首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The presented study aimed at investigating the residual feed intake (RFI) of Sahiwal calves, nutrient utilisation as affected by RFI and its relationship with methane (CH4) emissions and some blood metabolites. Eighteen male Sahiwal calves (10–18 months of age; mean body weight 133 kg) were fed ad libitum with a total mixed ration. After calculating RFI for individual calves (?0.40 to +0.34 kg DM/d), they were divided into three groups with low, medium and high RFI, respectively. Dry matter intake (DMI) was higher (p < 0.05) in Group High RFI, whereas digestibility of all nutrients except crude protein and ether extract was significantly higher in Group Low RFI. Nitrogen balance was also significantly higher in Group Low RFI (20.2 g/d) than in Group High RFI (17.0 g/d). Average daily gain and feed conversion ratio were similar among the groups. With exception of glucose, concentrations of all measured blood metabolites were higher in Group High RFI (p < 0.05). Compared with Group High RFI, the CH4 emission of Group Low RFI was significantly lower (on the basis g/d and g/kg DMI by 11% and 19%, respectively). Furthermore, the CH4 emission [g/d] was significantly correlated with RFI (r = 0.77). Because higher feed efficiency and less CH4 production were observed in Group Low RFI, it was concluded that RFI can be used as a measure of feed efficiency, which has a potential to select Sahiwal calves for lowered CH4 emissions.  相似文献   

2.
Data were collected on 85 Simmental and Simmental × Holstein–Friesian heifers. During the indoor winter period, they were offered grass silage ad libitum and 2 kg of concentrate daily, and individual dry matter intake (DMI) and growth was recorded over 84 days. Individual grass herbage DMI was determined at pasture over a 6-day period, using the n-alkane technique. Body condition score, skeletal measurements, ultrasonic fat and muscle depth, visual muscularity score, total tract digestibility, blood hormones, metabolites and haematology variables and activity behaviour were measured for all heifers. Phenotypic residual feed intake (RFI) was calculated for each animal as the difference between actual DMI and expected DMI during the indoor winter period. Expected DMI was calculated for each animal by regressing average daily DMI on mid-test live weight (LW)0.75 and average daily gain (ADG) over an 84-day period. Standard deviations above and below the mean were used to group animals into high (>0.5 s.d.), medium (±0.5 s.d.) and low (<0.5 s.d.) RFI. Overall mean (s.d.) values for DMI (kg/day), ADG (kg), feed conversion ratio (FCR) kg DMI/kg ADG and RFI (kg dry matter/day) were 5.82 (0.73), 0.53 (0.18), 12.24 (4.60), 0.00 (0.43), respectively, during the RFI measurement period. Mean DMI (kg/day) and ADG (kg) during the grazing season was 9.77 (1.77) and 0.77 (0.14), respectively. The RFI groups did not differ (P > 0.05) in LW, ADG or FCR at any stage of measurement. RFI was positively correlated (r = 0.59; P < 0.001) with DMI during the RFI measurement period but not with grazed grass herbage DMI (r = 0.06; P = 0.57). Low RFI heifers had 0.07 greater (P < 0.05) concentration of plasma creatinine than high RFI heifers and, during the grazed herbage intake period, spent less time standing and more time lying (P < 0.05) than high RFI heifers. However, low and high RFI groups did not differ (P > 0.05) in ultrasonic backfat thickness or muscle depth, visual muscle scores, skeletal size, total tract digestibility or blood hormone and haematology variables at any stage of the experiment. Despite a sizeable difference in intake of grass silage between low and high RFI heifers during the indoor winter period, there were no detectable differences between RFI groupings for any economically important performance traits measured when animals were offered ensiled or grazed grass herbage.  相似文献   

3.
This study examined the relationship of residual feed intake (RFI) with digestion, body composition, carcass traits and visceral organ weights in beef bulls offered a high concentrate diet. Individual dry matter (DM) intake (DMI) and growth were measured in a total of 67 Simmental bulls (mean initial BW 431 kg (s.d.=63.7)) over 3 years. Bulls were offered concentrates (860 g/kg rolled barley, 60 g/kg soya bean meal, 60 g/kg molasses and 20 g/kg minerals per vitamins) ad libitum plus 0.8 kg grass silage DM daily for 105 days pre-slaughter. Ultrasonic muscle and fat depth, body condition score (BCS), muscularity score, skeletal measurements, blood metabolites, rumen fermentation and total tract digestibility (indigestible marker) were determined. After slaughter, carcasses and perinephric and retroperitoneal fat were weighed, carcasses were graded for conformation and fat score and weight of non-carcass organs, liver, heart, kidneys, lungs, gall bladder, spleen, reticulo-rumen full and empty and intestines full, were determined. The residuals of the regression of DMI on average daily gain (ADG), mid-test metabolic BW (BW0.75) and the fixed effect of year, using all animals, were used to compute individual RFI coefficients. Animals were ranked on RFI and assigned to high (inefficient), medium or low groupings. Overall mean ADG and daily DMI were 1.6 kg (s.d.=0.36) and 9.4 kg (s.d.=1.16), respectively. High RFI bulls consumed 7 and 14% more DM than medium and low RFI bulls, respectively (P<0.001). No differences between high and low RFI bulls were detected (P>0.05) for ADG, BW, BCS, skeletal measurements, muscularity scores, ultrasonic measurements, carcass weight, perinephric and retroperitoneal fat weight, kill-out proportion and carcass conformation and fat score. However, regression analysis indicated that a 1 kg DM/day increase in RFI was associated with a decrease in kill-out proportion of 20 g/kg (P<0.05) and a decrease in carcass conformation of 0.74 units (P<0.05). Weight of non-carcass organs did not differ (P>0.05) between RFI groups except for the empty weight of reticulo-rumen, which was 8% lighter (P=0.05) in low RFI compared with high RFI bulls. Regression analysis indicated that a 1 kg DM/day increase in RFI was associated with a 1 kg increase in reticulo-rumen empty weight (P<0.05). Of the visceral organs measured, the reticulo-rumen may be a biologically significant contributory factor to variation in RFI in beef bulls finished on a high concentrate diet.  相似文献   

4.
Residual feed intake (RFI) is the difference between actual and predicted dry matter intake (DMI) of individual animals. Recent studies with Holstein-Friesian calves have identified an ~20% difference in RFI during growth (calf RFI) and these groups remained divergent in RFI during lactation. The objective of the experiment described here was to determine if cows selected for divergent RFI as calves differed in milk production, reproduction or in the profiles of BW and body condition score (BCS) change during lactation, when grazing pasture. The cows used in the experiment (n=126) had an RFI of −0.88 and +0.75 kg DM intake/day for growth as calves (efficient and inefficient calf RFI groups, respectively) and were intensively grazed at four stocking rates (SR) of 2.2, 2.6, 3.1 and 3.6 cows/ha on self-contained farmlets, over 3 years. Each SR treatment had equal number of cows identified as low and high calf RFI, with 24, 28, 34 and 40/11 ha farmlet. The cows divergent for calf RFI were randomly allocated to each SR. Although SR affected production, calf RFI group (low or high) did not affect milk production, reproduction, BW, BCS or changes in these parameters throughout lactation. The most efficient animals (low calf RFI) lost similar BW and BCS as the least efficient (high calf RFI) immediately post-calving, and regained similar BW and BCS before their next calving. These results indicate that selection for RFI as calves to increase efficiency of feed utilisation did not negatively affect farm productivity variables (milk production, BCS, BW and reproduction) as adults when managed under an intensive pastoral grazing system.  相似文献   

5.
ABSTRACT

This study was conducted to assess the effect of feeding high-surface ZnO instead of common ZnO on the performance, rumen fermentation, blood minerals, leukocytes and antioxidant capacity of pre- and post-weaning calves. Thirty male suckling Holstein calves were allotted to one of three experimental groups (10 replicates) in a completely randomised design. Calves received: (1) a low Zn diet without Zn supplementation (control diet), (2) a high Zn diet containing 50 mg supplementary Zn/kg dry matter (DM) as common ZnO or (3) a high Zn diet containing 50 mg supplementary Zn/kg DM as high-surface ZnO (nano-ZnO). The control diet contained a native Zn content of 35.5, 34.7 or 33.7 mg/kg DM for the age periods of 7 to 30, 31 to 70 and 71 to 100 d, respectively. Supplementation of the diet with Zn did not change the dry matter intake (DMI) of calves during d 7 to 30 but increased the ADG in this period (p < 0.05). During age periods of 31 to 70 and 71 to 100 d, DMI and ADG of the Zn supplemented calves were higher (p < 0.05) than the control animals. The nutrient digestibility and the concentration of rumen volatile fatty acids were positively affected (p < 0.05) and the rumen ammonia-N concentration decreased (p < 0.05) by dietary Zn supplementation. Furthermore, the incidence of diarrhoea and pneumonia was lower in calves receiving the Zn supplemented diets. Irrespective of ZnO source, the blood total antioxidant capacity, leukocyte and haematocrit levels significantly increased (p < 0.05) with the ZnO supplemented diets. The post-weaning DMI, nutrient digestibility and blood haematocrit levels were higher in calves receiving high-surface ZnO, compared to those supplemented with common ZnO. With inclusion of the Zn sources in pre- and post-weaning diets, the blood Zn concentration increased (p < 0.05), but the blood Cu, Fe, Ca, P and Mg levels remained unchanged. Regardless of source, dietary supplementation of young calves with ZnO improved the performance and decreased rumen ammonia-N and the incidence of diseases. Moreover, high-surface ZnO had advantages over common ZnO in increasing the post-weaning feed intake, digestibility and blood Zn concentration.  相似文献   

6.
We investigated the effect of chromium (Cr) supplementation on the growth performance, energy metabolites, and hormonal variation in winter-exposed buffalo calves. Twenty-four female buffalo calves were randomly allotted to four dietary treatments (n?=?6) for a period of 120 days. Feeding regimen was the same in all the groups, except the animals in the four respective groups were additionally supplemented with 0.0, 0.5, 1.0, and 1.5 mg of Cr/kg DM in the form of CrCl3.6H2O. Calves were monitored daily for physiological variables and dry matter intake (DMI). Blood samples were collected at fortnightly intervals from each buffalo calves to measure concentrations of hormones (insulin, cortisol, and growth hormone), energy metabolites (glucose and non-esterified fatty acids), and plasma mineral levels. After 120 days of feeding trial, buffalo calves fed with Cr had lower (P?<?0.05) circulating plasma concentrations of glucose, insulin, and cortisol hormones, whereas plasma thyroid hormone and non-esterified fatty acids concentrations were found similar (P?>?0.05) among all the treatments. The results suggested that dietary Cr supplementation influenced plasma Cr levels without affecting the plasma concentrations of other trace minerals. However, physiological variables, nutrient intake, and growth performance of buffalo calves did not differ among all treatments (P?>?005). In summary, the current study showed that supplementation of Cr at the level of 1.0 and 1.5 mg of Cr/kg DMI was more effective in improving glucose utilization by increasing potency of insulin hormone and reducing concentration of cortisol hormone. Results also suggested that supplemental Cr also improves blood plasma Cr levels.  相似文献   

7.
The objective of this study was to evaluate the relationship between muscle mitochondrial function and residual feed intake (RFI) in growing beef cattle. A 56-day feeding trial was conducted with 81 Angus × Hereford steers (initial BW = 378 ± 43 kg) from the University of California Sierra Foothills Research Station (Browns Valley, CA, USA). All steers were individually fed the same finishing ration (metabolizable energy = 3.28 Mcal/kg DM). Average daily gain (ADG), DM intake (DMI) and RFI were 1.82 ± 0.27, 8.89 ± 1.06 and 0.00 ± 0.55 kg/day, respectively. After the feeding trial, the steers were categorized into high, medium and low RFI groups. Low RFI steers consumed 13.6% less DM (P < 0.05) and had a 14.1% higher G : F ratio (P < 0.05) than the high RFI group. No differences between RFI groups were found in age, ADG or BW (P > 0.10). The most extreme individuals from the low and high RFI groups were selected to assess mitochondrial function (n = 5 low RFI and n = 6 high RFI). Mitochondrial respiration was measured using an oxygraph (Hansatech Instruments Ltd., Norfolk, UK). State 3 and State 4 respiration rates were similar between both groups (P > 0.10). Respiratory control ratios (RCRs, i.e., State 3 : State 4 oxygen uptakes) declined with animal age and were greater in low RFI steers (4.90) as compared to high RFI steers (4.26) when adjusted for age by analysis of covariance (P = 0.003). Mitochondrial complex II activity levels per gram of muscle were 42% greater in low RFI steers than in high RFI steers (P = 0.004). These data suggest that skeletal muscle mitochondria have greater reserve respiratory capacity and show greater coupling between respiration and phosphorylation in low RFI than in high RFI steers.  相似文献   

8.
Two half-sib families of backcross progeny were produced by mating F1 Line 1 Hereford (L1) × composite gene combination (CGC) bulls with L1 and CGC cows. Feed intake and periodic weights were measured for 218 backcross progeny. These progenies were genotyped using 232 microsatellite markers that spanned the 29 BTA. Progeny from L1 and CGC females was analysed separately using composite interval mapping to find quantitative trait loci (QTL) affecting daily dry matter intake (DMI), average daily gain (ADG), feed conversion (FCR) and residual feed intake (RFI). Results from both backcrosses were pooled to find additional QTL. In the backcross to L1, QTL were detected for RFI and DMI on BTA11, FCR on BTA16, and ADG on BTA9. In the backcross to CGC, QTL were detected for RFI on BTA10, FCR on BTA12 and 16 and ADG on BTA15 and 17. After pooling, QTL were detected for RFI on BTA 2, 6, 7, 10, 11, 13 and 16; for FCR on BTA 9, 12, 16, 17 and 21; for ADG on BTA 9, 14, 15, 17; and for DMI on BTA 2, 5, 6, 9, 10, 11, 20 and 23.  相似文献   

9.
Cellular mitochondrial function has been suggested to contribute to variation in feed efficiency (FE) among animals. The objective of this study was to determine mitochondrial abundance and activities of various mitochondrial respiratory chain complexes (complex I (CI) to complex IV (CIV)) in liver and muscle tissue from beef cattle phenotypically divergent for residual feed intake (RFI), a measure of FE. Individual DM intake (DMI) and growth were measured in purebred Simmental heifers (n = 24) and bulls (n = 28) with an initial mean BW (SD) of 372 kg (39.6) and 387 kg (50.6), respectively. All animals were offered concentrates ad libitum and 3 kg of grass silage daily, and feed intake was recorded for 70 days. Residuals of the regression of DMI on average daily gain (ADG), mid-test BW0.75 and backfat (BF), using all animals, were used to compute individual RFI coefficients. Animals were ranked within sex, by RFI into high (inefficient; top third of the population), medium (middle third of population) and low (efficient; bottom third of the population) terciles. Statistical analysis was carried out using the MIXED procedure of SAS v 9.3. Overall mean ADG (SD) and daily DMI (SD) for heifers were 1.2 (0.4) and 9.1 (0.5) kg, respectively, and for bulls were 1.8 (0.3) and 9.5 (1.02) kg, respectively. Heifers and bulls ranked as high RFI consumed 10% and 15% more (P < 0.05), respectively, than their low RFI counterparts. There was no effect of RFI on mitochondrial abundance in either liver or muscle (P > 0.05). An RFI × sex interaction was apparent for CI activity in muscle. High RFI animals had an increased activity (P < 0.05) of CIV in liver tissue compared to their low RFI counterparts; however, the relevance of that observation is not clear. Our data provide no clear evidence that cellular mitochondrial function within either skeletal muscle or hepatic tissue has an appreciable contributory role to overall variation in FE among beef cattle.  相似文献   

10.
This study evaluated the effects of folic acid (FA) supplementation on growth performance, ruminal fermentation, nutrient digestibility and urinary purine derivatives (PD) excretion in dairy calves. Forty-eight Chinese Holstein male dairy calves at 60 ± 3.2 d of age and 89 ± 5.9 kg body weight (mean ± standard error) were assigned to one of four groups in a randomised block design. Calves in control group were fed basal diet, calves in low FA, medium FA and high FA groups with 3.6, 7.2 and 10.8 mg FA per kg basal diet, respectively. The dietary corn silage to concentrate ratio was 50:50 (dry matter [DM] basis). DM intake and average daily gain (ADG) quadratically increased, and feed conversion ratio quadratically decreased with increasing FA supplementation. Ruminal pH linearly decreased, whereas total volatile fatty acids quadratically increased. The unchanged acetate-to-propionate ratio was due to the similar change in acetate and propionate concentration. Ammonia N content quadratically decreased. Digestibility of DM, organic matter, crude protein, ether extract, neutral detergent fibre and acid detergent fibre linearly increased. Activities of carboxymethyl cellulase, cellobiase, xylanase and pectinase linearly increased, but α-amylase and protease quadratically increased. Abundance of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes linearly increased, but Butyrivibrio fibrisolvens and Prevotella ruminicola quadratically increased. Urinary total PD excretion quadratically increased. The results indicated that FA supplementation increased ADG, ruminal fermentation and nutrient digestibility with promoted ruminal microbial growth and enzyme activity, and the optimum dose was 7.2 mg FA per kg basal diet for calves.  相似文献   

11.
Current trends in the beef industry focus on selecting production traits with the purpose of maximizing calf weaning weight; however, such traits may ultimately decrease overall post-weaning productivity. Therefore, the objective of this study was to evaluate the effects of actual milk yield in mature beef cows on their offspring’s dry matter intake (DMI), BW, average daily gain, feed conversion ratio (FCR) and residual feed intake (RFI) during a ~75-day backgrounding feeding trial. A period of 24-h milk production was measured with a modified weigh-suckle-weigh technique using a milking machine. After milking, cows were retrospectively classified as one of three milk yield groups: Lower (6.57±1.21 kg), Moderate (9.02±0.60 kg) or Higher (11.97±1.46 kg). Calves from Moderate and Higher milk yielding dams had greater (P<0.01) BW from day 0 until day 75 at the end of the backgrounding feeding phase; however, day 75 BW were not different (P=0.36) between Lower and Moderate calves. Body weight gain was greater (P=0.05) for Lower and Moderate calves from the day 0 BW to day 35 BW compared with Higher calves. Overall DMI was lower (P=0.03) in offspring from Lower and Moderate cows compared with their Higher milking counterparts. With the decreased DMI, FCR was lower (P=0.03) from day 0 to day 35 in calves from Lower and Moderate milk yielding dams. In addition, overall FCR was lower (P=0.02) in calves from Lower and Moderate milk yielding dams compared with calves from Higher milk yielding dams. However, calving of Lower milk yielding dams had an increased (P=0.04) efficiency from a negative RFI value compared with calves from Moderate and Higher milking dams. Results from this study suggest that increased milk production in beef cows decreases feed efficiency during a 75-day post-weaning, backgrounding period of progeny.  相似文献   

12.
With the high cost of feed for animal production, genetic selection for animals that metabolize feed more efficiently could result in substantial cost savings for cattle producers. The purpose of this study was to identify DNA markers predictive for differences among cattle for traits associated with feed efficiency. Crossbred steers were fed a high‐corn diet for 140 days and average daily feed intake (ADFI), average daily gain (ADG), and residual feed intake (RFI) phenotypes were obtained. A region on chromosome 14 was previously associated with RFI in this population of animals. To develop markers with the highest utility for predicting an animal's genetic potential for RFI, we genotyped additional markers within this chromosomal region. These polymorphisms were genotyped on the same animals (n = 1066) and tested for association with ADFI, ADG and RFI. Six markers within this region were associated with RFI ( 0.05). After conservative correction for multiple testing, one marker at 25.09 Mb remained significant (= 0.02) and is responsible for 3.6% of the RFI phenotypic variation in this population of animals. Several of these markers were also significant for ADG, although none were significant after correction. Marker alleles with positive effects on ADG corresponded to lower RFI, suggesting an effect increasing growth without increasing feed intake. All markers were also assessed for their effects on meat quality and carcass traits. All of the markers associated with RFI were associated with adjusted fat thickness (AFT, 0.009) and three were also associated with hot carcass weight (HCW, 0.003). Marker alleles associated with lower RFI were also associated with reduced AFT, and if they were associated for HCW, the effect was an increase in weight. These markers may be useful as prediction tools for animals that utilize feed more efficiently; however, validation with additional populations of cattle is required.  相似文献   

13.
This study was conducted to evaluate the effects of the dietary ratio of ruminal degraded protein (RDP) to ruminal undegraded protein (RUP) and the dry matter intake (DMI) on the intestinal flows of endogenous nitrogen (N) and amino acids (AA) in goats. The experiment was designed as a 4 × 4 Latin square using four ruminally, duodenally and ileally cannulated goats. The treatments were arranged in a 2 × 2 factorial design; two ratios of RDP to RUP (65:35 and 45:55, RDP1 and RDP2, respectively) and two levels at 95% and 75% of voluntary feed intake (DMI1 and DMI2, respectively) were fed to the goats. There were no significant differences in the N intake, duodenal flow of total N, undegraded feed N, microbial N, endogenous N or ileal flow of endogenous N, but the duodenal and ileal flow of endogenous N numerically decreased by approximately 22% and 9%, respectively, when the feed intake changed from DMI1 (0.63 kg/d) to DMI2 (0.50 kg/d). The dietary ratio of RDP to RUP had significant effects (p < 0.05) on the ileal flows of endogenous leucine, phenylalanine and cysteine. The present results implied that the duodenal flows of endogenous N and AA decreased when the dietary RDP to RUP ratio and DMI decreased, and the flow of endogenous AA at the ileum also decreased when the DMI decreased but increased with decreasing RDP to RUP ratios.  相似文献   

14.
The aim of this study was to test the hypotheses that differences in residual feed intake (RFI) of beef steers are related to diet sorting, diet nutrient composition, energy intake and apparent digestibility. To phenotype steers for RFI, 69 weaned Angus × Hereford steers were fed individually for 56 days. A finishing diet was fed twice daily on an ad libitum basis to maintain approximately 0.5 to 1.0 kg refusals. Diet offered and refused was measured daily, and DM intakes (DMI) were calculated by difference. Body weights were recorded at 14-day intervals following an 18-h solid feed withdrawal. The residual feed intake was determined as the residual of the regression of DMI versus mid-test metabolic BW (BW 0.75) and average daily gain (ADG). Particle size distributions of diet and refusals were determined using the Penn State Particle Separator to quantify diet sorting. Sampling of diet, refusals and feces were repeated in four sampling periods which occurred during weeks 2, 4, 6 and 8 of the study. Particle size distributions of refusals and diet were analyzed in weeks 2, 4 and 6, and sampling for chemical analysis of refusals and feces occurred in all four periods. Indigestible neutral detergent fiber (288 h in situ) was used as an internal marker of apparent digestibility. We conclude that preference for the intakes of particles > 19 mm and 4 to 8 mm were negatively correlated to RFI and ADG, respectively. Although steers did sort to consume a different diet composition than offered, diet sorting did not impact intake energy, digestible energy or DM digestibility.  相似文献   

15.
Residual feed intake (RFI), defined as the difference between an animal’s actual feed intake and expected feed intake over a specific period, is an inheritable character of feed conversion efficiency in dairy cows. Research has shown that a lower RFI could improve the profitability of milk production. This study explored variation in RFI by comparing the differences in body size, milk performance, feeding behavior, and serum metabolites in 29 Holstein cows in mid lactation. The cows were selected from a total of 84 animals based on their RFI following feedlot tests. Selected cows were ranked into high RFI (RFI >1 SD above the mean, n=14) and low RFI (RFI<1 SD below the mean, n=15). The low RFI cows (more efficient) consumed 1.59 kg/day less dry matter than the high RFI group (P<0.01), while they produced nearly equal 4% fat-corrected milk. The milk : feed ratio was higher for the low RFI group than for the high RFI group (P<0.05). The levels of milk protein (P<0.01), total solids (P<0.05), and nonfat solids (P<0.05) were also higher for the low RFI group, whereas milk urea nitrogen was lower (P<0.01). The daily feeding duration was shorter for the low RFI group than for the high RFI group (P<0.01). No significant differences were found in levels of glucose, β-hydroxybutyrate, prolactin, insulin, IGF-1, growth hormone or ghrelin, but the level of neuropeptide Y was higher (P<0.01) and levels of leptin and non-esterified fatty acid (P<0.05) were lower for the low RFI group than for the high RFI group. There were substantial differences between cows with different RFI, which might affect the efficiency of milk protein metabolism and fat mobilization.  相似文献   

16.
The nutritional essentialities of transition element vanadium (V) as micro-nutrient in farm animals have not yet been established, though in rat model, vanadium as vanadate has been reported to exert insulin-mimetic effect and shown to be needed for proper development of bones. The objective of this study was to determine the effect of V supplementation on growth performance, plasma hormones and bone health status in calves. Twenty-four crossbred calves (body weight 72.83 ± 2.5 kg; age 3–9 months) were blocked in four groups and randomly assigned to four treatment groups (n = 6) on body weight and age basis. Experimental animals were kept on similar feeding regimen except that different groups were supplemented with either 0, 3, 6 or 9 ppm inorganic V/kg DM. Effect of supplementation during 150-day experimental period was observed on feed intake, body weight gain, feed efficiency, body measures, endocrine variables, plasma glucose and biomarkers of bone health status. Supplementation of V did not change average daily gain (ADG), dry matter intake (DMI), feed efficiency and body measures during the experimental period. During the post-V supplementation period plasma insulin-like growth factor-1 (IGF-1), triiodothyronine (T3) and thyroxin (T4) concentrations were increased and observed highest in 9 mg V/kg DM fed calves; however, levels of insulin, glucose, parathyroid hormone (PTH) and calcitonin hormones remained similar among calves fed on basal or V-supplemented diets. Bone alkaline phosphatase (Bone-ALP) concentration was increased (P < 0.05); however, plasma protein tyrosine phosphatase (PTP) level decreased (P < 0.05) in 6 and 9 mg V/kg DM supplemented groups. Plasma hydroxyproline (Hyp) and tartrate-resistant acid phosphatase (TRAP) concentration were unchanged by V supplementation. Blood V concentration showed positive correlation with supplemental V levels. These results suggest that V may play a role in modulation of the action of certain endocrine variables and biomarkers of bone health status in growing crossbred calves.  相似文献   

17.
Feed efficiency is an economically important trait in beef cattle. Net feed efficiency, measured as residual feed intake (RFI), is the difference between actual feed intake and the predicted feed intake required for maintenance and gain of the animal. SNPs that show associations with RFI may be useful quantitative trait nucleotides for marker-assisted selection. This study identified associations between SNPs underlying five RFI QTL on five bovine chromosomes (BTA2, 5, 10, 20 and 29) with measures of dry matter intake (DMI), RFI and feed conversion ratio (FCR) in beef cattle. Six SNPs were found to have effects on RFI (P < 0.05). The largest single SNP allele substitution effect for RFI was -0.25 kg/day located on BTA2. The combined effects of the SNPs found significant in this experiment explained 6.9% of the phenotypic variation of RFI. Not all the RFI SNPs showed associations with DMI and FCR even though these traits are highly correlated with RFI (r = 0.77 and r = 0.62 respectively). This shows that these SNPs may be affecting the underlying biological mechanisms of feed efficiency beyond feed intake control and weight gain efficiency. These SNPs can be used in marker-assisted selection but first it will be important to verify these effects in independent populations of cattle.  相似文献   

18.
This study was designed to assess the effectiveness of dietary cellulase (243 U/g, derived from Neocallimastix patriciarum) and a Saccharomyces cerevisiae fermentation product (yeast product) on ruminal fermentation characteristics, enteric methane (CH4) emissions and methanogenic community in growing goats. The experiment was conducted in a 5 × 5 Latin square design using five Xiangdong black wether goats. The treatments included a Control and two levels of cellulase (0.8 g and 1.6 g/kg dry matter intake (DMI), i.e. 194 U/kg and 389 U/kg DMI, respectively) crossed over with two levels (6 g or 12 g/kg DMI) of the yeast product. There were no significant differences regarding feed intake, apparent digestibility of organic matter, neutral detergent fibre and acid detergent fibre among all the treatments. In comparison with the Control, the ruminal ammonia N concentration was decreased (= 0.001) by cellulase and yeast product addition. The activities of carboxymethylcellulase and xylanase were decreased after cellulase addition. Moreover, dietary cellulase and yeast product addition led to a significant reduction (p < 0.05) of enteric CH4 emissions although the diversity and copy numbers of methanogens among treatments were not dissimilar. The present results indicate that the combination of cellulase and yeast fermentation product can reduce the production of CH4 energy and mitigate the enteric CH4 emissions to a certain degree.  相似文献   

19.
Residual feed intake (RFI) is now considered a more reasonable metric to evaluate animal feed efficiency. In this study, the correlation between RFI and other feed efficiency traits was investigated and gene expression within the hypothalamus was determined in low RFI (LRFI) and high RFI (HRFI) ducks. Further, several hypothalamic neuropeptide genes were measured using quantitative real‐time PCR. The mean feed intake value was 160 g/day, whereas the egg mass laid (EML) and body weight were approximately 62.4 g/day and 1.46 kg respectively. Estimates for heritability of RFI, feed conversion ratio (FCR) and feed intake were 0.26, 0.18 and 0.23 respectively. RFI is phenotypically positively correlated with feed intake and FCR (< 0.01). The expression of neuropeptide Y (NPY) and neuropeptide Y receptor Y5 (NPY5R) mRNA was higher in HRFI ducks compared with LRFI ducks (< 0.05), whereas that of proopiomelanocortin (POMC), melanocortin 4 receptor (MC4R) and cholecystokinin (CCK) was lower (< 0.05). The mRNA expression of gonadotropin‐releasing hormone 1 (luteinizing‐releasing hormone) (GNRH1) and prolactin receptor (PRLR) was unchanged between LRFI and HRFI ducks. The results indicate that selection for LRFI could reduce feed intake without significant changes in EML, whereas selection on FCR will increase EML.  相似文献   

20.
The influence of slow-release urea ( urea–calcium sulphate mixture; U–CaS) in feed blocks on rumen micro-organisms, predominant cellulolytic bacteria, microbial protein synthesis and ecology was studied in Thai native beef cattle. Four animals with an initial body weight of 100 ± 3.0 kg were randomly assigned to a 4 × 4 Latin square design with four dietary treatments (U–CaS in iso-nitrogen feed blocks at 0, 120, 150 and 180 g/kg dry matter (DM), respectively; U–CaS replaced urea). After 21 days of experimental feeding, rumen fluid was collected at 0 and 4 h after feeding. The mean intake of feed blocks and other feedstuffs offered (rice straw and concentrates) amounted to 0.3, 2.3 and 0.6 kg DM/day, respectively. Inclusion of U–CaS did not altered pH and temperature in the rumen. However, ruminal NH3–N concentration decreased quadratically (p < 0.05) in response to U–CaS inclusion, with the lowest value at 180 g U–CaS per kg feed block. With inclusion of U–CaS, the populations of rumen bacteria increased quadratically (p < 0.05) and counts of fungal zoospores were linearly enhanced (p < 0.05), being highest at 180 g U–CaS per kg feed block. Supplementation of U–CaS increased the concentration of total bacteria linearly (p < 0.05) and of Fibrobacter succinogenes quadratically (p < 0.05), whereas Ruminococcus flavefaciens and Ruminococcus albus were not affected by dietary treatments. Microbial crude protein yield and efficiency of microbial nitrogen (N) synthesis were linearly increased with different levels of U–CaS addition. Furthermore, current data clearly indicate that inclusion of U–CaS in feed blocks can affect micro-organism diversity and major cellulolytic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号