceptor of lipolytic surface remnants, the apoproteins of HDL remained unaltered, while the apo-B moiety of VLDL remnants in the mixture was degraded. Inclusion of protease inhibitors in the lipolysis mixture prevented the degradation of apo-B, but the hydrolysis of VLDL-triglyceride was minimally affected. A selective degradation of apo-B in VLDL also occurred during lipolysis of VLDL when VLDL was perfused through rat hearts. These results suggest that conformational changes in apo-B and apo-E caused by VLDL lipolysis may increase the susceptibility of apo-B and apo-E to degradation by the proteases co-isolated with VLDL. The consequences of the lipolysis-induced degradation of apo-B and apo-E on changes in metabolic properties of VLDL remnants remain to be determined.  相似文献   

12.
Very low (VLDL) and low density lipoproteins (LDL) were isolated from plasma of patients with the E3/3 phenotype which were divided into three groups based on their plasma triglyceride content: low (TG<200 mg/dl, TG(l)), intermediate (200<300 mg/dl, TG(i)300 mg/dl, TG(h)). The protein density (PD) on the VLDL and LDL surface was calculated from lipoprotein composition and protein location was studied by tryptophan fluorescence quenching by I(-) anions at 25 degrees C and 40 degrees C. A comparison of the TG(h) with the TG(l) group revealed a significant (<0.05) increase of the PD parameter as much as 21% for VLDL, but not for LDL where this parameter did not change for any group; generally, PD(LDL) values were 3.2-3.8-fold lower than PD(VLDL). In accordance with this difference, the tryptophan accessibility f in VLDL vs. LDL was lower at both temperatures. There were temperature-induced changes of the f parameter in opposite directions for these lipoproteins. The difference in f value gradually decreased for VLDL in the direction TG(l)TG(i)TG(h) while for LDL there was a U-shaped dependence for these groups. The Stern-Volmer quenching constant K(S-V) which is sensitive to both temperature and viscosity, did not change for VLDL, but K(S-V)(LDL) was 2-3-fold higher for the TG(i) group compared to the other two. The efficiencies of VLDL and LDL binding to the LDL receptor (LDLr) in vitro were compared by solid-phase assay free of steric hindrance observed in cell binding. The maximal number of binding sites did not change for either type of particles and between groups. The association constant K(a) and apolipoprotein (apo) E/apoB mole ratio values all increased significantly for VLDL, but not for LDL, in comparison of the TG(i+h) with the TG(l) group. Based on VLDL and LDL concentrations in serum and on the affinity constant values obtained in an in vitro assay, VLDL concentrations corresponding to 50% inhibition of LDL binding (IC(50)) were calculated in an assumption of the competition of both ligands for LDLr in vivo; the mean values of IC(50) decreased 2-fold when plasma TG exceeded 200 mg/dl. The functional dependences of K(a)(VLDL), IC(50) and apoE content in VLDL (both fractional and absolute) and in serum on TG content in the whole concentration range studied were fitted to a saturation model. For all five parameters, the mean half-maximum values TG(1/2) were in the range 52-103 mg/dl. The efficiency of protein-protein interactions is suggested to differ in normolipidemic vs. HTG-VLDL and apoE content and/or protein density on VLDL surface may be the primary determinant(s) of the increased binding of HTG-VLDL to the LDL receptor. ApoCs may compete with apoE for the binding to the VLDL lipid surface as plasma triglyceride content increases. The possible competition of VLDL with LDL for the catabolism site(s) in vivo, when plasma TG increases, could explain the atherogenic action of TG-rich lipoproteins. Moreover, the 'dual action' hypothesis on anti-atherogenic action of apoE-containing high density lipoproteins (HDL) in vivo is suggested: besides the well-known effect of HDL as cholesteryl ester catabolic outway, the formation of a transient complex of apoE-containing discs appearing at the site of VLDL TG hydrolysis by lipoprotein lipase with VLDL particles proposed in our preceding paper promotes the efficient uptake of TG-rich particles; in hypertriglyceridemia due to the diminished HDL content this uptake seems to be impaired which results in the increased accumulation of the remnants of TG-rich particles. This explains the observed increase in cholesterol and triglyceride content in VLDL and LDL, respectively, due to the CETP-mediated exchange of cholesteryl ester and triglyceride molecules between these particles.  相似文献   

13.
Rats fed a diet deficient in essential fatty acids have a low level of serum very low density lipoproteins (VLDL). It was found that after intraperitoneal injection of heparin, deficient rats had a higher level of lipoprotein lipase activity in their plasma than did normal rats. VLDL isolated from serum of normal and deficient rats were compared as substrates for postheparin lipase of rat plasma. There was no significant difference in V(max) between the two preparations of lipoproteins, but the apparent K(m) for lipoproteins from deficient animals was significantly less than that for normal animals. These observations suggest that the low concentration of VLDL in deficient rats may be explained (a) by an increased activity of lipoprotein lipase in the tissues of these animals and (b) by the VLDL of deficient rats being more rapidly hydrolyzed at low concentrations by lipoprotein lipase than VLDL from normal rats.  相似文献   

14.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

15.
HDLc, a cholesterol-rich lipoprotein that accumulates in the plasma of cholesterol-fed swine, was shown to resemble functionally human and swine low density lipoprotein in its ability to bind to the low density lipoprotein receptor in monolayers of cultured human fibroblasts. This binding occurred even though HDLc lacked detectable apoprotein B, which is the major protein of low density lipoprotein. After it was bound to the low density lipoprotein receptor, HDLc, like human and swine low density lipoprotein, delivered its cholesterol to the cells, and this, in turn, caused a suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, an activation of the cholesterol-esterifying system, and a net accumulation of free and esterified cholesterol within the cells. Swine HDLc, like human high density lipoprotein, did not bind to the low density lipoprotein receptor nor did it elicit any of the subsequent metabolic events. HDLc, like human low density lipoprotein, was incapable of producing a metabolic effect in fibroblasts derived from a subject with the homozygous form of familial hypercholesterolemia, which lack low density lipoprotein receptors. These results indicate that two lipoproteins that have been associated with athersclerosis--low density lipoprotein in humans and HDLc in cholesterol-fed swine--both can cause the accumulation of cholesterol and cholesteryl esters within cells through an interaction with the low density lipoprotein receptor.  相似文献   

16.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

17.
In contrast to plasma from most other animals, guinea pig plasma causes little or no stimulation of lipoprotein lipase activity. Very low density lipoproteins (VLDL) isolated by ultracentrifugation of guinea pig serum caused a definite stimulation of lipase activity, whereas the infranatant inhibited the activity. Gel filtration in 5 M guanidinium hydrochloride of delipidated VLDL demonstrated that the activation was caused by a low molecular weight protein. The VLDL themselves were hydrolized at similar rates as human VLDL both by guinea pig and by bovine lipoprotein lipases. Thus, guinea pig VLDL contain an activator for lipoprotein lipase analogous to that in other animals and there is enough of the activator to support rapid hydrolysis of the VLDL lipids by the lipase.  相似文献   

18.
The incorporation of labeled amino acids into the peptides of very low density lipoproteins (VLDL) and high density lipoproteins (HDL) secreted by perfused rat liver was studied using a Ringer-albumin solution in the perfusate in place of serum to diminish exchange of peptides between VLDL and HDL. Among the lipoproteins, the greatest release of protein, greatest incorporation of amino acid, and highest specific activity were found in VLDL. After separation of the delipidated peptides by electrophoresis on polyacrylamide gel, the incorporation into VLDL peptides was found to be 5-10 times as great as into HDL peptides. There was virtually no incorporation into the peptides of low density lipoproteins (LDL). Approximately 25% of the radioactivity incorporated into perfusate VLDL failed to enter the 13% polyacrylamide gel. The remaining radioactivity was distributed primarily among three peptide bands; one, found in the upper portion of the gel, contained 45% of the total, most of the remainder being found in two rapidly migrating bands. These three peptides appear to approximate those of human apo-C in relative electrophoretic mobility. Most of the HDL peptide radioactivity entering the running gel was found in a band that migrates slightly faster than the main VLDL band. A portion of the radioactivity of this major HDL band did not enter the running gel unless beta-mercaptoethanol was present. Greater separation of these two bands by polyacrylamide gel electrophoresis for 24 hr confirmed that the major bands in VLDL and in HDL were different. The rapidly moving peptides of HDL were found to contain very little radioactivity. Determination of the intensity of staining of carrier-free perfusate VLDL and HDL peptides produced a pattern similar to the incorporation of labeled amino acids. It is concluded that the rapidly moving peptides, which may contain activators of lipoprotein lipase, are only secreted as part of the VLDL.  相似文献   

19.
In vitro lipolysis of very low density lipoprotein (VLDL) from normolipidemic and familial dysbetalipoproteinemic plasma by purified bovine milk lipoprotein lipase was studied using the combined single vertical spin and vertical autoprofile method of lipoprotein analysis. Lipolysis of normolipidemic plasma supplemented with autologous VLDL resulted in the progressive transformation of VLDL to low density lipoprotein (LDL) via intermediate density lipoprotein (IDL) with the transfer of the excess cholesterol to high density lipoprotein (HDL). At the end of 60 min lipolysis, 92-96% of VLDL triglyceride was hydrolyzed, and, with this process, greater than 95% of the VLDL cholesterol and 125-I-labeled VLDL protein was transferred from the VLDL to the LDL and HDL density region. When VLDL from the plasma of an individual with familial dysbetalipoproteinemia was substituted for VLDL from normolipidemic plasma, less than 50% of the VLDL cholesterol and 65% of 125I-labeled protein was removed from the VLDL density region, although 84-86% of VLDL triglyceride was lipolyzed. Analysis of familial dysbetalipoproteinemic VLDL fractions from pre- and post-lipolyzed plasma showed that the VLDL remaining in the postlipolyzed plasma (lipoprotein lipase-resistant VLDL) was richer in cholesteryl ester and tetramethylurea-insoluble proteins than that from prelipolysis plasma; the major apolipoproteins in the lipoprotein lipase-resistant VLDL were apoB and apoE. During lipolysis of normolipidemic VLDL containing trace amounts of 125I-labeled familial dysbetalipoproteinemic VLDL, removal of VLDL cholesterol was nearly complete from the VLDL density region, while removal of 125I-labeled protein was only partial. A competition study for lipoprotein lipase, comparing normolipidemic and familial dysbetalipoproteinemic VLDL to an artificial substrate ([3H]triolein), revealed that normolipidemic VLDL is clearly better than familial dysbetalipoproteinemic VLDL in competing for the release of 3H-labeled free fatty acids. The results of this study suggest that, in familial dysbetalipoproteinemic individuals, a subpopulation of VLDL rich in cholesteryl ester, apoB, and apoE is resistant to in vitro conversion by lipoprotein lipase to particles having LDL-like density. The presence of this lipoprotein lipase-resistant VLDL in familial dysbetalipoproteinemic subjects likely contributes to the increased level of cholesteryl ester-rich VLDL and IDL in the plasma of these subjects.  相似文献   

20.
The selective and reversible adsorption of bovine low density lipoproteins (LDL) by heparin-Sepharose has been exploited as the critical step in a procedure for the preparative isolation of very low density lipoproteins (VLDL)/chylomicrons, LDL, and high density lipoproteins (HDL) from bovine plasma. Molecular size exclusion chromatography and isopycnic density gradient separation steps are also involved in the method described. The resulting HDL and LDL fractions are free from contamination by one another as judged by electrophoretic mobility in agarose gels. The major lipid and apolipoprotein compositions of the three resolved lipoprotein classes have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号