首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Human telomeres bind shelterin, the six-subunit protein complex that protects chromosome ends from the DNA damage response and regulates telomere length maintenance by telomerase. We used quantitative immunoblotting to determine the abundance and stoichiometry of the shelterin proteins in the chromatin-bound protein fraction of human cells. The abundance of shelterin components was similar in primary and transformed cells and was not correlated with telomere length. The duplex telomeric DNA binding factors in shelterin, TRF1 and TRF2, were sufficiently abundant to cover all telomeric DNA in cells with short telomeres. The TPP1·POT1 heterodimer was present 50–100 copies/telomere, which is in excess of its single-stranded telomeric DNA binding sites, indicating that some of the TPP1·POT1 in shelterin is not associated with the single-stranded telomeric DNA. TRF2 and Rap1 were present at 1:1 stoichiometry as were TPP1 and POT1. The abundance of TIN2 was sufficient to allow each TRF1 and TRF2 to bind to TIN2. Remarkably, TPP1 and POT1 were ∼10-fold less abundant than their TIN2 partner in shelterin, raising the question of what limits the accumulation of TPP1·POT1 at telomeres. Finally, we report that a 10-fold reduction in TRF2 affects the regulation of telomere length but not the protection of telomeres in tumor cell lines.  相似文献   

2.
The telomere is a functional chromatin structure that consists of G-rich repetitive sequences and various associated proteins. Telomeres protect chromosomal ends from degradation, provide escape from the DNA damage response, and regulate telomere lengthening by telomerase. Multiple proteins that localize at telomeres form a complex called shelterin/telosome. One component, TRF1, is a double-stranded telomeric DNA binding protein. Inactivation of TRF1 disrupts telomeric localization of other shelterin components and induces chromosomal instability. Here, we examined how the telomeric localization of shelterin components is crucial for TRF1-mediated telomere-associated functions. We found that many of the mTRF1 deficient phenotypes, including chromosomal instability, growth defects, and dysfunctional telomere damage response, were suppressed by the telomere localization of shelterin components in the absence of functional mTRF1. However, abnormal telomere signals and telomere elongation phenotypes were either not rescued or only partially rescued, respectively. These data suggest that TRF1 regulates telomere length and function by at least two mechanisms; in one TRF1 acts through the recruiting/tethering of other shelterin components to telomeres, and in the other TRF1 seems to play a more direct role.  相似文献   

3.
Telomere maintenance is essential for the long-term proliferation of human pluripotent stem cells, while their telomere length set point determines the proliferative capacity of their differentiated progeny. The shelterin protein TPP1 is required for telomere stability and elongation, but its role in establishing a telomere length set point remains elusive. Here, we characterize the contribution of the shorter isoform of TPP1 (TPP1S) and the amino acid L104 outside the TEL patch, TPP1’s telomerase interaction domain, to telomere length control. We demonstrate that cells deficient for TPP1S (TPP1S knockout [KO]), as well as the complete TPP1 KO cell lines, undergo telomere shortening. However, TPP1S KO cells are able to stabilize short telomeres, while TPP1 KO cells die. We compare these phenotypes with those of TPP1L104A/L104A mutant cells, which have short and stable telomeres similar to the TPP1S KO. In contrast to TPP1S KO cells, TPP1L104A/L104A cells respond to increased telomerase levels and maintain protected telomeres. However, TPP1L104A/L104A shows altered sensitivity to expression changes of shelterin proteins suggesting the mutation causes a defect in telomere length feedback regulation. Together this highlights TPP1L104A/L104A as the first shelterin mutant engineered at the endogenous locus of human stem cells with an altered telomere length set point.  相似文献   

4.
Tankyrase1 is a multifunctional poly(ADP-ribose) polymerase that can localize to telomeres through its interaction with the shelterin component TRF1. Tankyrase1 poly(ADP-ribosyl)ates TRF1 in vitro, and its nuclear overexpression leads to loss of TRF1 and telomere elongation, suggesting that tankyrase1 is a positive regulator of telomere length. In agreement with this proposal, we show that tankyrase1 RNA interference results in telomere shortening proportional to the level of knockdown. Furthermore, we show that a tankyrase1-resistant form of TRF1 enforced normal telomere length control, indicating that tankyrase1 is not required downstream of TRF1 in this pathway. Thus, in human cells, tankyrase1 appears to act upstream of TRF1, promoting telomere elongation through the removal of TRF1. This pathway appears absent from mouse cells. We show that murine TRF1, which lacks the canonical tankyrase1-binding site, is not a substrate for tankyrase1 poly(ADP-ribosyl)sylation in vitro. Furthermore, overexpression of tankyrase1 in mouse nuclei did not remove TRF1 from telomeres and had no detectable effect on other components of mouse shelterin. We propose that the tankyrase1-controlled telomere extension is a human-specific elaboration that allows additional control over telomere length in telomerase positive cells.  相似文献   

5.
Human telomeres are protected by shelterin proteins, but how telomeres maintain a dynamic structure remains elusive. Here, we report an unexpected activity of POT1 in imparting conformational dynamics of the telomere overhang, even at a monomer level. Strikingly, such POT1-induced overhang dynamics is greatly enhanced when TRF2 engages with the telomere duplex. Interestingly, TRF2, but not TRF2ΔB, recruits POT1-bound overhangs to the telomere ds/ss junction and induces a discrete stepwise movement up and down the axis of telomere duplex. The same steps are observed regardless of the length of the POT1-bound overhang, suggesting a tightly regulated conformational dynamic coordinated by TRF2 and POT1. TPP1 and TIN2 which physically connect POT1 and TRF2 act to generate a smooth movement along the axis of the telomere duplex. Our results suggest a plausible mechanism wherein telomeres maintain a dynamic structure orchestrated by shelterin.  相似文献   

6.
Located at the end of chromosomes, telomeres are progressively shortened with each replication of DNA during aging. Integral to the regulation of telomere length is a group of proteins making up the shelterin complex, whose tissue-specific function during physiological stress is not well understood. In this study, we examine the mRNA and protein levels of proteins within and associated with the shelterin complex in subjects (n = 8, mean age = 44 yr) who completed a physiological stress of seven marathons in 7 days. Twenty-two to 24 h after the last marathon, subjects had increased mRNA levels of DNA repair enzymes Ku70 and Ku80 (P < 0.05) in both skeletal muscle and peripheral blood mononuclear cells (PBMCs). Additionally, the PBMCs displayed an increment in three shelterin protein mRNA levels (TRF1, TRF2, and Pot-1, P < 0.05) following the event. Seven days of ultrarunning did not result in changes in mean telomere length, telomerase activity, hTert mRNA, or hterc mRNAs found in PBMCs. Higher protein concentrations of TRF2 were found in skeletal muscle vs. PBMCs at rest. Mean telomere length in skeletal muscle did not change and did not contain detectable levels of htert mRNA or telomerase activity. Furthermore, changes in the PBMCs could not be attributed to changes in the proportion of subtypes of CD4(+) or CD8(+) cells. We have provided the first evidence that, in humans, proteins within and associated with the shelterin complex increase at the mRNA level in response to a physiological stress differentially in PBMCs and skeletal muscle.  相似文献   

7.
8.
The human telomeric protein TRF1 is a component of the six-subunit protein complex shelterin, which provides telomere protection by organizing the telomere into a high-order structure. TRF1 functions as a negative regulator of telomere length by controlling the access of telomerase to telomeres. Thus, the cellular abundance of TRF1 at telomeres should be maintained and tightly regulated to ensure proper telomere function. Here, we identify U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 (U2AF65), an essential pre-mRNA splicing factor, as a novel TRF1-interacting protein. U2AF65 interacts with TRF1 in vitro and in vivo and is capable of stabilizing TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. We also found that U2AF65 interferes with the interaction between TRF1 and Fbx4, an E3 ubiquitin ligase for TRF1. Depletion of endogenous U2AF65 expression by short interfering RNA (siRNA) reduced the stability of endogenous TRF1 whereas overexpression of U2AF65 significantly extended the half-life of TRF1. These findings demonstrate that U2AF65 plays a critical role in regulating the level of TRF1 through physical interaction and ubiquitin-mediated proteolysis. Hence, U2AF65 represents a new route for modulating TRF1 function at telomeres.  相似文献   

9.
Control of human telomere length by TRF1 and TRF2   总被引:52,自引:0,他引:52       下载免费PDF全文
Telomere length in human cells is controlled by a homeostasis mechanism that involves telomerase and the negative regulator of telomere length, TRF1 (TTAGGG repeat binding factor 1). Here we report that TRF2, a TRF1-related protein previously implicated in protection of chromosome ends, is a second negative regulator of telomere length. Overexpression of TRF2 results in the progressive shortening of telomere length, similar to the phenotype observed with TRF1. However, while induction of TRF1 could be maintained over more than 300 population doublings and resulted in stable, short telomeres, the expression of exogenous TRF2 was extinguished and the telomeres eventually regained their original length. Consistent with their role in measuring telomere length, indirect immunofluorescence indicated that both TRF1 and TRF2 bind to duplex telomeric DNA in vivo and are more abundant on telomeres with long TTAGGG repeat tracts. Neither TRF1 nor TRF2 affected the expression level of telomerase. Furthermore, the presence of TRF1 or TRF2 on a short linear telomerase substrate did not inhibit the enzymatic activity of telomerase in vitro. These findings are consistent with the recently proposed t loop model of telomere length homeostasis in which telomerase-dependent telomere elongation is blocked by sequestration of the 3' telomere terminus in TRF1- and TRF2-induced telomeric loops.  相似文献   

10.
Dyskeratosis Congenita (DC) is a heritable multi-system disorder caused by abnormally short telomeres. Clinically diagnosed by the mucocutaneous symptoms, DC patients are at high risk for bone marrow failure, pulmonary fibrosis, and multiple types of cancers. We have recapitulated the most common DC-causing mutation in the shelterin component TIN2 by introducing a TIN2-R282H mutation into cultured telomerase-positive human cells via a knock-in approach. The resulting heterozygous TIN2-R282H mutation does not perturb occupancy of other shelterin components on telomeres, result in activation of telomeric DNA damage signaling or exhibit other characteristics indicative of a telomere deprotection defect. Using a novel assay that monitors the frequency and extension rate of telomerase activity at individual telomeres, we show instead that telomerase elongates telomeres at a reduced frequency in TIN2-R282H heterozygous cells; this recruitment defect is further corroborated by examining the effect of this mutation on telomerase-telomere co-localization. These observations suggest a direct role for TIN2 in mediating telomere length through telomerase, separable from its role in telomere protection.  相似文献   

11.
Telomeres protect the chromosome ends from unscheduled DNA repair and degradation. Telomeres are heterochromatic domains composed of repetitive DNA (TTAGGG repeats) bound to an array of specialized proteins. The length of telomere repeats and the integrity of telomere-binding proteins are both important for telomere protection. Furthermore, telomere length and integrity are regulated by a number of epigenetic modifications, thus pointing to higher order control of telomere function. In this regard, we have recently discovered that telomeres are transcribed generating long, non-coding RNAs, which remain associated with the telomeric chromatin and are likely to have important roles in telomere regulation. In the past, we showed that telomere length and the catalytic component of telomerase, Tert, are critical determinants for the mobilization of stem cells. These effects of telomerase and telomere length on stem cell behaviour anticipate the premature ageing and cancer phenotypes of telomerase mutant mice. Recently, we have demonstrated the anti-ageing activity of telomerase by forcing telomerase expression in mice with augmented cancer resistance. Shelterin is the major protein complex bound to mammalian telomeres; however, its potential relevance for cancer and ageing remained unaddressed to date. To this end, we have generated mice conditionally deleted for the shelterin proteins TRF1, TPP1 and Rap1. The study of these mice demonstrates that telomere dysfunction, even if telomeres are of a normal length, is sufficient to produce premature tissue degeneration, acquisition of chromosomal aberrations and initiation of neoplastic lesions. These new mouse models, together with the telomerase-deficient mouse model, are valuable tools for understanding human pathologies produced by telomere dysfunction.  相似文献   

12.
Telomeres are the special heterochromatin that forms the ends of chromosomes, consisting of TTAGGG repeats and associated proteins. Telomeres protect the ends from degradation and recombination, and are essential for chromosomal stability. Both a minimal length of telomere repeats and the telomere-binding proteins are required for telomere protection. Telomerase is a DNA polymerase that specifically elongates telomeres, in this way regulating telomere length and function. A minimal telomere length is required to maintain tissue homeostasis. On one hand, critically short telomeres trigger loss of cell viability and premature death in mice deficient for telomerase activity. Furthermore, altered functioning of telomerase and telomere-interacting proteins is present in some human premature ageing syndromes and cancer. A new mouse model with critically short telomeres has been generated by over-expressing the TRF2 telomere-binding protein, K5-TRF2 mice. These mice show short telomeres in the presence of telomerase activity, leading to premature aging and increased cancer. Short telomeres in TRF2 mice can be rescued in the absence of the XPF nuclease, indicating that this enzyme rapidly degrades telomeres in the presence of increased TRF2 expression. K5-TRF2 mice represent a new tool to understand the consequences of critical telomere shortening a telomerase-proficient genetic background, more closely resembling human cancer and aging pathologies.  相似文献   

13.
14.
15.
Yoo HH  Chung IK 《Aging cell》2011,10(4):557-571
Human chromosome ends associate with shelterin, a six-protein complex that protects telomeric DNA from being recognized as sites of DNA damage. The shelterin subunit TRF2 has been implicated in the protection of chromosome ends by facilitating their organization into the protective capping structure and by associating with several accessory proteins involved in various DNA transactions. Here we describe the characterization of DDX39 DEAD-box RNA helicase as a novel TRF2-interacting protein. DDX39 directly interacts with the telomeric repeat binding factor homology domain of TRF2 via the FXLXP motif (where X is any amino acid). DDX39 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT but has no effect on telomerase activity. Whereas overexpression of DDX39 in telomerase-positive human cancer cells led to progressive telomere elongation, depletion of endogenous DDX39 by small hairpin RNA (shRNA) resulted in telomere shortening. Furthermore, depletion of DDX39 induced DNA-damage response foci at internal genome as well as telomeres as evidenced by telomere dysfunction-induced foci. Some of the metaphase chromosomes showed no telomeric signal at chromatid ends, suggesting an aberrant telomere structure. Our findings suggest that DDX39, in addition to its role in mRNA splicing and nuclear export, is required for global genome integrity as well as telomere protection and represents a new pathway for telomere maintenance by modulating telomere length homeostasis.  相似文献   

16.
Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells   总被引:2,自引:0,他引:2  
Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length.  相似文献   

17.
The review considers the function of the important chromosome regions telomeres in normal and immortal cells. Telomeres are dynamic nucleoprotein structures that cap the ends of eukaryotic chromosomes, protecting them from degradation and end-to-end fusion. The functional state of telomeres depends on many interrelated parameters such as telomerase activity, the status of the telomere safety complex shelterin, and telomere-associated proteins (replication, recombination, DNA break repair factors, etc.). Special attention is paid to the mechanisms that control the telomere length in normal and immortal cells as well as in cells containing or lacking active telomerase. The features attributed to an alternative telomere length control are analyzed, in particular, in view of a recently discovered additional mechanism of telomere shortening by t-cycle trimming. The possibility of expressing both telomerase-dependent and recombinational pathways of telomere length control in normal mammalian cells is considered, as well as the role of shelterin proteins in choosing one of them to be dominant. The review additionally discusses the role of telomeres in the spatial organization of the nucleus during mitosis and meiosis and specific telomere organizations in mammals, including Iberian shrews with their unusual or rare chromosome structures.  相似文献   

18.
Aberrant telomere homeostasis is essential for cell immortality, enabling cells to evade telomere dependent senescence. Disruption of telomere structure and function in cancer cells is highly toxic as shown by detailed pre-clinical evaluation of telomerase inhibitors. Under telomerase inhibition, cells must divide sufficiently frequently to allow one or more telomeres to shorten to an unprotected length. Functioning telomeres are disguised from the DNA damage machinery by DNA remodelling and other activities of the telomere binding complex shelterin. Direct interference with shelterin has been shown to result in cell killing and small molecules directly targeting telomere DNA also have anti-tumour effects partially dependent on shelterin disruption. However, shelterin components have not generally been regarded as therapeutic targets in their own right. In this review, we explore the possibilities for therapeutic targeting of the shelterin complex.  相似文献   

19.
Xu L  Blackburn EH 《Molecular cell》2007,28(2):315-327
Using a modified single telomere length analysis protocol (STELA) to clone and examine the sequence composition of individual human XpYp telomeres, we discovered a distinct class of extremely short telomeres in human cancer cells with active telomerase. We name them "t-stumps," to distinguish them from the well-regulated longer bulk telomeres. T-stumps contained arrangements of telomeric repeat variants and a minimal run of seven canonical telomeric TTAGGG repeats, but all could bind at least one TRF1 or TRF2 in vitro. The abundance of t-stumps was unaffected by ATM alteration but could be changed by manipulating telomerase catalytic subunit (hTERT) levels in cancer cells. We propose that in the setting of active telomerase and compromised checkpoints characteristic of human cancer cells, t-stumps define the minimal telomeric unit that can still be protected by a TRF1/TRF2-capping complex and, further, that hTERT (or telomerase) may have a role in protecting t-stumps.  相似文献   

20.
We investigated the control of telomere length by the human telomeric proteins TRF1 and TRF2. To this end, we established telomerase-positive cell lines in which the targeting of these telomeric proteins to specific telomeres could be induced. We demonstrate that their targeting leads to telomere shortening. This indicates that these proteins act in cis to repress telomere elongation. Inhibition of telomerase activity by a modified oligonucleotide did not further increase the pace of telomere erosion caused by TRF1 targeting, suggesting that telomerase itself is the target of TRF1 regulation. In contrast, TRF2 targeting and telomerase inhibition have additive effects. The possibility that TRF2 can activate a telomeric degradation pathway was directly tested in human primary cells that do not express telomerase. In these cells, overexpression of full-length TRF2 leads to an increased rate of telomere shortening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号