首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Twelve cultivars of Brassica juncea grown in different agroclimatic regions of the world were tested for their ability to regenerate in vitro from hypocotyl explants and, accordingly, were divided into three groups. One group of cultivars regenerated on MS medium supplemented with 2,4-D, BAP and with NAA, BAP combinations; another group regenerated only on MS with 2,4-D, BAP; and the third group showed very low regeneration on both of these combinations. Inclusion of silver nitrate in the medium was essential for high frequency of regeneration. In general, Indian cultivars were more responsive than the cultivars of CIS and Australian origin. Using the media optimal for regeneration and an Agrobacterium-based binary vector carrying hpt and gus-intron genes, conditions for genetic transformation of B. juncea hypocotyl explants were optimized. Transformation frequencies, identified by GUS staining at the initial stages of growth, were lower on MS medium with 2,4-D, BAP than on MS with NAA, BAP. Plants resistant to 20 g/ml hygromycin were regenerated at a frequency of 11–36% from hypocotyl explants and were shown to be transformed by Southern blotting, GUS staining and progeny analysis.  相似文献   

2.
Leaf piece explants of five Brassica juncea (L.) Czern. cultivars were transformed with an Agrobacterium tumefaciens strain EHA105 harboring the plasmid pCAMBIA1301, which contains the β-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes under the control of cauliflower mosaic virus 35S (CaMV35S) promoter. Transgenic plants were regenerated on Murashige and Skoog (MS) medium fortified with 8.87 μM 6-benzylaminopurine, 0.22 μM 2,4-dichlorophenoxyacetic acid, and 20 μM silver nitrate in the presence of 30 mg/l hygromycin. When co-culture took place in the presence of 100 μM acetosyringone, the efficiency of stable transformation was found to be approximately 19% in the T 0 generation, with the transgenic plants and their progeny showing constitutive GUS expression in different plant organs. Southern blot hybridization of uidA and hpt genes confirmed transgene integration within the genome of transformed plants of each cultivar. Inheritance of hpt gene for single copy T-DNA inserts showed a 3:1 pattern of Mendelian segregation in progeny plants through germination of T 1 seeds on MS medium containing 30 mg/l hygromycin. The protocol described here reports superior transformation efficiency over previously published protocols and should contribute to enhanced biotechnology applications in B. juncea.  相似文献   

3.
Agrobacterium tumefaciens has the ability to transfer its T-DNA to plants, yeast, filamentous fungi, and human cells and integrate it into their genome. Conidia of the maize pathogen Helminthosporium turcicum were transformed to hygromycin B resistance by a Agrobacterium-tumefaciens-mediated transformation system using a binary plasmid vector containing the hygromycin B phosphotransferase (hph) and the enhanced green fluorescent protein (EGFP) genes controlled by the gpd promoter from Agaricus bisporus and the CaMV 35S terminator. Agrobacterium-tumefaciens-mediated transformation yielded stable transformants capable of growing on increased concentrations of hygromycin B. The presence of hph in the transformants was confirmed by PCR, and integration of the T-DNA at random sites in the genome was demonstrated by Southern blot analysis. Agrobacterium-tumefaciens-mediated transformation of Helminthosporium turcicum provides an opportunity for advancing studies of the molecular genetics of the fungus and of the molecular basis of its pathogenicity on maize.  相似文献   

4.
Genetic transformation of Monascus purpureus DSM1379   总被引:4,自引:0,他引:4  
Kim JG  Choi YD  Chang YJ  Kim SU 《Biotechnology letters》2003,25(18):1509-1514
Monascus purpureus was transformed into hygromycin B resistance with hygromycin B phosphotransferase (hph) fused to Aspergillus nidulans trpC or a putative Monascus purpureus gpd1 promoter by electroporation. Among five strains, only M. purpureus DSM1397 was a competent recipient. Normal growth and sporulation on media containing up to 500 mg hygromycin B l–1 occurred up to five generations. Upon transformation of the strain with the green fluorescent protein gene (sgfp) as a model gene and hph as a selection marker, characteristic green fluorescence was observed under fluoromicroscopy indicating successful transformation.  相似文献   

5.
Hygromycin B resistance was conferred to the mycelium of the white root rot fungus Rosellinia necatrix by transformation with the hygromycin B phosphotransferase gene (hph) of Escherichia coli under the control of the heterologous fungal Aspergillus nidulans P-gpd (glyceraldehyde 3-phosphate dehydrogenase) promoter and the trpC terminator. In all three transformants, the presence of hph and single-copy integrations of the marker gene were demonstrated by Southern analysis. This is the first report describing A. tumefaciens-mediated transformation of R. necatrix  相似文献   

6.
7.
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies.  相似文献   

8.
Broussonetia papyrifera is well-known for its bark fibers, which are used for making paper, cloth, rope etc. This is the first report of a successful genetic transformation protocol for B. papyrifera using Agrobacterium tumefaciens. Callus was initiated at a frequency of about 100% for both leaf and petiole explants. Shoots formed on these calli with a success rate of almost 100%, with 14.08 and 8.36 shoots regenerating from leave-derived and petiole-derived callus, respectively. For genetic transformation, leaf explants of B. papyrifera were incubated with A. tumefaciens strain LBA4404 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, leaf explants were cultured on Murashige and Skoog (Physiol Plant 15:473, 1962) (MS) medium supplemented with 1.5 mg l−1 benzyladenine (BA) and 0.05 mg l−1 indole-3-butyric acid (IBA) (CI medium) containing 5 mg l−1 hygromycin and 500 mg l−1 cefotaxime, in the dark. Hygromycin-resistant calli were induced from leaf explants 3 weeks thereafter. Regenerating shoots were obtained after transfer of the calli onto MS medium supplemented with 1.5 mg l−1 BA, 0.05 mg l−1 IBA, and 0.5 mg l−1 gibberellic acid (GA3) (SI medium), 5 mg l−1 hygromycin and 250 mg l−1 cefotaxime under fluorescent light. Finally, shoots were rooted on half strength MS medium (1/2 MS) supplemented with 10 mg l−1 hygromycin. Transgene incorporation and expression was confirmed by PCR, Southern hybridisation and histochemical GUS assay. Using this protocol, transgenic B. papyrifera plants containing desirable new genes can be obtained in approximately 3 months with a transformation frequency as high as 44%.  相似文献   

9.
Protoplasts from a total of thirty-six genotypes of Brassica species – B. napus, B. campestris (syn. B. rapa), B. juncea, and three distant relatives, Orychophragmus violaceus, Isatis indigotica and Xinjiang wild rape – were analysed for shoot regeneration using a feeder culture system. With the exception of B. campestris and Xinjiang wild rape, some genotypes of all the species could regenerate plants with high efficiency (above 20% of isolated calli initiating shoots). Several genotypes with high regeneration ability were elite breeding lines. Culture conditions as well as genotype had a significant impact on shoot regeneration frequency. In particular, silver nitrate added to the regeneration medium at doses of 6 and 30 μM improved shoot regeneration frequency to 25.4% and 52.2% of isolated calli, respectively, compared to 7.3% percent shoot regeneration without silver nitrate in seven responsive genotypes. Addition of silver nitrate to the regeneration medium also induced shoot regeneration in non-responsive genotypes. Intact plants could be obtained within three months from protoplast isolation in the regenerative genotypes using the current culture system. Advantages of mesophyll protoplasts as compared to protoplasts isolated from hypocotyls for genetic manipulation in Brassica species are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
We cloned a gene encoding the succinate dehydrogenase iron-sulfur protein subunit (sip) from a bipolar mushroom, Pholiota microspora, and introduced a point mutation that confers carboxin resistance into this gene. Using this homologous selective marker and also a heterologous drug selective marker, the hygromycin B phosphotransferase gene (hph), we successfully constructed a DNA-mediated transformation system in P. microspora. Both these selection markers have high transformation efficiency: the efficiency of carboxin resistance transformation was about 88.8 transformants/μg pMBsip2 DNA using 5 × 106 protoplasts in regeneration plates containing 1.0 μg/ml carboxin, and the efficiency of hygromycin B resistance transformation was about 122.4 transformants/μg pMBhph1 DNA using 5 × 106 protoplasts in regeneration plates containing 150 μg/ml hygromycin B. Southern hybridization analysis showed that the introduced sequence (mutant sip or hph) was integrated into the chromosomal DNA in these transformants with a copy number of one or more.  相似文献   

11.
Regenerable embryogenic suspensions of elite Indica (group 1) rice varieties IR24, IR64, IR72 and an advanced Indica rice breeding line IR57311-95-2-3 were established within 6–8 weeks from 3–4 week old calli derived from mature seeds. Transgenic rice plants were obtained by introducing a plasmid carrying genes encoding hygromycin phosphotransferase (hph, conferring resistance to hygromycin B) and ß-glucuronidase (uidA), both driven by the CaMV 35S promoter, via particle bombardment of embryogenic suspensions. The effect of osmotic conditioning on transformation was evaluated. Regenerated plants were resistant to hygromycin B and expressed the uidA (GUS) gene. The growth of mother plants (R0) was normal and seeds were produced. Southern blot analysis of R0 and R1 plants showed that hygromycin resistant plants contained intact hph genes that were inherited in a Mendelian fashion. A protocol for a simple, efficient, repeatable, genotype- and environment-independent Indica rice transformation system is described.Abbreviations 2,4-D 2,4-dichlorophenoxy acetic acid - NAA -naphthalene acetic acid - kb kilobase - GUS ß-glucuronidase - hph hygromycin B phosphotransferase  相似文献   

12.
The three B genomes of Brassica contained in B. nigra, B. carinata and B. juncea were dissected by addition in B. napus. Using phenotypic, isozyme and molecular markers we characterized 8 alien B-genome chromosomes from B. nigra and B. carinata and 7 from B. juncea by constructing synteney groups. The alien chromosomes of the three different sources showed extensive intragenomic recombinations that were detected by the presence of the same loci in more than one synteny group but flanked by different markers. In addition, intergenomic recombinations were observed. These were evident in euploid AACC plants of the rapeseed phenotype derived from the addition lines carrying a few markers from the B genome due to translocations and recombinations between non-homoeologous chromosomes. The high plasticity of the Brassica genomes may have been an powerful factor in directing their evolution by hybridization and amphiploidy.  相似文献   

13.
Ge Y  Norton T  Wang ZY 《Plant cell reports》2006,25(8):792-798
Zoysiagrass (Zoysia japonica Steud.) is an important turfgrass that spreads by stolons and rhizomes. By exploring the potential of direct shoot formation from stolons, we developed a straightforward and efficient transformation protocol without callus induction and propagation. Sterilized stolon nodes were infected and co-cultivated with Agrobacterium tumefaciens harboring pCAMBIA vectors. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Both green and albino shoots were directly regenerated from the infected stolon nodes 4–5 weeks after hygromycin selection. Greenhouse-grown plants were obtained 10–12 weeks after Agrobacterium-mediated transformation. Based on the number of transgenic plants obtained and the number of stolon nodes infected, a transformation frequency of 6.8% was achieved. Stable integration of the transgenes in the plant genome was demonstrated by PCR and Southern blot hybridization analyses. Expression of the transgenes was confirmed by RT-PCR analysis and GUS staining. The new transformation system opens up new opportunities for the functional characterization of genes and promoters and the development of novel germplasm in zoysiagrass.  相似文献   

14.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

15.
In order to improve the efficiency of cassava (Manihot esculenta Crantz) transformation, two different selection systems were assessed, a positive one based on the use of mannose as the selective agent, and a negative one based on hygromycin resistance encoded by an intron-containing hph gene. Transgenic plants selected on mannose or hygromycin were regenerated for the first time from embryogenic suspensions cocultivated with Agrobacterium. After the initial selection using mannose and hygromycin, 82.6% and 100% of the respective developing embryogenic callus lines were transgenic. A system allowing plant regeneration from only transgenic lines was designed by combining chemical selection with histochemical GUS assays. In total, 12 morphologically normal transgenic plant lines were produced, five using mannose and seven using hygromycin. The stable integration of the transgenes into the nuclear genome was verified using PCR and Southern analysis. RT-PCR and northern analyses confirmed the transgene expression in the regenerated plants. A rooting test on mannose containing medium was developed as an alternative to GUS assays in order to eliminate escapes from the positive selection system. Our results show that transgenic cassava plants can be obtained by using either antibiotic resistance genes that are not expressed in the micro-organisms or an antibiotic-free positive selection system.  相似文献   

16.
An attempt to transfer genes from droughttolerant Diplotaxis harra, a wild relative of Brassica species, to an elite oil-yielding cultivar, B-85, of mustard (Brassica juncea) was made through protoplast fusion, as the two plant systems are sexually incompatible. By following the standard protocol for PEG-mediated protoplast fusion followed by high pH, high Ca++, DMSO treatment and appropriate cell-culture technique, 16 presumptive somatic hybrid plants could be regenerated. Chromosomal analysis of four such somatic hybrids revealed that three of them were asymmetric. Analysis of morphological characters, meiotic chromosomes, and esterase isoenzyme pattern revealed that all the somatic hybrids were different from each other. Furthermore four chromosomes of each genome could undergo homoeologous pairing at meiosis indicating the possibilities for genetic recombination and chromosomal rearrangements. Irregular distribution of chromosomes at anaphase-II at meiosis has been a consistent feature of these plants. Eventually, pollen of all the somatic hybrids showed complete infertility preventing the recovery of any selfed seed. Nevertheless, ovule fertility of one somatic hybrid was not totally impaired as it had set some seeds upon backcrossing with the B. juncea parent. The esterase isoenzyme banding pattern of 24 individual progeny plants of this backcross provided evidence for their recombinant nature. It was thus confirmed that a transfer of genetic traits from Diplotaxis harra to B. juncea had indeed taken place. Furthermore, it was conceptualised that a transfer of alien genes through the protoplast-fusion technique is primarily possible in situations where meiotic pairing of the chromosomes of the two participating genomes generates recombinant gametocytes which can pass through subsequent filial generations.  相似文献   

17.
A protocol for Agrobacterium-mediated transformation with either kanamycin or mannose selection was developed for leaf explants of the cultivar Prunus dulcis cv. Ne Plus Ultra. Regenerating shoots were selected on medium containing 15 μM kanamycin (negative selection), while in the positive selection strategy, shoots were selected on 2.5 g/l mannose supplemented with 15 g/l sucrose. Transformation efficiencies based on PCR analysis of individual putative transformed shoots from independent lines relative to the initial numbers of leaf explants tested were 5.6% for kanamycin/nptII and 6.8% for mannose/pmi selection, respectively. Southern blot analysis on six randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene in each, and five randomly chosen lines identified to contain the pmi transgene by PCR showed positive hybridisation to a pmi DNA probe. The positive (mannose/pmi) and the negative (kanamycin) selection protocols used in this study have greatly improved transformation efficiency in almond, which were confirmed with PCR and Southern blot. This study also demonstrates that in almond the mannose/pmi selection protocol is appropriate and can result in higher transformation efficiencies over that of kanamycin/nptII selection protocols.  相似文献   

18.
Summary Transgenic cucumber (Cucumis sativus L.) plants were successfully obtained from hypocotyl explants inoculated with Agrobacterium tumefaciens, which harbored a binary vector plasmid with NOS-nptII, CaMV 35S-I-gus and CaMV 35S-hph genes. Acetosyringone enhanced the efficiency of transformation at the cut surface cells of hypocotyl explants during five days of co-cultivation. Transformed cells were more effectively selected using 20–30 mg/l hygromycin B than using 50–100 mg/l kanamycin. Shoot regeneration occurred within 4–6 wks, and 12 of 21 regenerated plantlets displayed strong GUS expression in the very young leaves. All of 8 GUS-positive R0 plants examined showed single or a few positive bands by Southern blot analysis. The expression of the CaMV 35S-I-gus gene was observed in various tissues and organs of R0 and R1 transgenic cucumber plants.  相似文献   

19.
An improved DNA-mediated transformation system for nematode-trapping fungus Arthrobotrys oligospora based on hygromycin B resistance was developed. The transformation frequency varied between 34 and 175 transformants per μg linearized DNA and 93% of the transformants were stable for drug resistance when tested 100 randomly selected transformants. More than 2000 transformants were obtained by transformation of the fungus with pBChygro in the presence of HindIII and among them, one, YMF1.00110, which lost its ability of forming predacious structure, was isolated. Southern analysis showed that the plasmid DNA had integrated into the genome of all tested transformants (including YMF 1.00110) except one. The transformant tagged with hph gene could be re-isolated and quantified from dung samples based on the resistance of hygromycin B. All the results suggested that the method of restriction enzyme mediated integration (REMI) should facilitate not only the insertional mutagenesis for tagging and analysis genes of interest but also the ecological investigation of tagged fungi in a given environment.  相似文献   

20.
Summary A characteristic phenotype of highly embryogenic explants along with the location of embryogenesis- and transformation-competent cells/tissues on immature cotyledons of soybean [Glycine max (L.) Merrill.] under hygromycin selection was identified. This highly embryogenic immature cotyledon was characterized with emergence of somatic embryos and incidence of browning/necrotic tissues along the margins and collapsed tissues in the mid-region of an explant incubated upwards on the selection medium. The influences of various parameters on induction of somatic embryogenesis on immature cotyledons following Agrobacterium tumefaciens-mediated transformation and selection were investigated. Using cotyledon explants derived from immature embryos of 5–8 mm in length, a 1∶1 (v/v; bacterial cells to liquid D40 medium) concentration of bacterial suspension and 4-wk cocultivation period significantly increased the frequency of transgenic somatic embryos. Whereas, increasing the infection period of explants or subjecting explants to either wounding or acetosyringone treatments did not increase the frequency of transformation. An optimal selection regime was identified when inoculated immature cotyledons were incubated on either 10 or 25 mgl−1 hygromycin for a 2-wk period, and then maintained on selection media containing 25 mgl−1 hygromycin in subsequent selection periods. However, somatic embryogenesis was completely inhibited when inoculated immature cotyledons were incubated on a kanamycin selection medium. These findings clearly demonstrated that the tissue culture protocols for transformation of soybean should be established under both Agrobacterium and selection conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号