首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Visceral leishmaniasis (VL), caused by the intracellular parasite Leishmania donovani, L. chagasi and L. infantum is characterized by defective cell-mediated immunity (CMI) and is usually fatal if not treated properly. An estimated 350 million people worldwide are at risk of acquiring infection with Leishmania parasites with approximately 500,000 cases of VL being reported each year. In the absence of an efficient and cost-effective antileishmanial drug, development of an appropriate long-lasting vaccine against VL is the need of the day. In VL, the development of a CMI, capable of mounting Th1-type of immune responses, play an important role as it correlate with recovery from and resistance to disease. Resolution of infection results in lifelong immunity against the disease which indicates towards the feasibility of a vaccine against the disease. Most of the vaccination studies in Leishmaniasis have been focused on promastigote--an infective stage of parasite with less exploration of pathogenic amastigote form, due to the cumbersome process of its purified isolation. In the present study, we have isolated and purified splenic amastigotes of L. donovani, following the traditional protocol with slight modification. These were fractionated into five membranous and soluble subfractions each i.e MAF1-5 and SAF1-5 and were subjected for evaluation of their ability to induce cellular responses. Out of five sub-fractions from each of membrane and soluble, only four viz. MAF2, MAF3, SAF2 and SAF3 were observed to stimulate remarkable lymphoproliferative, IFN-γ, IL-12 responses and Nitric Oxide production, in Leishmania-infected cured/exposed patients and hamsters. Results suggest the presence of Th-1 type immunostimulatory molecules in these sub-fractions which may further be exploited for developing a successful subunit vaccine from the less explored pathogenic stage against VL.  相似文献   

2.

Background

The present study aims to identify antigens in protein extracts of promastigote and amastigote-like Leishmania (Leishmania) chagasi syn. L. (L.) infantum recognized by antibodies present in the sera of dogs with asymptomatic and symptomatic visceral leishmaniasis (VL).

Methodology/Principal Findings

Proteins recognized by sera samples were separated by two-dimensional electrophoresis (2DE) and identified by mass spectrometry. A total of 550 spots were observed in the 2DE gels, and approximately 104 proteins were identified. Several stage-specific proteins could be identified by either or both classes of sera, including, as expected, previously known proteins identified as diagnosis, virulence factors, drug targets, or vaccine candidates. Three, seven, and five hypothetical proteins could be identified in promastigote antigenic extracts; while two, eleven, and three hypothetical proteins could be identified in amastigote-like antigenic extracts by asymptomatic and symptomatic sera, as well as a combination of both, respectively.

Conclusions/Significance

The present study represents a significant contribution not only in identifying stage-specific L. infantum molecules, but also in revealing the expression of a large number of hypothetical proteins. Moreover, when combined, the identified proteins constitute a significant source of information for the improvement of diagnostic tools and/or vaccine development to VL.  相似文献   

3.
Visceral leishmaniasis or kala azar is the most severe form of leishmaniasis and is caused by the protozoan parasite Leishmania donovani. There is no published report on L. donovani genome sequence available till date, although the genome sequences of three related Leishmania species are already available. Thus, we took a proteogenomic approach to identify proteins from two different life stages of L. donovani. From our analysis of the promastigote (insect) and amastigote (human) stages of L. donovani, we identified a total of 22,322 unique peptides from a homology-based search against proteins from three Leishmania species. These peptides were assigned to 3711 proteins in L. infantum, 3287 proteins in L. major, and 2433 proteins in L. braziliensis. Of the 3711 L. donovani proteins that were identified, the expression of 1387 proteins was detectable in both life stages of the parasite, while 901 and 1423 proteins were identified only in promastigotes and amastigotes life stages, respectively. In addition, we also identified 13 N-terminally and one C-terminally extended proteins based on the proteomic data search against the six-frame translated genome of the three related Leishmania species. Here, we report results from proteomic profiling of L. donovani, an organism with an unsequenced genome.  相似文献   

4.
5.
The development of a vaccine against visceral leishmaniasis (VL) conferring long-lasting immunity remains a challenge. Identification and proteomic characterization of parasite proteins led to the detection of p45, a member of the methionine aminopeptidase family. To our knowledge the present study is the first known report that describes the molecular and immunological characterization of p45. Recombinant Leishmania donovani p45 (rLdp45) induced cellular responses in cured hamsters and generated Th1-type cytokines from peripheral blood mononuclear cells of cured/endemic VL patients. Immunization with rLdp45 exerted considerable prophylactic efficacy (~85%) supported by an increase in mRNA expression of iNOS, IFN-γ, TNF-α and IL-12 and decrease in TGF-β and IL-4, indicating its potential as a vaccine candidate against VL.  相似文献   

6.
We have shown previously that BALB/c mice can be protected against a fatal infection with Leishmania major by adoptive transfer of a T cell line recognizing a protective soluble fraction (fraction 9) of promastigotes. We now describe the isolation and characterization of a T cell clone (9.1-2) that also transfers protective immunity against Leishmania. After Ag or mitogen stimulation, this clone secrets IL-2 and IFN-gamma, but not IL-4 or IL-5. The clone preferentially recognizes L. major fraction 9, and in addition, soluble Ag from Leishmania donovani, Leishmania amazonensis, and Leishmania braziliensis, but not from the related flagellates, Trypanosoma cruzi or Crithidia fasciculata. Besides being contained in fraction 9, the stimulatory Ag is also released from the parasite, because concentrated promastigote culture supernatants induced IFN-gamma production by 9.1-2. By means of T cell immunoblotting, we determined that 9.1-2 recognized a protein with a relative m.w. between 8,000 and 12,000, and within this region is a predominant protein contained in fraction 9 of approximately 10,000 m.w. These data identify a new candidate Ag for immunization against protozoa belonging to the genus Leishmania.  相似文献   

7.
8.
Lysates of Leishmania promastigotes can metabolise arachidonic acid to prostaglandins. Prostaglandin production was heat sensitive and not inhibited by aspirin or indomethacin. We cloned and sequenced the cDNA of Leishmania major, Leishmania donovani, and Leishmania tropica prostaglandin F(2alpha) synthase, and overexpressed their respective 34-kDa recombinant proteins that catalyse the reduction of 9,11-endoperoxide PGH(2) to PGF(2alpha). Database search and sequence alignment showed that L. major prostaglandin F(2alpha) synthase exhibits 61, 99.3, and 99.3% identity with Trypanosoma brucei, L. donovani, and L. tropica prostaglandin F(2alpha) synthase, respectively. Using polymerase chain reaction amplification, Western blotting, and immunofluorescence, we have demonstrated that prostaglandin F(2alpha) synthase protein and gene are present in Old World and absent in New World Leishmania, and that this protein is localised to the promastigote cytosol.  相似文献   

9.
Lysates of Leishmania promastigotes can metabolise arachidonic acid to prostaglandins. Prostaglandin production was heat sensitive and not inhibited by aspirin or indomethacin. We cloned and sequenced the cDNA of Leishmania major, Leishmania donovani, and Leishmania tropica prostaglandin F(2alpha) synthase, and overexpressed their respective 34-kDa recombinant proteins that catalyse the reduction of 9,11-endoperoxide PGH(2) to PGF(2alpha). Database search and sequence alignment alignment showed that L. major prostaglandin F(2alpha) synthase exhibits 61, 99.3, and 99.3% identity with Trypanosoma brucei, L. donovani, and L. tropica prostaglandin F(2alpha) synthase, respectively. Using polymerase chain reaction amplification, Western blotting, and immunofluorescence, we have demonstrated that prostaglandin F(2alpha) synthase protein and gene are present in Old World and absent in New World Leishmania, and that this protein is localised to the promastigote cytosol.  相似文献   

10.
In this report, we investigated the effect of ODN containing immunostimulatory CG motifs as adjuvant with soluble antigen (SA) from Leishmania donovani. BALB/c mice were vaccinated with the soluble antigen with or without CpG-ODN as adjuvant and then challenged with L. donovani metacyclic promastigotes. CpG-ODN alone resulted in partial protection against challenge with L. donovani. Immunization of mice with SA and CpG-ODN showed enhanced reduction in parasite load ( approximately 60%) when compared to SA ( approximately 40%) immunized mice. Immunization with SA by itself resulted in a mixed Th1/Th2 response whereas co-administration of SA with CpG-ODN resulted in a strong Th1 promoting isotype as they together promoted production of immunoglobulin G2a. Leishmania-specific Th1 cytokine response was induced by co-administering CpG-ODN and SA as they together promoted production of IFN-gamma and IL-12. In the present study, we demonstrate that immunostimulatory phosphorothioate-modified ODN are promising immune enhancers for vaccination against visceral leishmaniaisis.  相似文献   

11.
12.
Several antigens have been tested as vaccine candidates against Leishmania infections but controversial results have been reported when different antigens are co-administered in combined vaccination protocols. Immunization with A2 or nucleoside hydrolase (NH) antigens was previously shown to induce Th1 immune responses and protection in BALB/c mice against Leishmania donovani and L. amazonensis (A2) or L. donovani and L. mexicana (NH) infections. In this work, we investigated the protective efficacy of A2 and NH DNA vaccines, in BALB/c mice, against L. amazonensis or L. chagasi challenge infection. Immunization with either A2 (A2-pCDNA3) or NH (NH-VR1012) DNA induced an elevated IFN-gamma production before infection; however, only A2 DNA immunized mice were protected against both Leishmania species and displayed a sustained IFN-gamma production and very low IL-4 and IL-10 levels, after challenge. Mice immunized with NH/A2 DNA produced higher levels of IFN-gamma in response to both specific recombinant proteins (rNH or rA2), but displayed higher IL-4 and IL-10 levels and increased edema and parasite loads after L. amazonensis infection, as compared to A2 DNA immunized animals. These data extend the characterization of the immune responses induced by NH and A2 antigens as potential candidates to compose a defined vaccine and indicate that a highly polarized type 1 immune response is required for improvement of protective levels of combined vaccines against both L. amazonensis and L. chagasi infections.  相似文献   

13.
Two proteins from Leishmania donovani, dp72 and gp70-2, have been previously utilized to specifically serodiagnose patients with visceral leishmaniasis. The proteins were shown by ELISA and Western blotting with monoclonal and polyclonal antibodies to be present in both stages of the parasite. Antibodies to gp70-2 recognize in promastigotes multiple discrete bands of similar m.w. which are common to several isolates of L. donovani. The total amount of Ag and number of bands observed per isolate is not constant. Lectin blots with Con A show gp70-2 to be a glycoprotein. Dp72 shows pronounced microheterogeneity between isolates of L. donovani. The Brazilian isolates examined appear to possess a lower m.w. form (64,000 or 68,000) of this molecule. No reactions were observed with dp72 and lectins in Western blots; and neither tunicamycin, N-glycanase, endoglycosidase H nor F affected the migration of [35S]-methionine-labeled protein on SDS-PAGE. A mAb against dp72 also cross-reacted in Western blots with a 60-kDa protein in Leishmania major, Leishmania aethiopica, and Leishmania tropica. No reaction was observed between the purified promastigote surface protease (gp63) and either monoclonal or polyclonal antibodies produced to dp72 or gp70-2. The ability of the pure proteins to provide protection against a challenge by L. donovani amastigotes was examined. BALB/c mice were immunized with gp70-2 and/or dp72 by using Corynebacterium parvum as an adjuvant. Mice immunized with gp70-2 were not protected; however, mice receiving dp72 showed a 81.1% reduction in the liver parasitemia compared with the adjuvant controls.  相似文献   

14.
We investigated the properties of leishmania exosomes with respect to influencing innate and adaptive immune responses. Exosomes from Leishmania donovani modulated human monocyte cytokine responses to IFN-γ in a bimodal fashion by promoting IL-10 production and inhibiting that of TNF-α. Moreover, these vesicles were inhibitory with respect to cytokine responses (IL-12p70, TNF-α, and IL-10) by human monocyte-derived dendritic cells. Exosomes from wild-type (WT) L. donovani failed to prime monocyte-derived dendritic cells to drive the differentiation of naive CD4 T cells into IFN-γ-producing Th1 cells. In contrast, vesicles from heat shock protein (HSP)100(-/-) L. donovani showed a gain-of-function and proinflammatory phenotype and promoted the differentiation of naive CD4 lymphocytes into Th1 cells. Proteomic analysis showed that exosomes from WT and HSP100(-/-) leishmania had distinct protein cargo, suggesting that packaging of proteins into exosomes is dependent in part on HSP100. Treatment of C57BL/6 mice with WT L. donovani exosomes prior to challenge with WT organisms exacerbated infection and promoted IL-10 production in the spleen. In contrast, HSP100(-/-) exosomes promoted spleen cell production of IFN-γ and did not adversely affect hepatic parasite burdens. Furthermore, the proparasitic properties of WT exosomes were not species specific because BALB/c mice exposed to Leishmania major exosomes showed increased Th2 polarization and exacerbation of disease in response to infection with L. major. These findings demonstrate that leishmania exosomes are predominantly immunosuppressive. Moreover, to our knowledge, this is the first evidence to suggest that changes in the protein cargo of exosomes may influence the impact of these vesicles on myeloid cell function.  相似文献   

15.
In this study, we evaluate the effect of phospholipid on the adjuvanicity and protective efficacy of liposome vaccine carriers against visceral leishmaniasis (VL) in a hamster model. Liposomes prepared with distearyol derivative of L-alpha-phosphatidyl choline (DSPC) having liquid crystalline transition temperature (Tc) 54 C were as efficient as dipalmitoyl (DPPC) (Tc 41 C) and dimyristoyl (DMPC) (Tc 23 C) derivatives in their ability to entrap Leishmania donovani membrane antigens (LAg) and to potentiate strong antigen-specific antibody responses. However, whereas LAg in DPPC and DMPC liposomes stimulated inconsistent delayed type hypersensitivity (DTH) responses, strong DTH was observed with LAg in DSPC liposomes. The heightened adjuvant activity of DSPC liposomes corresponded with 95% protection, with almost no protectivity with LAg in DPPC and DMPC liposomes, 4 mo after challenge with L. donovani. These data demonstrate the superiority of DSPC liposomes for formulation of L. donovani vaccine. In addition, they demonstrate a correlation of humoral and cell-mediated immunity with protection against VL in hamsters.  相似文献   

16.
We used comparative two-dimensional gel electrophoresis (2-DE) and mass spectrometry methodologies to highlight and identify proteins that are differentially expressed in the intracellular stage of the parasite Leishmania donovani infantum, a causative agent of visceral leishmaniasis. During its digenetic life cycle, Leishmania alternates between the alimentary tract of the sandfly vector as an extracellular promastigote and the acidic phagolysosomes of macrophage cells as an intracellular amastigote. Proteins differentially expressed in the intracellular form of the parasite are thought to be important for intracellular survival and pathogenesis. We used narrow pH range strips for isoelectric focusing to resolve soluble proteins of both developmental stages of L. infantum. More than 62 proteins differentially expressed in amastigotes were detected among approximately 2000 protein spots resolved by 2-DE. A quadrupole time-of-flight analysis of few selected protein spots, specifically expressed in the amastigote stage, permitted the identification of two proteins, part of the energetic metabolism pathways, the isocitrate dehydrogenase and the glycolytic enzyme triosephosphate isomerase. The kinetic parameters of these two enzymes were measured in both developmental stages of the parasite and their activity was indeed found to be higher in amastigotes. These findings bring a new insight in our understanding of metabolic and energy requirements of the intracellular form of Leishmania. Comparative analysis of the proteome of both developmental stages of the protozoan parasite Leishmania should permit the identification of protein candidates for the development of vaccines and new drugs.  相似文献   

17.
We investigated the presence in Leishmania donovani promastigotes of proteins with homology to the G-proteins known to mediate signal transduction in other organisms. [alpha 32P]GTP binding experiments revealed the presence in the promastigote membrane of GTP-binding sites with high affinity and specificity. Experiments with antisera directed against mammalian G-proteins showed that the promastigotes possess a 38-kDa protein (p38) which strongly reacts with an antiserum directed against a decapeptide containing the C-terminal sequence of transducin, the G-protein that mediates visual signal transduction. The interaction of p38 with the antiserum is specifically blocked by the decapeptide antigen. p38 is enriched in plasma membranes and is absent in cytosol and in a mitochondria-enriched fraction. p38 was also detected in two other Leishmania species, L. mexicana and L. major. The migration of p38 upon sucrose gradient centrifugation of detergent extract of L. donovani membranes corresponded to Mr of approximately 70,000, indicating that p38 is part of an oligomeric structure. The findings suggest that p38 may be a component of a transmembrane signal transduction system in Leishmania.  相似文献   

18.
To identify novel potential Leishmania vaccine antigens, antibodies from patients with visceral leishmaniasis (VL) were used to isolate clones from a cDNA expression library of L. donovani amastigotes. Glucose Regulated Protein (GRP78), a member of the 70 kDa heat-shock protein family was identified and characterised. The GRP78 gene was localised to chromosome 15 in L. donovani, L. major, and L. mexicana by pulse-field gel electrophoresis. The Leishmania GRP78 protein contain a carboxy-terminal endoplasmic reticulum retention signal sequence (MDDL) as does the Trypanosoma cruzi GRP78. Immunofluorescence using antibodies to the recombinant DNA-derived GRP78 protein showed staining localised to reticular material throughout the cytoplasm and in the perinuclear region of promastigotes, suggesting that the protein is localised in the endoplasmic reticulum. The protective efficacy of GRP78 was assessed in mice vaccine experiments. A GRP78 DNA vaccine primed for an immune response that protected C57Bl/6 and C3H/He mice against infection with L. major. Similarly vaccination with a recombinant form of GRP78 purified from Escherichia coli and administered with Freund's as adjuvant induced protective immunity in C57Bl/6 mice.  相似文献   

19.

Background  

The development of an effective vaccine against visceral leishmaniasis (VL) caused by Leishmania donovani is an essential aim for controlling the disease. Use of the right adjuvant is of fundamental importance in vaccine formulations for generation of effective cell-mediated immune response. Earlier we reported the protective efficacy of cationic liposome-associated L. donovani promastigote antigens (LAg) against experimental VL. The aim of the present study was to compare the effectiveness of two very promising adjuvants, Bacille Calmette-Guerin (BCG) and Monophosphoryl lipid A (MPL) plus trehalose dicorynomycolate (TDM) with cationic liposomes, in combination with LAg, to confer protection against murine VL.  相似文献   

20.
Sixteen species-specific monoclonal antibodies were produced against membranes of Leishmania donovani. These antibodies only reacted with determinants present on L. donovani. No cross-reactions were found with any other species of Leishmania or with membranes of Trypanosoma cruzi. An extensive analysis of the binding specificities of selected antibodies was carried out by using whole promastigote homogenates as antigen. Monoclonal antibodies D-1, D-2, D-3, and D-4 correctly identified all 44 L. donovani stocks from a cross-panel of 84 New and Old World Leishmania stocks. Antibodies D-1 and D-2 were also useful for species classification by immunofluorescence. No cross-reactions were observed with any other Leishmania species examined. Based on either Western blot and/or radioimmunoprecipitation analyses, five distinct groups of molecules associated with L. donovani-specific antigenic determinants were identified. These molecules range in m.w. from 18 to 84 kilodaltons. The antigenic molecules recognized by antibodies D-2, D-10, and D-13 are also recognized by antibodies present in sera from patients with visceral leishmaniasis (kala-azar). Kala-azar sera obtained from cases in both the Old and New World specifically compete with these monoclonal antibodies for the appropriate antigenic determinants in Western blot analysis. These monoclonal antibodies and/or the purified protein antigens may be useful in the development of a serologic assay for the clinical diagnosis of visceral leishmaniasis caused by L. donovani and in epidemiologic studies of leishmaniasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号