首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery, synthesis and preliminary SAR of a novel class of non-peptidic antagonists of the αv-integrins αvβ3 and αvβ5 is described. High-throughput screening of an extensive series of ECLiPS? compound libraries led to the identification of compound 1 as a dual inhibitor of the αv-integrins αvβ3 and αvβ5. Optimization of compound 1 involving, in part, introduction of two novel constraints led to the discovery of compounds 15a and 15b with reduced PSA and much improved potency for both the αvβ3 and αvβ5 integrins. Compounds 15a and 15b were shown to have promising activity in functional cellular assays and compound 15a also exhibited a promising Caco-2 permeability profile.  相似文献   

2.
Anosmin is an extracellular matrix protein, and genetic defects in anosmin result in human Kallmann syndrome. It functions in neural crest formation, cell adhesion, and neuronal migration. Anosmin consists of multiple domains, and it has been reported to bind heparan sulfate, FGF receptor, and UPA. In this study, we establish cell adhesion/spreading assays for anosmin and use them for antibody inhibition analyses to search for an integrin adhesion receptor. We find that α5β1, α4β1, and α9β1 integrins are needed for effective adhesive receptor function in cell adhesion and cell spreading on anosmin; adhesion is inhibited by both RGD and α4β1 CS1-based peptides. This identification of anosmin-integrin adhesion receptors should facilitate studies of anosmin function in cell and developmental biology.  相似文献   

3.
Acetylation at the α-amino terminal is a common post-translational modification of many peptides and proteins. In the case of the potent opiate peptide β-endorphin, α-N-acetylation is a known physiological modification that abolishes opiate activity. Since there are no known receptors for α-N-acetyl-β-endorphin, we have studied the association of this peptide with calmodulin, a calcium-dependent protein that binds a variety of peptides, phenothiazines, and enzymes, as a model system for studying acetylated endorphin-protein interactions. Association of the acetylated peptide with calmodulin was demonstrated by cross-linking with bis(sulfosuccinimidyl)suberate; like β-endorphin, adducts containing 1 mol and 2 mol of acetylated peptide per mole calmodulin were formed. Some of the bound peptides are evidently in relatively close proximity to each other since, in the presence of amidated (i.e., lysine-blocked) calmodulin, cross-linking yielded peptide dimers. The acetylated peptide exhibited no appreciable helicity in aqueous solution, but in trifluoroethanol (TFE) considerable helicity was formed. Also, a mixture of acetylated peptide and calmodulin was characterized by a circular dichroic spectrum indicative of induced helicity. Empirical prediction rules, applied earlier to β-endorphin, suggest that residues 14–24 exhibit α-helix potential. This segment has the potential of forming an amphipathic helix; this structural unit is believed to be important in calmodulin binding. The acetylated peptide was capable of inhibiting the calmodulin-mediated stimulation of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity with an effective dose for 50% inhibition of about 3 µM; this inhibitory effect was demonstrated using both an enzyme-enriched preparation as well as highly purified enzyme. Thus, acetylation at the α-amino terminal of β-endorphin, although abolishing opiate activity, does not interfere with the binding to calmodulin. Indeed, β-endorphin and the α-N-acetylated peptide behave very similarly with respect to calmodulin association.  相似文献   

4.
Human parechovirus (HPEV) infections are very common in early childhood and can be severe in neonates. It has been shown that integrins are important for cellular infectivity of HPEV1 through experiments using peptide blocking assays and function-blocking antibodies to αV integrins. The interaction of HPEV1 with αV integrins is presumably mediated by a C-terminal RGD motif in the capsid protein VP1. We characterized the binding of integrins αVβ3 and αVβ6 to HPEV1 by biochemical and structural studies. We showed that although HPEV1 bound efficiently to immobilized integrins, αVβ6 bound more efficiently than αVβ3 to immobilized HPEV1. Moreover, soluble αVβ6, but not αVβ3, blocked HPEV1 cellular infectivity, indicating that it is a high-affinity receptor for HPEV1. We also showed that HPEV1 binding to integrins in vitro could be partially blocked by RGD peptides. Using electron cryo-microscopy and image reconstruction, we showed that HPEV1 has the typical T=1 (pseudo T=3) organization of a picornavirus. Complexes of HPEV1 and integrins indicated that both integrin footprints reside between the 5-fold and 3-fold symmetry axes. This result does not match the RGD position predicted from the coxsackievirus A9 X-ray structure but is consistent with the predicted location of this motif in the shorter C terminus found in HPEV1. This first structural characterization of a parechovirus indicates that the differences in receptor binding are due to the amino acid differences in the integrins rather than to significantly different viral footprints.Picornaviruses consist of a positive-sense, single-stranded infectious RNA genome of approximately 7.3 kb enclosed in a capsid composed of 60 copies of each of the three or four capsid proteins (VP1 to VP4). Human parechovirus 1 (HPEV1) is a member of the Parechovirus genus of the Picornaviridae family (38, 70). There are currently eight completely sequenced human parechovirus types and 14 described types (4, 19, 24, 30, 38, 39, 51, 58, 78). In addition, the Parechovirus genus currently has four Ljungan virus members that infect rodents. HPEV1 exhibits several distinct molecular characteristics compared to other picornaviruses (38, 71). These include the lack of the maturation cleavage of the capsid proteins VP0 to VP4 (N-terminal) and VP2 (C-terminal), existence of an approximately 30-amino-acid-long extension to the N terminus of VP3, a unique nonstructural protein 2A, and a 5′ untranslated region that is more closely related to picornaviruses infecting animals than those infecting humans.HPEV infections are common during the first years of life and are often mild or asymptomatic (20, 28, 42, 73, 80). Recently, a number of new types have been identified, and their prevalence in stool samples, for example, highlights their clinical importance. Normally, they cause gastroenteritis and respiratory infections, but severe illnesses, such as infections of the central nervous system, generalized infections of neonates, and myocarditis, have also been associated with HPEV infections (1, 8, 10, 28, 80). Currently, the role of the unique molecular, structural, and antigenic characteristics of HPEVs in the pathogenesis of infection is unknown.HPEV types 1, 2, 4, 5, and 6 are known to possess an RGD motif near the C terminus of VP1 that is known to facilitate binding of cellular ligands (e.g., fibronectin) to αv integrins. The motif is in an analogous position to motifs in coxsackievirus A9 (CAV9) and echovirus 9 (EV9; Barty strain) (Fig. (Fig.1).1). The role of the RGD sequence in cellular entry and subsequent replication of HPEV1 has been shown through blocking assays with RGD-containing peptides, mutation of the sequence, and function-blocking antibodies to αv integrins (11, 43, 62, 71). These results strongly suggested that αv integrins play a central role in the initiation of HPEV1 infection. Direct involvement of αv integrins in the infectious entry of HPEV1 was further confirmed by overexpression of human αvβ1 and αvβ3 integrins in Chinese hamster ovary (CHO) cells, allowing successful virus infection (74). There are no reports yet on the identification of receptors for the HPEV types lacking the RGD motif (HPEV3, HPEV7, and HPEV8) (19, 39, 51).Open in a separate windowFIG. 1.Sequence alignments. Amino acid sequence alignment of the viral coat protein VP1 from different picornaviruses with the CAV9 secondary structure derived from the atomic model displayed above the alignment (34). The columns boxed in blue with red letters signify similarity, and the red column signifies identity. There is limited similarity between HPEV and other picornaviruses. C-terminal RGD motifs are boxed in red.Although the crystal structures of several picornaviruses have been determined (3, 26, 34, 35, 44, 57, 59, 65, 68, 72) and the receptor interactions have been studied in detail by X-ray crystallography, electron cryo-microscopy (cryo-EM), and three-dimensional (3D) image reconstruction (6, 9, 23, 31, 32, 47, 83), there is no structural information available for the parechoviruses or parechovirus-receptor complexes. Here, we compare the binding of αVβ3 and αVβ6 to HPEV1 in vitro by biochemical assays and determine the structures of HPEV1 and the corresponding HPEV1-integrin complexes.  相似文献   

5.
Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell-cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue "LERER" repeats. In fibroblasts, the Mena-α5 complex was required for "outside-in" α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins.  相似文献   

6.
7.
8.
The ATPase activity of the F1-ATPase from the thermophilic bacterium PS3 is stimulated at concentrations of rhodamine 6G up to about 10 µM where 70% stimulation is observed at 36°C. Half maximal stimulation is observed at about 3 µM dye. At rhodamine 6G concentrations greater than 10 µM, ATPase activity declines with 50% inhibition observed at about 75 µM dye. The ATPase activities of the 33 and 33 complexes assembled from isolated subunits of TF1 expressed inE. coli deleted of theunc operon respond to increasing concentrations of rhodamine 6G nearly identically to the response of TF1. In contrast, the ATPase activities of the 33 and 33 complexes are only inhibited by rhodamine 6G with 50% inhibition observed, respectively, at 35 and 75 µM dye at 36°C. The ATPase activity of TF1 is stimulated up to 4-fold by the neutral detergent, LDAO. In the presence of stimulating concentrations of LDAO, the ATPase activity of TF1 is no longer stimulated by rhodamine 6G, but rather, it is inhibited with 50% inhibition observed at about 30 µM dye at 30°C. One interpretation of these results is that binding of rhodamine 6G to a high-affinity site on TF1 stimulates ATPase activity and unmasks a low-affinity, inhibitory site for the dye which is also exposed by LDAO.  相似文献   

9.
Migration and proliferation of smooth muscle cells (SMC) are important events during arteriogenesis, but the underlying mechanism is still only partially understood. The present study investigates the expression of integrins alpha 5 beta 1 and v beta 3 as well as focal adhesion kinase (FAK) and phosphorylated FAK (pY397), key mediators for cell migration and proliferation, in collateral vessels (CV) in rabbit hind limbs induced by femoral ligation or an arteriovenous (AV) shunt created between the distal femoral artery stump and the accompanying femoral vein by confocal immunofluorescence. In addition, the effect of the extracellular matrix components fibronectin (FN), laminin (LN), and Matrigel on expression of these focal adhesion molecules proliferation was studied in cultured SMCs. We found that: (1) in normal vessels (NV), both integrins alpha 5 beta 1 and alpha v beta 3 were mainly expressed in endothelial cells, very weak in smooth muscle cells (SMC); (2) in CVs, both alpha 5 beta 1 and alpha v beta 3 were significantly upregulated (P < 0.05); this was more evident in the shunt-side CVs, 1.5 and 1.3 times higher than that in the ligation side, respectively; (3) FAK and FAK(py397) were expressed in NVs and CVs in a similar profile as was alpha 5 beta 1 and alpha v beta 3; (4) in vitro SMCs cultured on fibronectin (overexpressed in collaterals) expressed higher levels of FAK, FAK (pY397), alpha 5 beta 1, and alpha v beta 3 than on laminin, whereas SMCs growing inside Matrigel expressed little of these proteins and showed no proliferation. In conclusion, our data demonstrate for the first time that the integrin-FAK signaling axis is activated in collateral vessels and that altered expression of FN and LN may play a crucial role in mediating the integrin-FAK signaling pathway activation. These findings explain a large part of the positive remodeling that collateral vessels undergo under the influence of high fluid shear stress.  相似文献   

10.
Background information. Previous studies have reported that cross‐talk between integrins may be an important regulator of integrin—ligand binding and subsequent signalling events that control a variety of cell functions in many tissues. We previously demonstrated that αvβ5/β6 integrin represses α2β1‐dependent cell migration. The αv subunits undergo an endoproteolytic cleavage by protein convertases, whose role in tumoral invasion has remained controversial. Results. Inhibition of convertases by the convertase inhibitor α1‐PDX (α1‐antitrypsin Portland variant), leading to the cell‐surface expression of an uncleaved form of the αv integrin, stimulated cell migration toward type I collagen. Under convertase inhibition, α2β1 engagement led to enhanced phosphorylation of both FAK (focal adhesion kinase) and MAPK (mitogen‐activated protein kinase). This outside‐in signalling stimulation was associated with increased levels of activated β1 integrin located in larger than usual focal‐adhesion structures and a cell migration that was independent of the PI3K (phosphoinositide 3‐kinase)/Akt (also called protein kinase B) pathway. Conclusions. The increase in cell migration observed upon convertases inhibition appears to be due to the up‐regulation of β1 integrins and to their location in larger focal‐adhesion structures. The endoproteolytic cleavage of αv subunits is necessary for αvβ5/β6 integrin to control α2β1 function and could thus play an essential role in colon cancer cell migration.  相似文献   

11.
Although type IV collagen is heavily glycosylated, the influence of this post-translational modification on integrin binding has not been investigated. In the present study, galactosylated and nongalactosylated triple-helical peptides have been constructed containing the α1(IV)382–393 and α1(IV)531–543 sequences, which are binding sites for the α2β1 and α3β1 integrins, respectively. All peptides had triple-helical stabilities of 37 °C or greater. The galactosylation of Hyl393 in α1(IV)382–393 and Hyl540 and Hyl543 in α1(IV)531–543 had a dose-dependent influence on melanoma cell adhesion that was much more pronounced in the case of α3β1 integrin binding. Molecular modeling indicated that galactosylation occurred on the periphery of α2β1 integrin interaction with α1(IV)382–393 but right in the middle of α3β1 integrin interaction with α1(IV)531–543. The possibility of extracellular deglycosylation of type IV collagen was investigated, but no β-galactosidase-like activity capable of collagen modification was found. Thus, glycosylation of collagen can modulate integrin binding, and levels of glycosylation could be altered by reduction in expression of glycosylation enzymes but most likely not by extracellular deglycosylation activity.  相似文献   

12.
The basic structures of the catalytic portion (F1, 33) of ATP synthase are the 33 hexamer (oligomer with cooperativity) and 11 heterodimer (protomer). These were reconstituted from the and subunits of thermophilic F1 (TF1), and the 33 hexamer was crystallized. On electrophoresis, both the dimer and hexamer showed bands with ATPase activity. Using the dimer and hexamer, we studied the nucleotide-dependent rapid molecular dynamics. The formation of the hexamer required neither nucleotide nor Mg. The hexamer was dissociated into the dimer in the presence of MgADP, while the dimer was associated into the hexamer in the presence of MgATP. The hexamer, like mitochondrial F1 and TF1, showed two kinds of ATPase activity: one was cooperative and was inhibited by only one BzADP per hexamer, and the other was inhibited by three BzADP per hexamer.  相似文献   

13.
Aims: This study focused on the cloning, expression and characterization of recombinant α‐l ‐arabinosidases from Bifidobacterium longum H‐1. Methods and Results: α‐l ‐Arabinofuranosidase (AfuB‐H1) and bifunctional α‐l ‐arabinopyranosidase/β‐d ‐galactosidase (Apy‐H1) from B. longum H‐1 were identified by Southern blotting, and their recombinant enzymes were overexpressed in Escherichia coli BL21 (DE3). Recombinant AfuB‐H1 (rAfuB‐H1) was purified by single‐step Ni2+‐affinity column chromatography, whereas recombinant Apy‐H1 (rApy‐H1) was purified by serial Q‐HP and Ni2+‐affinity column chromatography. Enzymatic properties and substrate specificities of the two enzymes were assessed, and their kinetic constants were calculated. According to the results, rAfuB‐H1 hydrolysed p‐nitrophenyl‐α‐l ‐arabinofuranoside (pNP‐αL‐Af) and ginsenoside Rc, but did not hydrolyse p‐nitrophenyl‐α‐l ‐arabinopyranoside (pNP‐αL‐Ap). On the other hand, rApy‐H1 hydrolysed pNP‐αL‐Ap, p‐nitrophenyl‐β‐d ‐galactopyranoside (pNP‐βD‐Ga) and ginsenoside Rb2. Conclusions: Ginsenoside‐metabolizing bifidobacterial rAfuB‐H1 and rApy‐H1 were successfully cloned, expressed, and characterized. rAfuB‐H1 specifically recognized the α‐l ‐arabinofuranoside, whereas rApy‐H1 had dual functions, that is, it could hydrolyse both β‐d ‐galactopyranoside and α‐l ‐arabinopyranoside. Significance and Impact of the Study: These findings suggest that the biochemical properties and substrate specificities of these recombinant enzymes differ from those of previously identified α‐l ‐arabinosidases from Bifidobacterium breve K‐110 and Clostridium cellulovorans.  相似文献   

14.
α3β1 integrin has been considered to be a mysterious adhesion molecule due to the pleiotropy in its ligand-binding specificity. However, recent studies have identified laminin isoforms as high-affinity ligands for this integrin, and demonstrated that α3β1 integrin plays a number of essential roles in development and differentiation, mainly by mediating the establishment and maintenance of epithelial tissues. Furthermore, α3β1 integrin is also implicated in many other biological phenomena, including cell growth and apoptosis, angiogenesis and neural functions. This integrin receptor forms complexes with various other membrane proteins, such as the transmembrane-4 superfamily proteins (tetraspanins), cytoskeletal proteins and signaling molecules. Recently, lines of evidence have been reported showing that complex formation regulates integrin functions in cell adhesion and migration, signal transduction across cell membranes, and cytoskeletal organization. In addition to these roles in physiological processes, α3β1 integrin performs crucial functions in various pathological processes, especially in wound healing, tumor invasion and metastasis, and infection by pathogenic microorganisms.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

15.
Summary Studies on -galactosidase -complementation are reviewed. The isolation and structure of two -galactosidase fragments that form an enzymically active complex are described. One of these is a cyanogen bromide peptide from whole -galactosidase; the other is a dimeric-protein from a lacZ deletion mutant of Escherichia coli. The mechanism most likely involves an initial binding of two cyanogen bromide peptides to the dimer, followed by formation of a tetramer, and finally a slow conformational change of the complex to a native-like enzyme. The overall reaction is essentially irreversible. A region of the polypeptide chain involved in dimer-dimer contact must be supplied by the cyanogen bromide peptide. -Complemented enzyme contains overlapping sequences. Proteolytic experiments were carried out to determine the origin of the funtionally important segment. The effect on a-complementation of amino acid substitutions at four positions in the polypeptide chain was investigated. The implications of these results for -galactosidase structure and for proteins in general are discussed.  相似文献   

16.
ATP synthase (FoF1) consists of F1 (ATP-driven motor) and Fo (H+-driven motor). F1 is a complex of 33 subunits, and is the rotating cam in 33. Thermophilic F1 (TF1) is exceptional in that it can be crystallized as a monomer and an 33 oligomer, and it is sufficiently stable to allow refolding and reassembly of hybrid complexes containing 1, 2, and 3 modified or . The nucleotide-dependent open–close conversion of conformation is an inherent property of an isolated and energy and signals are transferred through / interfaces. The catalytic and noncatalytic interfaces of both mitochondrial F1 (MF1) and TF1 were analyzed by an atom search within the limits of 0.40 nm across the interfaces. Seven (plus thermophilic loop in TF1) contact areas are located at both the catalytic and noncatalytic interfaces on the open form. The number of contact areas on closed increased to 11 and 9, respectively, in the catalytic and noncatalytic interfaces. The interfaces in the barrel domain are immobile. The torsional elastic strain applied through the mobile areas is concentrated in hinge residues and the P-loop in . The notion of elastic energy in FoF1 has been revised. X-ray crystallography of F1 is a static snap shot of one state and the elastic hypotheses are still inconsistent with the structure, dyamics, and kinetics of FoF1. The domain motion and elastic energy in FoF1 will be elucidated by time-resolved crystallography.  相似文献   

17.
α- and γ-l-Glutamyl dipeptides of l-β-phenyl-β-alanine are synthesized for the first time from l-glutamic acid and l-β-phenyl-β-alanine. In addition, the preparations and the properties of new intermediates, that is, l-β-phenyl-β-alanine benzylester p-toluenesulfonate and the N-carbobenzyloxy-α- and γ-dipeptide benzylesters, are described. Further proof of the structure previously proposed for the naturally occurring peptide is obtained by a critical comparison of the isolated and synthetic materials by various physical and chemical methods.  相似文献   

18.
  1. Download : Download high-res image (138KB)
  2. Download : Download full-size image
  相似文献   

19.
The N-terminal domains VI plus V (62 kDa) and V alone (43 kDa) of the laminin α1 chain were obtained as recombinant products and shown to be folded into a native form by electron microscopy and immunological assays. Domain VI alone, which corresponds to an LN module, did not represent an autonomously folding unit in mammalian cells, however. Fragment α1VI/V, but not fragment α1V, bound to purified α1β1 and α2β1 integrins, to heparin, and to heparan sulfate-substituted domains I and V of perlecan. This localized the binding activities to the LN module, which contains two basic sequences suitable for heparin interactions.  相似文献   

20.
Beta-1 integrins have essential functions in hemopoietic and immune systems by controlling phenomenons such as cell homing and cell activation. The function α4β1 and α5β1 integrins is regulated by divalent cations and, as demonstrated more recently, by mitogenic cytokines which activate them by “inside-out” mechanisms. Using the adhesive interaction of a cytokine-dependent human hemopoietic cell line to immobilized fibronectin, we have analyzed the requirements in divalent cations Mn2+, Mg2+ and Ca2+ for α4β1 and α5β1 activation by “inside-out” mechanisms triggered by cytokines such as granulocyte-macrophage colony stimulating factor or KIT ligand, or by external conformational constraints with the function-activating anti-β1 integrin monoclonal antibody 8A2. The intrinsic difference between these two modes of β1 integrin activation was revealed by their different requirements in divalent cations. We found that in the absence of any divalent cations, α4β1 and α5β1 were non-functional even after further stimulation by cytokines or 8A2. However, whilst either Ca2+, Mg2+ or Mn2+ were able to restore adhesive functions of α4β1 and α5β1 when activated by 8A2, only Mg2+ and Mn2+ were able to support activation of α5β1 and α5β1 by cytokines. Furthermore, high concentrations of Ca2+ exceeding 20 mM dramatically inhibited cell adhesion to fibronectin induced by Mn2+ and cytokines but not by 8A2. On the contrary, in the presence of both Ca2+ and Mg2+, Mn2+ had an additive effect on the activation of α5β1 and α5β1 by mitogenic cytokines. The presence of the absence of these divalent cations did not inhibit early tyrosine phosphorylation induced by the binding of KIT ligand to its tyrosine-kinase receptor KIT. Therefore, we propose that in hemopoietic cells, Ca2+, Mg2+ and Mn2+ may modulate in vivo α4β1 and α5β1 regulation by mitogenic cytokines, a phenomenon involved in the regulation of hemopoietic progenitor cell homing within the bone marrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号