首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through a still unclear mechanism, pemphigus vulgaris autoantibodies (PV-IgG) induce intra-epidermal acantholytic lesions responsible for severe to fatal skin wounding. We present evidence that PV lesions contain apoptotic keratinocytes, and that cell death is induced in the lesional tissue apparently before cell separation. These data suggest that apoptosis could be the cause of the acantholytic phenomenon. We show that PV-IgG and an antibody against Fas receptor (anti-FasR) induce lesions in vitro in a similar way, causing: (1) secretion of soluble FasL; (2) elevated cellular amounts of FasR, FasL (soluble and membranal), Bax and p53 proteins; (3) reduction in levels of cellular Bcl-2; (4) enrichment in caspase 8, and activation of caspases 1 and 3; (5) co-aggregation of FasL and FasR with caspase 8 in membranal death-inducing signaling complex (DISC). Hence, the Fas-mediated death signaling pathway seems to be involved in lesion formation. Moreover, we have shown that in skin organ cultures and in keratinocyte cultures, PV-IgG can induce caspase activation and DNA fragmentation, and caspase inhibitors can prevent the formation of PV-IgG-induced epidermal lesions. Altogether, these results suggest that PV-IgG-induced acantholysis may proceed through the death-signaling pathway. They highlight new perspectives on mechanisms of tissue damage in autoimmune diseases.  相似文献   

2.
Skeletal muscle cells are exposed to mechanical stretch during embryogenesis. Increased stretch may contribute to cell death, and the molecular regulation by stretch remains incompletely understood. The aim of this study was to investigate the effects of cyclic stretch on cell death and apoptosis in myoblast using a Flexercell Strain Unit. Apoptosis was studied by annexin V binding and PI staining, DNA size analysis, electron microphotograph, and caspase assays. Fas/FasL expression was determined by Western blot. When myoblasts were cultured on a flexible membrane and subjected to cyclic strain stress, apoptosis was observed in a time‐dependent manner. We also determined that stretch induced cleavage of caspase‐3 and increased caspase‐3 activity. Caspase‐3 inhibition reduced stretch‐induced apoptosis. Protein levels of Fas and FasL remained unchanged. Our findings implicated that stretch‐induced cell death is an apoptotic event, and that the activation of caspase cascades is required in stretch‐induced cell apoptosis. Furthermore, we had provided evidence that caspase‐3 mediated cyclic stretch‐induced myoblast apoptosis. Mechanical forces induced activation of caspase‐3 via signaling pathways independent of Fas/FasL system. J. Cell. Biochem. 107: 834–844, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Lysophospholipids regulate a wide array of biological processes including apoptosis and neutrophil migration. Fas/Apo-1 and its ligand (FasL) participate in neuronal cell apoptosis causing various neurological diseases. Here, we use hippocampal neuroprogenitor cells to investigate how lysophosphatidylcholine (LPC) induces apoptosis in H19-7 hippocampal progenitor cells via Fas/Fas ligand-mediated apoptotic signaling pathway. Exposed cells with LPC presented on apoptotic morphology, positive TUNEL staining, and DNA fragmentation. We found that the expression of FasL was increased after LPC treatment. Furthermore, LPC-induced H19-7 cell apoptosis was decreased by agonistic anti-FasL antibody. In addition to promotion of caspase cascade activity by LPC, the administration of the caspase inhibitor, DEVD-fmk, prevented H19-7 cell apoptosis. LPC also increased the activation of nuclear factor-κB (NF-κB), which in turn, significantly increased FasL mRNA level. The increase in FasL mRNA level by NF-κB transfection was significantly decreased in the presence of IκB-SR, a super-repressor of IκB. Taken together, these results demonstrate that LPC has the ability to induce apoptosis in H19-7 cells through the upregulation of FasL expression via NF-κB activation.  相似文献   

4.
Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells   总被引:2,自引:0,他引:2  
We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to the stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis.  相似文献   

5.
Advanced glycation end-products (AGEs) are extremely accumulated in the retinal vascular and epithelial cells of diabetes mellitus (DM) patients, particularly with diabetic retinopathy (DR). To elucidate the pathogenesis of the AGE-induced toxicity to retinal epithelial cells, we investigated the role of Fas–Fas ligand (FasL) signaling and mitochondrial dysfunction in the AGE-induced apoptosis. Results demonstrated that the AGE-BSA- induced apoptosis of retinal ARPE-19 cells. And the AGE-BSA treatment caused mitochondrial dysfunction, via deregulating the B-cell lymphoma 2 (Bcl-2) signaling. Moreover, the Fas/FasL and its downstreamer Caspase 8 were promoted by the AGE-BSA treatment, and the exogenous α-Fas exacerbated the activation of Caspase 3/8. On the other side, the siRNA-mediated knockdown of Fas/FasL inhibited the AGE-BSA-induced apoptosis. Taken together, we confirmed the activation of Fas–FasL signaling and of mitochondrial dysfunction in the AGE-BSA-promoted apoptosis in retinal ARPE-19 cells, implying the important role of Fas–FasL signaling in the DR in DM.  相似文献   

6.
Apoptosis and erythrocyte senescence share the common feature of exposure of phosphatidylserine (PS) in the outer leaflet of the cells. Western analysis showed that mature red cells contain Fas, FasL, Fas-associated death domain (FADD), caspase 8, and caspase 3. Circulating, aged cells showed colocalization of Fas with the raft marker proteins Galpha(s) and CD59; the existence of Fas-associated FasL, FADD and caspase 8; and caspase 8 and caspase 3 activity. Aged red cells had significantly lower aminophospholipid translocase activity and higher levels of PS externalization in comparison with young cells. In support of our contention that caspases play a functional role in the mature red cell, the oxidatively stressed red cell recapitulated apoptotic events, including translocation of Fas into rafts, formation of a Fas-associated complex, and activation of caspases 8 and 3. These events were independent of calpain but dependent on reactive oxygen species (ROS) as evident from the effects of the ROS scavenger N-acetylcysteine. Caspase activation was associated with loss of aminophospholipid translocase activity and with PS externalization. ROS was not generated by treatment of cells with t-butyl hydroperoxide at 10 degrees C, and Fas did not translocate into rafts. Concomitantly, neither formation of a Fas-associated signaling complex nor caspase activation could be observed, supporting the view that translocation of Fas into rafts was the trigger for the chain of events leading to caspase 3 activation. Our data demonstrate for the first time the novel involvement of Fas/caspase 8/caspase 3-dependent signaling in an enucleated cell leading to PS externalization, a central feature of erythrophagocytosis and erythrocyte biology.  相似文献   

7.
CD8+ cytotoxic T cells play a critical role in initiating insulin-dependent diabetes mellitus. The relative contribution of each of the major cytotoxic pathways, perforin/granzyme and Fas/Fas ligand (FasL), in the induction of autoimmune diabetes remains controversial. To evaluate the role of each lytic pathway in beta cell lysis and induction of diabetes, we have used a transgenic mouse model in which beta cells expressing the influenza virus hemagglutinin (HA) are destroyed by HA-specific CD8+ T cells from clone-4 TCR-transgenic mice. Upon adoptive transfer of CD8+ T cells from perforin-deficient clone-4 TCR mice, there was a 30-fold increase in the number of T cells required to induce diabetes. In contrast, elimination of the Fas/FasL pathway of cytotoxicity had little consequence. When both pathways of cytolysis were eliminated, mice did not become diabetic. Using a model of spontaneous diabetes, which occurs in double transgenic neonates that express both clone-4 TCR and Ins-HA transgenes, mice deficient in either the perforin or FasL/Fas lytic pathway become diabetic soon after birth. This indicates that, in the neonate, large numbers of autoreactive CD8+ T cells can lead to destruction of islet beta cells by either pathway.  相似文献   

8.
Phenylketonuria (PKU), an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe). A recent study showed that the mitochondria-mediated (intrinsic) apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic) apoptotic pathway and endoplasmic reticulum (ER) stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h), suggesting involvement of the Fas receptor (FasR)-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.  相似文献   

9.
Cell death induced by the Fas/Fas ligand pathway and its role in pathology.   总被引:12,自引:0,他引:12  
Engagement of the cell death surface receptor Fas by Fas ligand (FasL) results in apoptotic cell death, mediated by caspase activation. Cell death mediated via Fas/FasL interaction is important for homeostasis of cells in the immune system and for maintaining immune-privileged sites in the body. Killing via the Fas/FasL pathway also constitutes an important pathway of killing for cytotoxic T cells. Fas ligand is induced in activated T cells, resulting in activation-induced cell death by the Fas/FasL pathway. Recently it has been shown that the Fas receptor can also be up-regulated following a lesion to the cell, particularly that induced by DNA-damaging agents. This can then result in killing of the cell by a Fas/FasL-dependent pathway. Up-regulation of Fas receptor following DNA damage appears to be p53 dependent.  相似文献   

10.
In T lymphocytes, the role of Akt in regulating Fas/Fas ligand (FasL)-mediated apoptotic signaling and death is not clearly understood. In this study, we observed that inhibition of Akt causes enhanced expression of FasL mRNA and protein and increased death-inducing signaling complex (DISC) formation with Fas-associated death domain (FADD) and procaspase-8 recruitment. Also, caspase-8 was activated at the DISC with accompanying decrease in c-FLIPs expression. FasL neutralizing antibody significantly decreased apoptotic death in the Akt-inhibited T cells. Additionally, Akt inhibition-induced Fas signaling was observed to link to the mitochondrial pathway via Bid cleavage. Further, inhibition of caspase-8 activity effectively blocked the loss of mitochondrial membrane potential and DNA fragmentation, suggesting that DISC formation and subsequent caspase-8 activation are critical initiating events in Akt inhibition-induced apoptotic death in T lymphocytes. These data demonstrate yet another important survival function governed by Akt kinase in T lymphocytes, which involves the regulation of FasL expression and consequent apoptotic signaling.  相似文献   

11.
Significant role for Fas in the pathogenesis of autoimmune diabetes   总被引:22,自引:0,他引:22  
Programmed cell death represents an important pathogenic mechanism in various autoimmune diseases. Type I diabetes mellitus (IDDM) is a T cell-dependent autoimmune disease resulting in selective destruction of the beta cells of the islets of Langerhans. beta cell apoptosis has been associated with IDDM onset in both animal models and newly diagnosed diabetic patients. Several apoptotic pathways have been implicated in beta cell destruction, including Fas, perforin, and TNF-alpha. Evidence for Fas-mediated lysis of beta cells in the pathogenesis of IDDM in nonobese diabetic (NOD) mice includes: 1) Fas-deficient NOD mice bearing the lpr mutation (NOD-lpr/lpr) fail to develop IDDM; 2) transgenic expression of Fas ligand (FasL) on beta cells in NOD mice may result in accelerated IDDM; and 3) irradiated NOD-lpr/lpr mice are resistant to adoptive transfer of diabetes by cells from NOD mice. However, the interpretation of these results is complicated by the abnormal immune phenotype of NOD-lpr/lpr mice. Here we present novel evidence for the role of Fas/FasL interactions in the progression of NOD diabetes using two newly derived mouse strains. We show that NOD mice heterozygous for the FasL mutation gld, which have reduced functional FasL expression on T cells but no lymphadenopathy, fail to develop IDDM. Further, we show that NOD-lpr/lpr mice bearing the scid mutation (NOD-lpr/lpr-scid/scid), which eliminates the enhanced FasL-mediated lytic activity induced by Fas deficiency, still have delayed onset and reduced incidence of IDDM after adoptive transfer of diabetogenic NOD spleen cells. These results provide evidence that Fas/FasL-mediated programmed cell death plays a significant role in the pathogenesis of autoimmune diabetes.  相似文献   

12.
13.
Fas-mediated caspase-dependent cell apoptosis has been well investigated. However, recent studies have shown that Fas can induce nonapoptotic caspase-independent cell death (CICD) when caspase activity is inhibited. Currently, the molecular mechanism of this alternative cell death mediated by Fas remains unclear. In this study, we investigated the signaling pathway of Fas-induced CICD in mouse embryonic fibroblasts (MEFs) whose caspase function was disrupted by the pan-caspase inhibitor Z-VAD-FMK and its coupling to inflammatory responses. Our results revealed that receptor-interacting protein 1 and tumor necrosis factor receptor-associated factor 2 play important roles in FasL-induced CICD. This death is associated with intracellular reactive oxygen species (ROS) production from mitochondria, as a ROS scavenger (BHA), antioxidants (trolox, NAC), and a mitochondrial respiratory chain uncoupler (rotenone) could prevent this event. Furthermore, delayed and sustained JNK activation, mitochondrial membrane potential breakdown, and loss of intracellular GSH were observed. In addition to CICD, FasL also induces cyclooxygenase-2 and MIP-2 gene upregulation, and both responses are attributed to ROS-dependent JNK activation. Taken together, these results demonstrate alternative signaling pathways of Fas upon caspase inhibition in MEFs that are unrelated to the classical apoptotic pathway, but steer cells toward necrosis and an inflammatory response through ROS production.  相似文献   

14.
Swainsonine (1, 2, 8-trihyroxyindolizidine, SW), a natural alkaloid, has been reported to exhibit anti-cancer activity on several mouse models of human cancer and human cancers in vivo. However, the mechanisms of SW-mediated tumor regression are not clear. In this study, we investigated the effects of SW on several human lung cancer cell lines in vitro. The results showed that SW significantly inhibited these cells growth through induction of apoptosis in different extent in vitro. Further studies showed that SW treatment up-regulated Bax, down-regulated Bcl-2 expression, promoted Bax translocation to mitochondria, activated mitochondria-mediated apoptotic pathway, which in turn caused the release of cytochrome c, the activation of caspase-9 and caspase-3, and the cleavage of poly (ADP-ribose) polymerase (PARP), resulting in A549 cell apoptosis. However, the expression of Fas, Fas ligand (FasL) or caspase-8 activity did not appear significant changes in the process of SW-induced apoptosis. Moreover, SW treatment inhibited Bcl-2 expression, promoted Bax translocation, cytochrome c release and caspase-3 activity in xenograft tumor cells, resulting in a significant decrease of tumor volume and tumor weight in the SW-treated xenograft mice groups in comparison to the control group. Taken together, this study demonstrated for the first time that SW inhibited A549 cancer cells growth through a mitochondria-mediated, caspase-dependent apoptotic pathway in vitro and in vivo.  相似文献   

15.
Fas ligation via the ligand FasL activates the caspase‐8/caspase‐3‐dependent extrinsic death pathway. In so‐called type II cells, an additional mechanism involving tBid‐mediated caspase‐9 activation is required to efficiently trigger cell death. Other pathways linking FasL–Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X7 receptors (P2X7Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase‐8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X7Rs participate in FasL‐stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time‐ and caspase‐8‐dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL‐induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL‐induced death. Also, oxidized‐ATP or Brilliant Blue G, two P2X7R blockers, reduced FasL‐induced caspase‐9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X7R connect functionally via caspase‐8 and Panx1 HC‐mediated ATP release to promote caspase‐9/caspase‐3‐dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. J. Cell. Physiol. 228: 485–493, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The signaling events leading to apoptosis can be divided into two major pathways, involving either mitochondria (intrinsic) or death receptors (extrinsic). In a recent study, we have shown the involvement of the mitochondria-dependent apoptotic pathway in heat-induced male germ cell apoptosis in the rat. In additional studies, using the gld (generalized lymphoproliferation disease) and lprcg (lymphoproliferation complementing gld) mice, which harbor loss-of-function mutations in Fas L and Fas, respectively, we have shown that heat-induced germ cell apoptosis is not blocked, thus providing evidence that the Fas signaling system is not required for heat-induced germ cell apoptosis in the testis. In the present study, we have found that the initiation of apoptosis in wild-type mice was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. The relocation of Bax is accompanied by sequestration of ultracondensed mitochondria into paranuclear areas of apoptotic germ cells, cytosolic translocation of mitochondrial cytochrome c and DIABLO, and is associated with activation of the initiator caspase 9 and the executioner caspase 3. Similar events were also noted in both gld and lprcg mice. Taken together, these results indicate that the mitochondria-dependent pathway is the key apoptotic pathway for heat-induced male germ cell death in mice.  相似文献   

17.
Fas (Apo-1, CD95) and Fas-Ligand (FasL, CD95L) are typical members of the TNF receptor and TNF ligand family, respectively, with a pivotal role in the regulation of apoptotic processes, including activation-induced cell death, T-cell-induced cytotoxicity, immune privilege and tumor surveillance. Impairment of the FasL/Fas system has been implicated in liver failure, autoimmune diseases and immune deficiency. Thus, the FasL/Fas system was mainly appreciated with respect to its death-inducing capabilities. However, there is increasing evidence that activation of Fas can also result in non-apoptotic responses like cell proliferation or NF-kappaB activation. While the apoptotic features of the FasL/Fas system and the pathways involved are comparably well investigated, the pathways that are utilized by Fas to transduce proliferative and activating signals are poorly understood. This review is focused on the non-apoptotic functions of the FasL/Fas system. In particular, the similarities and differences of the molecular mechanisms of apoptotic and non-apoptotic Fas signaling are addressed.  相似文献   

18.
Fas/Fas ligand system triggers apoptosis in many cell types. Bcl‐XL overexpresion antagonizes Fas/Fas ligand‐mediated cell death. The mechanism by which Bcl-XL influences Fas‐mediated cell death is unclear. We have found that microtubule‐damaging drugs (e.g. Paclitaxel) induce apoptosis in a Fas/FasL‐dependent manner. Inhibition of Fas/FasL pathway by anti‐FasL antibody, mutant Fas or a dominant negative FADD blocks paclitaxel‐induced apoptosis. Paclitaxel induced apoptosis through activation of both caspase‐8 and caspase‐3. Overexpression of Bcl‐XL leads to inhibition of paclitaxel‐induced FasL expression and apoptosis. Bcl‐XL prevents the nuclear translocation of NFAT (nuclear factor of activated T lymphocytes) by inhibiting the activation of calcineurin, a calcium‐dependent phosphatase that must dephosphorylate NFAT for it to move to the nucleus. The loop domain in Bcl‐XL can suppress the anti‐apoptotic function of Bcl‐XL and may be a target for regulatory post‐translational modifications. Upon phosphorylation, Bcl‐XL loses its ability to bind with calcineurin. Without NFAT nuclear translocation, the FasL gene is not transcribed. Thus, paclitaxel and other drugs that disturb microtubule function kill cells, at least in part, through the induction of FasL, and Bcl‐XL‐mediated resistance to these agents is related to failure to induce FasL expression.  相似文献   

19.
Fas triggers apoptosis via the caspase cascade when bound to its ligand FasL. In type I cells, Fas is concentrated into the plasma membrane lipid rafts, and these domains are required for the apoptotic signal to occur. In contrast, Fas is excluded from the microdomains in type II cells. We report that the coligation with Fas of the membrane receptor CD28 strongly increases Fas-induced apoptosis in type II T lymphocytes, whereas it has no effect in a type I cell line. The effect of CD28 is independent of its intracellular region and requires the recruitment of the microdomains. Indeed, upon CD28 costimulation, Fas is redistributed in the lipid rafts, and their disruption with a cholesterol chelator abrogates the effect of CD28. The microdomain-mediated cell death amplification does not alter death-induced signaling complex formation and is mediated by the enhancement of the mitochondrial apoptotic pathway. These findings indicate that the sensitivity to Fas-induced apoptosis of type II cells can be amplified in vivo by the recruitment of lipid rafts following interactions between nonapoptotic ligand/receptor pairs during cell-to-cell contacts.  相似文献   

20.
To elucidate cytolytic mechanisms in the channel catfish, lysates from catfish lymphoid and fibroblast cell lines were screened by Western blot analysis using a panel of antibodies reactive with components of the mammalian apoptotic pathway. Strong reactivity with three proteins (approximate Mr 70,000, 37,000, and 15,000) was seen using an antibody targeted to mammalian Fas ligand (FasL). The sizes of the two smaller proteins are consistent with their tentative designation as membrane-bound (37,000 Mr) and soluble (15,000 Mr) FasL. Treatments known to induce FasL in mammalian systems (e.g., PMA/calcium ionophore, UV-irradiation) induced expression of the 37,000-Mr protein in catfish T-cell lines. Moreover, expression of the 37,000-Mr protein in clonal T cells was up-regulated by increasing cell density. At the nucleotide level, homologues of Fas receptor (FasR), FADD, and caspase 8 were identified and characterized. These gene products likely constitute the teleost equivalent of the death-inducing signaling complex (DISC). FADD was constitutively expressed in all (T, B, macrophage, and fibroblast) cell lines examined as well as in peripheral blood lymphocytes (PBL), whereas FasR and caspase 8 were expressed in all cell lines except CCO, a FasL-positive fibroblast line. In contrast to FasL, expression of FasR and caspase 8 was inversely proportional to cell density. Collectively these studies identified four membrane-proximal proteins involved in the initiation of apoptosis in channel catfish and suggest that mechanisms of cell-mediated cytotoxicity in teleosts are similar to those used by mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号