首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intact, amphipatic form of cytochrome b5 could bind to unsealed ghosts, but not to resealed ghosts, suggesting that the cytochrome could bind only to the inner (cytoplasmic) surface of the ghost membrane. This was further confirmed by the finding that the cytochrome could bind to closed, inside-out vesicles prepared from the ghosts. This asymmetric binding was not due to the exclusive localization of sialic acid and sugar chains on the outer surface of the ghosts membrane, because the cytochrome could not bind to ghosts even after enzymatic removal of these components. Although liposomes consisting of phosphatidylcholine or both phosphatidylcholine and sphingomyelin could effectively bind the cytochrome, this binding capacity was progressively decreased as increasing amount of cholesterol was included in the composition of phosphatidylcholine liposomes. Removal of cholesterol from resealed ghosts by incubation with egg phosphatidylcholine liposomes resulted in the binding of cytochrome b5 to the outer surface of the treated ghosts. The possibility is discussed that the asymmetric binding is due to preferential localization of cholesterol in the outer leaflet of the lipid bilayer that constitutes the ghost membrane.  相似文献   

2.
DNA complementary to rabbit globin mRNA made by E. coli polymerase I   总被引:2,自引:0,他引:2  
Incubation of liver microsomes with cytochrome b5, purified after solubilization with detergents, caused an effective incorporation of the cytochrome into the microsomal membranes. The incorporated cytochrome was reducible by NADH and could not be removed by repeated washing with 0.3 M KCl or 10 mM EDTA. The incorporation was much more efficient at 37°C than at 0°C. Trypsin-solubilized cytochrome b5, which lacks the hydrophobic tail of the native protein, could not be inserted into the membranes. These findings confirm the view that the hydrophobic tail of the cytochrome molecule is responsible for its tight binding to the microsomal membranes.  相似文献   

3.
NADPH reduces both liver microsomal cytochrome P-450 and cytochrome b5. In the presence of CO, ferrous cytochrome P-450 can slowly transfer electrons to amaranth, an azo dye. This reaction is followed by the reoxidation of cytochrome b5 which proceeds at essentially the same rate as does cytochrome P-450 oxidation. It is suggested that cytochrome b5 directly reduces cytochrome P-450 in rat liver microsomes.  相似文献   

4.
Highly purified divalent and monovalent antibodies against cytochrome b5, anti-b5 immunoglobulin G (IG) and anti-b5 Fab', were used in elucidating the role of this cytochrome in the drug-oxidizing enzyme system of mouse liver microsomes. Anti-b5 IG strongly inhibited not only NADH-supported but also NADPH-supported oxidation of 7-ethoxycoumarin and benzo(a)pyrene, but had no inhibitory action on the oxidation of aniline. Anti-b5 Fab' also inhibited NADH-supported and NADPH-supported benzo(a)pyrene hydroxylation. These observations indicate an essential role of cytochrome b5 in the transfer of electrons not only from NADH but also from NADPH to cytochrome P-450 in the microsomal oxidation of some drugs, but not of aniline.  相似文献   

5.
According to previous authors, cytochrome b5, when extracted from bovine liver by a detergent method, is called cytochrome d-b5. On the other hand, the protein obtained after trypsin action, which eliminates an hydrophobic peptide of about 54 residues, is called cytochrome t-b5.Fluorescence polarization of the dansyl phosphatidylethanolamine probe inserted into phospholipid vesicles is very senstive to the binding of proteins, and so is a useful method to study lipid-protein interactions.The chromophore mobility, R, decreases markedly when dipalmitoyl phosphatidylcholine vesicles are incubated with cytochrome d-b5, whereas R does not change for cytochrome c and cytochrome t-b5. This can be interpreted as a strengthening of the bilayer, only due to the interaction of the hydrophobic peptide tail.Interaction of dipalmitoyl phosphatidylcholine vesicles with cytochrome d-b5 occurs either below or above the melting temperature of the aliphatic chains (41 °C). Even for a high protein to lipid molar ratio (1 molecule of protein for 40 phospholipid molecules), the melting temperature is apparently unaffected.Phosphatidylserine and phosphatidylinositol do not interact at pH 7.7 with cytochrome d-b5, because electrostatic forces prevent formation of complexes. At low pH, the interaction with the protein occurs, but the binding is mainly of electrostatic nature.  相似文献   

6.
A protease which generates a soluble hemepeptide from bovine liver microsomal cytochrome b5 has been isolated from the membrane fraction of rabbit reticulocytes. Inhibition by pepstatin and an acidic pH optimum indicate that the protease belongs to the acid protease class. Little cytochrome b5-processing activity is observed in rabbit erythrocytes. We suggest that the protease may be involved in the processing which generates the proteins of the methemoglobin reduction system from their membrane-bound precursors during the maturation of the erythroid cell.  相似文献   

7.
Purified cytochrome P450SCC from bovine adrenocortical mitochondria was incorporated into liposomes by the cholate-dilution method utilizing either dialysis or Sephadex gel filtration. Among synthetic phospholipids tested, dioleoylglycerophosphocholine showed the best stability during the incorporation of P450SCC into liposomes. A maximum amount of heme was incorporated into liposomes at a molar ratio of phospholipid to the cytochrome of approx. 200. When P450SCC was incorporated into the dioleoylglycerophosphocholine liposomes by the cholate-filtration method, the P450SCC-containing liposomes showed two major populations on the elution pattern of the Sepharose 4B gel filtration, and were seen at a diameter of 200–600 Å and its aggregated forms. When the cytochrome was incorporated into dioleoylglycerophosphocholine liposomes or cholesterol-free adrenocortical mitochondrial liposomes, P450SCC was less stable than P450SCC in aqueous solution. Cholesterol or adrenodoxin markedly stabilized the liposomal P450SCC. Liposomal P450SCC required cholesterol for its optimum reduction with adrenodoxin, adrenodoxin reductase, and NADPH in the presence of CO. About 70% of the total heme in the dioleoylglycerophosphocholine liposomes was reduced by the enzymatic reduction in the presence of cholesterol, indicating that 70% of the total molecules are exposed to the surface of the outer monolayer. In order to see the location of the heme in membrane, the dioleoylglycerophosphocholine-liposomal P450SCC was subjected to p-chloromercuriphenyl sulfonic acid treatment. This reagent destroyed the liposomal P450SCC. These results suggest that the heme is located in the proximity of the p-chloromercuriphenyl sulfonic acid reacting sites which are exposed to the surface, or located on the vincinity of polar heads of the membrane.  相似文献   

8.
The cytochrome b5b5 reductase system solubilized from microsomes exhibits monophasic reduction kinetics over the temperature range 15 ° to ?25 °C in aqueous/ethylene glycol co-solvent, whereas in intact microsomes, the process becomes increasingly heterogeneous below 0 °C, reflecting heterogeneities in membrane structure observable as distributions in reaction rates and activation energies.  相似文献   

9.
Microsomal NADH-cytochrome b5 reductase has been purified from bovine liver by an improved procedure which employs affinity chromatography on ADP-agarose in combination with anion exchange chromatography. The reductase was extracted from a 105,000 × g microsomal pellet with Triton X-100. The overall purification from isolated microsomes was 98-fold and the yield was 10%. The preparation was nearly homogeneous on SDS-PAGE. This procedure requires less time and effort than previously described procedures. Partially purified cytochrome b5 is also obtained.  相似文献   

10.
Cytochrome b5 was extracted and purified from beef liver by a detergent method (cytochrome d-b5). The hydrophilic moiety which carries the heme group (cytochrome t-b5) was prepared by trypsin action upon pure cytochrome d-b5.Single-shelled lecithin liposomes form complexes with cytochromes d-b5 up to a molar ratio of one protein for 35 phospholipids. The lipid-protein complexes were isolated by gel filtration on Sepharose 4B. They are hollow vesicles in which [3H]-glucose can be trapped. Their diameter is greater than that of the initial liposomes.Cytochrome t-b5 does not interact with the vesicles. These results show that the hydrophobic tail is necessary for the binding and that the hydrophilic part of the protein is located on the outer face of the vesicles. This asymmetry is also proved by the action of reducing agents.Experiments with saturated phosphatidylcholines show that the protein interacts with the lipids both below the transition temperature TM. i.e. when the aliphatic chains are in a crystalline state, and above TM, when the alipathic chain are in a fluid state.1H NMR spectra show that even at the maximum cytochrome d-b5 concentration the presence of the proteins does not markedly change the dynamics to the phospholipid molecules. An asymmetric single-shelled vesicle structure is proposed for the complex.  相似文献   

11.
The distribution and site of synthesis of cytochrome b5 was studied by antibody precipitation of the enzyme labeled invivo. The enzyme is present in rough and smooth microsomes, Golgi and outer mitochondrial membranes. The cytochrome is synthesized only on bound ribosomes, where glucosamine and galactose moieties are also added. The enzyme seems to be devoid of mannose and sialic acid residues.  相似文献   

12.
Renal basal-lateral and brush border membrane preparations were phosphorylated in the presence of [γ-32P]ATP. The 32P-labeled membrane proteins were analysed on SDS-polyacrylamide gels. The phosphorylated intermediates formed in different conditions are compared with the intermediates formed in well defined membrane preparations such as erythrocyte plasma membranes and sarcoplasmic reticulum from skeletal muscle, and with the intermediates of purified renal enzymes such as (Na+ + K+)-ATPase and alkaline phosphatase. Two Ca2+-induced, hydroxylamine-sensitive phosphoproteins are formed in the basal-lateral membrane preparations. They migrate with a molecular radius Mr of about 130 000 and 100 000. The phosphorylation of the 130 kDa protein was stimulated by La3+-ions (20 μM) in a similar way as the (Ca2+ + Mg2+)-ATPase from erythrocytes. The 130 kDa phosphoprotein also comigrated with the erythrocyte (Ca2+ + Mg2+)-ATPase. In addition in the same preparation, another hydroxylamine-sensitive 100 kDa phosphoprotein was formed in the presence of Na+. This phosphoprotein comigrates with a preparation of renal (Na+ + K+)-ATPase. In brush border membrane preparations the Ca2+-induced and the Na+-induced phosphorylation bands are absent. This is consistent with the basal-lateral localization of the renal Ca2+-pump and Na+-pump. The predominant phosphoprotein in brush border membrane preparations is a 85 kDa protein that could be identified as the phosphorylated intermediate of renal alkaline phosphatase. This phosphoprotein is also present in basal-lateral membrane preparations, but it can be accounted for by contamination of those membranes with brush border membranes.  相似文献   

13.
Binding of increasing amounts of detergent-purified cytochrome b5 to rabbit liver microsomes produces a progressive inhibition of NADPH-cytochrome P-450 reductase activity which is accompanied by a similar inhibition of NADPH-supported benzphetamine demethylation. In contrast, NADH-cytochrome P-450 reductase activity in the enriched microsomes is markedly enhanced and this stimulation is accompanied by a similar increase in NADH-peroxidase activity, suggesting that cytochrome b5 in these two reactions functions as an intermediate electron carrier to cytochrome P-450.  相似文献   

14.
Cytochrome P-450 was purified from liver microsomes of phenobarbital-pretreated rabbits to a specific content of 16 to 17 nmoles per mg of protein with a yield of about 10 %. The purified cytochrome yielded only a single protein band on sodium dodecylsulfate-urea-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 45,000 was estimated for the protein. The preparation was free of cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c reductase activities. Aniline hydroxylase and ethylmorphine N-demethylase activities could be reconstituted upon mixing the purified cytochrome with an NADPH-cytochrome c reductase preparation (purified by a detergent method) and phosphatidyl choline.  相似文献   

15.
When incorporated into phospholipid vesicles containing NADPH-cytochrome P-450 reductase and P-450LM2, cytochrome b5 enhanced the rate of NADPH-supported hydroxylation of 7-ethoxycoumarin or p-nitroanisole about 5-fold. Cytochrome b5 did not affect the rate of NADPH-oxidation, nor the rate of NADPH-supported formation of the ferrous CO-complex of cytochrome P-450. However, the cytochrome b5-mediated increase in product formation was found to be correlated with concomitant decreases in the production of H2O2 or O2? in the system, thus strongly indicating cytochrome b5 being a more efficient donor of the second electron to cytochrome P-450 than is NADPH-cytochrome P-450 reductase.  相似文献   

16.
The resolved flavoprotein and cytochrome b559 components of the NADPH dependent O2?? generating oxidase from human neutrophils were the subject of further study. The resolved flavoprotein, depleted of cytochrome b559, was reduced by NADPH under anaerobic conditions and reoxidized by oxygen. NADPH dependent O2?? generation by the resolved flavoprotein fraction was not detectable, however it was competent in the transfer of electrons from NADPH to artificial electron acceptors. The resolved cytochrome b559, depleted of flavoprotein, demonstrated no measureable NADPH dependent O2?? generating activity and was not reduced by NADPH under anaerobic conditions. The dithionite reduced form of the resolved cytochrome b559 was rapidly oxidized by oxygen, as was the cytochrome b559 in the intact oxidase.  相似文献   

17.
Stable ubisemiquinone radical(s) in the cytochrome b?c1-II complex of bovine heart was observed following reduction by succinate in the presence of catalytic amounts of succinate dehydrogenase. The radical was abolished by addition of antimycin A, but a residual radical remained in the presence of excess exogenous Q2. The radical showed an EPR signal of g = 2.0046 ± .003 at X band (~9.4 GHz) with no resolved hyperfine structure and had a line width of 8.1 ± .5 Gauss at 23°C. The Q band (35 GHz) spectra showed wellresolved g-anisotropy and had a field separation between derivative extrema of 26 ± 1 Gauss. This radical is evidently from QP-C. These observations substantiate that the radical is immobilized and bound to a protein. The QP-S radical was demonstrated in the cytochrome b-c1-II complex only in the presence of more than a catalytic amount of succinate dehydrogenase and cytochrome b-c1. This signal was not antimycin a inhibitory. The signal amplitude paralleled the reconstitutive enzymic activity of succinate-cytochrome c reductase from succinate dehydrogenase and the cytochrome b-c1-II complex.  相似文献   

18.
NADH-cytochrome b5 reductase activities in hemolysates of young and old human erythrocytes, and in hemolysates of rabbit reticulocytes and erythrocytes were measured after the separation of the enzyme from the bulk of hemoglobin only by isoelectric focusing. In any cases, a single main peak of the enzyme activity was detected after the electrophoresis in the fraction with pH 6.8 and 8.3 for human and rabbit red cells, respectively. The rabbit enzyme showed more than 30 times higher enzyme activity than that of human erythrocytes under the standard assay conditions. Significant differences of Micahelis constants for cytochrome b5 of the enzyme were found between young and old human erythrocytes, and also between human and rabbit red cells.  相似文献   

19.
(1) A membrane fraction enriched in (Na+ + K+)-ATPase (EC 3.6.1.3) was obtained from optic ganglia of the squid (Loligo pealei) by density gradient fractionation of membranes followed by treatment with either SDS or Brij-58. The resulting membrane had an (Na+ + K+)-ATPase specific activity of approx. 2 units/mg and was >95% ouabain-sensitive. (2) The (Na+ + K+)-ATPase had a Km for ATP of 0.42 ± 0.04 mM and a pH optimum of 7.0. It was inhibited by ouabain with a Ki of 0.32 ± 0.04 μM. (3) Optimum monovalent cation concentrations were: 240 mM NaCl, 60 mM KCl, tested with NaCl + KCl = 300 mM. (4) The Mg2+ dependence of hydrolysis varied with the absolute ATP concentration. At 3 mM ATP, theKm for Mg2+ was 0.86 ± 0.10 mM, and at 6 mM ATP, the Km was 1.86 ± 0.44 mM. High levels of Mg2+ caused inhibition of hydrolysis. (5) The interactions of Na+ and K+ were examined over a range of conditions. K+ levels caused modulations in the Na+ dependence in the range of 1–150 mM. (6) The (Na+ + K+)-ATPase prepared from squid optic ganglion displays properties similar to those of the sodium pump in injected nerves.  相似文献   

20.
Peter Nicholls 《BBA》1976,430(1):13-29
1. Formate inhibits cytochrome c oxidase activity both in intact mitochondria and submitochondrial particles, and in isolated cytochrome aa3. The inhibition increases with decreasing pH, indicating that HCOOH may be the inhibitory species.2. Formate induces a blue shift in the absorption spectrum of oxidized cytochrome aa3 (a3+a33+) and in the half-reduced species (a2+a33+). Comparison with cyanide-induced spectral shifts, towards the red, indicates that formate and cyanide have opposite effects on the aa3 spectrum, both in the fully oxidized and the half-reduced states. The formate spectra provide a new method of obtaining the difference spectrum of a32+ minus a33+, free of the difficulties with cyanide (which induces marked high → low spin spectral shifts in cytochrome a33+) and azide (which induces peak shifts of cytochrome a2+ towards the blue in both α- and Soret regions).3. The rate of formate dissociation from cytochrome a2+a33+-HCOOH is faster than its rate of dissociation from a3+a33+-HCOOH, especially in the presence of cytochrome c. The Ki for formate inhibition of respiration is a function of the reduction state of the system, varying from 30 mM (100% reduction) to 1 mM (100% oxidation) at pH 7.4, 30 °C.4. Succinate-cytochrome c reductase activity is also inhibited by formate, in a reaction competitive with succinate and dependent on [formate]2.5. Formate inhibition of ascorbate plus N,N,N′,N′-tetramethyl-p-phenyl-enediamine oxidation by intact rat liver mitochondria is partially released by uncoupler addition. Formate is permeable through the inner mitochondrial membrane and no differences in ‘on’ or ‘off’ inhibition rates were observed when intact mitochondria were compared with submitochondrial particles.6. NADH-cytochrome c reductase activity is unaffected by formate in submitochondrial particles, but mitochondrial oxidation of glutamate plus malate is subject both to terminal inhibition at the cytochrome aa3 level and to a slow extra inhibition by formate following uncoupler addition, indicating a third site of formate action in the intact mitochondrion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号