首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
The specification, differentiation and maintenance of diverse cell types are of central importance to the development of multicellular organisms. The neural crest of vertebrate animals gives rise to many derivatives, including pigment cells, peripheral neurons, glia and elements of the craniofacial skeleton. The development of neural crest-derived pigment cells has been studied extensively to elucidate mechanisms involved in cell fate specification, differentiation, migration and survival. This analysis has been advanced considerably by the availability of large numbers of mouse and, more recently, zebrafish mutants with defects in pigment cell development. We have identified the zebrafish mutant touchtone (tct), which is characterized by the selective absence of most neural crest-derived melanophores. We find that although wild-type numbers of melanophore precursors are generated in the first day of development and migrate normally in tct mutants, most differentiated melanophores subsequently fail to appear. We demonstrate that the failure in melanophore differentiation in tct mutant embryos is due at least in part to the death of melanoblasts and that tct function is required cell autonomously by melanoblasts. The tct locus is located on chromosome 18 in a genomic region apparently devoid of genes known to be involved in melanophore development. Thus, zebrafish tct may represent a novel as well as selective regulator of melanoblast development within the neural crest lineage. Further, our results suggest that, like other neural crest-derived sublineages, melanogenic precursors constitute a heterogeneous population with respect to genetic requirements for development.  相似文献   

3.
Pigment pattern formation in zebrafish presents a tractable model system for studying the morphogenesis of neural crest derivatives. Embryos mutant for choker manifest a unique pigment pattern phenotype that combines a loss of lateral stripe melanophores with an ectopic melanophore ;collar' at the head-trunk border. We find that defects in neural crest migration are largely restricted to the lateral migration pathway, affecting both xanthophores (lost) and melanophores (gained) in choker mutants. Double mutant and timelapse analyses demonstrate that these defects are likely to be driven independently, the collar being formed by invasion of melanophores from the dorsal and ventral stripes. Using tissue transplantation, we show that melanophore patterning depends upon the underlying somitic cells, the myotomal derivatives of which--both slow--and fast-twitch muscle fibres--are themselves significantly disorganised in the region of the ectopic collar. In addition, we uncover an aberrant pattern of expression of the gene encoding the chemokine Sdf1a in choker mutant homozygotes that correlates with each aspect of the melanophore pattern defect. Using morpholino knock-down and ectopic expression experiments, we provide evidence to suggest that Sdf1a drives melanophore invasion in the choker mutant collar and normally plays an essential role in patterning the lateral stripe. We thus identify Sdf1 as a key molecule in pigment pattern formation, adding to the growing inventory of its roles in embryonic development.  相似文献   

4.
5.
6.
The development of neural crest-derived pigment cells has been studied extensively as a model for cellular differentiation, disease and environmental adaptation. Neural crest-derived chromatophores in the zebrafish (Danio rerio) consist of three types: melanophores, xanthophores and iridiphores. We have identified the zebrafish mutant endzone (enz), that was isolated in a screen for mutants with neural crest development phenotypes, based on an abnormal melanophore pattern. We have found that although wild-type numbers of chromatophore precursors are generated in the first day of development and migrate normally in enz mutants, the numbers of all three chromatophore cell types that ultimately develop are reduced. Further, differentiated melanophores and xanthophores subsequently lose dendricity, and iridiphores are reduced in size. We demonstrate that enz function is required cell autonomously by melanophores and that the enz locus is located on chromosome 7. In addition, zebrafish enz appears to selectively regulate chromatophore development within the neural crest lineage since all other major derivatives develop normally. Our results suggest that enz is required relatively late in the development of all three embryonic chromatophore types and is normally necessary for terminal differentiation and the maintenance of cell size and morphology. Thus, although developmental regulation of different chromatophore sublineages in zebrafish is in part genetically distinct, enz provides an example of a common regulator of neural crest-derived chromatophore differentiation and morphology.  相似文献   

7.
Neural crest-derived pigment cell development has been used extensively to study cell fate specification, migration, proliferation, survival and differentiation. Many of the genes and regulatory mechanisms required for pigment cell development are conserved across vertebrates. The zebrafish mutant colgate (col)/histone deacetylase1 (hdac1) has reduced numbers, delayed differentiation and decreased migration of neural crest-derived melanophores and their precursors. In hdac1col mutants normal numbers of premigratory neural crest cells are induced. Later, while there is only a slight reduction in the number of neural crest cells in hdac1col mutants, there is a severe reduction in the number of mitfa-positive melanoblasts suggesting that hdac1 is required for melanoblast specification. Concomitantly, there is a significant increase in and prolonged expression of foxd3 in neural crest cells in hdac1col mutants. We found that partially reducing Foxd3 expression in hdac1col mutants rescues mitfa expression and the melanophore defects in hdac1col mutants. Furthermore, we demonstrate the ability of Foxd3 to physically interact at the mitfa promoter. Because mitfa is required for melanoblast specification and development, our results suggest that hdac1 is normally required to suppress neural crest foxd3 expression thus de-repressing mitfa resulting in melanogenesis by a subset of neural crest-derived cells.  相似文献   

8.
9.
10.
Zebrafish lacking functional sox10 have defects in non-ectomesenchymal neural crest derivatives including the enteric nervous system (ENS) and as such provide an animal model for human Waardenburg Syndrome IV. Here, we characterize zebrafish phox2b as a functionally conserved marker of the developing ENS. We show that morpholino-mediated knockdown of Phox2b generates fish modeling Hirschsprung disease. Using markers, including phox2b, we investigate the ontogeny of the sox10 ENS phenotype. As previously shown for melanophore development, ENS progenitor fate specification fails in these mutant fish. However, in addition, we trace back the sox10 mutant ENS defect to an even earlier time point, finding that most neural crest cells fail to migrate ventrally to the gut primordium.  相似文献   

11.
Cadherin cell adhesion molecules play crucial roles in vertebrate development. Most studies have focused on examining the functions of classical type I cadherins (e.g., cadherin-2) in the development of vertebrates. Little information is available concerning the function of classical type II cadherins (e.g., cadherin-7) in vertebrate development. We have previously shown that cadherin-7 mRNA exhibits a dynamic expression pattern in the central nervous system and notochord in embryonic zebrafish. To gain insight into the role of cadherin-7 in the formation of these structures, we analyzed their formation in zebrafish embryos injected with cadherin-7-specific antisense morpholino oligonucleotides (MO). Notochord development was severely disrupted in MO-injected embryos, whereas gross defects in the development of the central nervous system were not detected in MO-injected embryos. Our results thus demonstrate that cadherin-7 plays an important role in the normal development of the zebrafish notochord.  相似文献   

12.
13.
14.
15.
Summary The subepidermal distribution of xanthophores and melanophores is investigated in embryos ofTriturus alpestris with a uniform (stage 28+) and a banded melanophore pattern (stage 35/36). In ultrathin head and trunk sections from stage 35/36 embryos which externally show longitudinal dorsal and lateral melanophore bands in the trunk and less compact continuations of the dorsal bands in the head, xanthophores were discovered in addition to melanophores. Melanophores contain melanosomes while xanthophores which are not externally visible, are recognized by their pterinosomes. Both chromatophore cell types are mutually exclusively distributed on the epidermal basement membrane (bm). Mesenchymal cells seemed not to be able to replace them, except on the bm of the corneal epithelium where there were only mesenchymal cells. In head and trunk sections from stage 28+ embryos which externally show a distribution of uniformly scattered melanophores on the dorsolateral halves, melanophores were found on the dorsolateral neural crest migration route. No epidermal bm was present and xanthophores were undetectable. In ventrolateral and ventral portions of embryos of both stages no chromatophores occurred. This investigation defines the histological localization of melanophores and xanthophores in embryos with a typical uniform and banded melanophore arrangement; a subsequent study analyzes when xanthophores appear and how they arrange with melanophores in alternating zones.  相似文献   

16.
Latent precursors or stem cells of neural crest origin are present in a variety of post-embryonic tissues. Although these cells are of biomedical interest for roles in human health and disease, their potential evolutionary significance has been underappreciated. As a first step towards elucidating the contributions of such cells to the evolution of vertebrate form, we investigated the relative roles of neural crest cells and post-embryonic latent precursors during the evolutionary diversification of adult pigment patterns in Danio fishes. These pigment patterns result from the numbers and arrangements of embryonic melanophores that are derived from embryonic neural crest cells, as well as from post-embryonic metamorphic melanophores that are derived from latent precursors of presumptive neural crest origin. In the zebrafish D. rerio, a pattern of melanophore stripes arises during the larval-to-adult transformation by the recruitment of metamorphic melanophores from latent precursors. Using a comparative approach in the context of new phylogenetic data, we show that adult pigment patterns in five additional species also arise from metamorphic melanophores, identifying this as an ancestral mode of adult pigment pattern development. By contrast, superficially similar adult stripes of D. nigrofasciatus (a sister species to D. rerio) arise by the reorganization of melanophores that differentiated at embryonic stages, with a diminished contribution from metamorphic melanophores. Genetic mosaic and molecular marker analyses reveal evolutionary changes that are extrinsic to D. nigrofasciatus melanophore lineages, including a dramatic reduction of metamorphic melanophore precursors. Finally, interspecific complementation tests identify a candidate genetic pathway for contributing to the evolutionary reduction in metamorphic melanophores and the increased contribution of early larval melanophores to D. nigrofasciatus adult pigment pattern development. These results demonstrate an important role for latent precursors in the diversification of pigment patterns across danios. More generally, differences in the deployment of post-embryonic neural crest-derived stem cells or their specified progeny may contribute substantially to the evolutionary diversification of adult form in vertebrates, particularly in species that undergo a metamorphosis.  相似文献   

17.
18.
Exploring differences in gene requirements between species can allow us to delineate basic developmental mechanisms, provide insight into patterns of evolution, and explain heterochronic differences in developmental processes. One example of differences in gene requirements between zebrafish and mammals is the requirement of the kit receptor tyrosine kinase in melanocyte development. kit is required for migration, survival and differentiation of all neural crest-derived melanocytes in mammals. In contrast, zebrafish kit is not required for differentiation of embryonic melanocytes during normal development. When melanoblast development in zebrafish embryos is delayed by injecting morpholinos targeted to the mitfa gene, we show that these delayed melanoblasts fail to differentiate in kit mutants. Thus, we show that there is a kit requirement for melanocyte differentiation in zebrafish when melanoblast development is delayed. Furthermore, we show that kit is not involved in maintaining melanocyte precursors through the developmental delay, but instead is required for differentiation of melanocytes after the block on their development is removed. Finally, we suggest there is a heterochronic shift in the onset of melanocyte differentiation between fish and mouse, and developmental delay of melanoblast development in zebrafish removes this heterochronic difference.Edited by D. Tautz  相似文献   

19.
The Pax3/7 gene family has a fundamental and conserved role during neural crest formation. In people, PAX3 mutation causes Waardenburg syndrome, and murine Pax3 is essential for pigment formation. However, it is unclear exactly how Pax3 functions within the neural crest. Here we show that pax3 is expressed before other pax3/7 members, including duplicated pax3b, pax7 and pax7b genes, early in zebrafish neural crest development. Knockdown of Pax3 protein by antisense morpholino oligonucleotides results in defective fate specification of xanthophores, with complete ablation in the trunk. Other pigment lineages are specified and differentiate. As a consequence of xanthophore loss, expression of pax7, a marker of the xanthophore lineage, is reduced in neural crest. Morpholino knockdown of Pax7 protein shows that Pax7 itself is dispensable for xanthophore fate specification, although yellow pigmentation is reduced. Loss of xanthophores after reduction of Pax3 correlates with a delay in melanoblast differentiation followed by significant increase in melanophores, suggestive of a Pax3-driven fate switch within a chromatophore precursor or stem cell. Analysis of other neural crest derivatives reveals that, in the absence of Pax3, the enteric nervous system is ablated from its inception. Therefore, Pax3 in zebrafish is required for specification of two specific lineages of neural crest, xanthophores and enteric neurons.  相似文献   

20.
Congenital diseases caused by abnormal development of the cranial neural crest usually present craniofacial malformations and heart defects while the precise mechanism is not fully understood. Here, we show that the zebrafish eif3ba mutant caused by pseudo-typed retrovirus insertion exhibited a similar phenotype due to the hypogenesis of cranial neural crest cells (NCCs). The derivatives of cranial NCCs, including the NCC-derived cell population of pharyngeal arches, craniofacial cartilage, pigment cells and the myocardium derived from cardiac NCCs, were affected in this mutant. The expression of several neural crest marker genes, including crestin, dlx2a and nrp2b, was specifically reduced in the cranial regions of the eif3ba mutant. Through fluorescence-tracing of the cranial NCC migration marker nrp2b, we observed reduced intensity of NCC-derived cells in the heart. In addition, p53 was markedly up-regulated in the eif3ba mutant embryos, which correlated with pronounced apoptosis in the cranial area as shown by TUNEL staining. These findings suggest a novel function of eif3ba during embryonic development and a novel level of regulation in the process of cranial NCC development, in addition to providing a potential animal model to mimic congenital diseases due to cranial NCC defects. Furthermore, we report the identification of a novel transgenic fish line Et(gata2a:EGFP)pku418 to trace the migration of cranial NCCs (including cardiac NCCs); this may serve as an invaluable tool for investigating the development and dynamics of cranial NCCs during zebrafish embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号