首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Y. Lam  D. J. D. Nicholas 《BBA》1969,180(3):459-472
The formation of nitrite reductase and cytochrome c in Micrococcus denitrificans was repressed by O2. The purified nitrite reductase utilized reduced forms of cytochrome c, phenazine methosulphate, benzyl viologen and methyl viologen, respectively, as electron donors. The enzyme was inhibited by KCN, NaN3 and NH2OH each at 1 mM, whereas CO and bathocuproin, diethyl dithiocarbamate, o-phenanthroline and ,'-dipyridyl at 1 mM concentrations were relatively ineffective. The purified enzyme contains cytochromes, probably of the c and a2 types, in one complex. A Km of 46 μM for NO2 and a pH optimum of 6.7 were recorded for the enzyme. The molecular weight of the enzyme was estimated to be around 130000, and its anodic mobility was 6.8·10−6 cm2·sec−1·V−1 at pH 4.55.

The most highly purified nitrite reductase still exhibited cytochrome c oxidase activity with a Km of 27 μM for O2. This activity was also inhibited by KCN, NaN3 and NH2OH and by NO2.

A constitutive cytochrome oxidase associated with membranes was also isolated from cells grown anaerobically with NO2. It was inhibited by smaller amounts of KCN, NaN3 and NH2OH than the cytochrome oxidase activity of the nitrite reductase enzyme and also differed in having a pH optimum of about 8 and a Km for O2 of less than 0.1 μM. Spectroscopically, cytochromes b and c were found to be associated with the constitutive oxidase in the particulate preparation. Its activity was also inhibited by NO2.

The physiological role of the cytochrome oxidase activity associated with the purified nitrite reductase is likely to be of secondary importance for the following reasons: (a) it accounts for less than 10% of total cytochrome c oxidase activity of cell extracts; (b) the constitutive cytochrome c oxidase has a smaller Km for O2 and would therefore be expected to function more efficiently especially at low concentrations of O2.  相似文献   


2.
Joseph C. O'Kelley  Alvin Nason 《BBA》1970,205(3):426-436
1. The nitrite oxidase particles obtained by sonic oscillation of Nitrobacter agilis cells also possessed appreciable formate oxidase activity, ranging from about 25 to 50% of the nitrite oxidase activity depending upon the N. agilis strain. Both activities distributed themselves in the same pattern and proportions during differential centrifugation, and resided solely in the pellet resulting from high-speed centrifugation.

2. Difference spectra of formate-reduced particles or intact cells demonstrated the presence of cytochromes of the c- and a-types like those of the NO2-reduced material. Under anaerobic conditions NO3 or fumarate acted as an alternate electron acceptor in place of O2 in formate oxidation. Under aerobic conditions increasing NO3 concentrations resulted in (a) an increased role of NO3 as a terminal electron acceptor compared to O2, (b) a greater total enzymatic transfer of electrons from formate than if O2 were the sole electron acceptor, and (c) a partial inhibition of O2 uptake suggestive of a competition for electrons by the two acceptors. The formate oxidase system failed to catalyze consistently the transfer of electrons to either added mammalian cytochrome c or Fe(CN)63−. The marked sensitivity of the system to certain inhibitors implicated cytochrome oxidase as an integral part of the formate oxidase. The system was also inhibited significantly by a variety of chelating agents, indicating a metal component in the formate dehydrogenase or early portion of the electron transfer sequence.

3. The stoichiometry of the formate oxidase system was shown to approach the theoretical value of 2 moles of CO2 evolved per mole of O2 or per 2 moles of formate consumed.

4. To a limited extent, phosphorylation occurred concomittantly with the oxidation of formate in the presence of the cell-free particulate system.  相似文献   


3.
1. Fluoride is a mixed-type inhibitor of the cytochrome c oxidase activity with a Ki for the free enzyme of 10 mM and a Ki for the cytochrome c-complexed enzyme of 35 mM.

2. Fluoride shifts the γ-band of the enzyme from 423 to 421 nm and the -band from 597 to 598 nm. The difference spectrum (oxidized enzyme in the presence of fluoride minus oxidized enzyme) has peaks at 400, 453, 482, 605 and 638 nm and troughs at 430, 520, 552 and 674 nm. The changes in absorbance are small (about 3% at absorbance maxima) with respect to those of other hemoproteins.

3. On addition of fluoride to isolated cytochrome c oxidase 3 reactions can be distinguished: (I) a bimolecular binding reaction (Kon = 4 M−1 · s−1 and koff = 2.9 · 10−2s−1 at 25 °C, pH 7.4) contributing at 638 nm and 430 nm; (II) a first-order reaction (k = 2.4 · 10−2) s−1 at 22 °C, pH 7.2) visible mainly at 430 nm and (III) a very slow reaction with a half-time in the order of 10 min.

4. The spectroscopic dissociation constants for the fluoride binding, determined from Hill plots using the absorbance changes at 638 and 430 nm, are similar (7 and 10 mM, respectively, at 22 °C, pH 7.2).

5. A mechanism for the reaction is discussed in which the bimolecular binding reaction is followed by a conformational change of the enzyme-fluoride complex.  相似文献   


4.
1. The reduction of cytochrome c oxidase by hydrated electrons was studied in the absence and presence of cytochrome c.

2. Hydrated electrons do not readily reduce the heme of cytochrome c oxidase. This observation supports our previous conclusion that heme a is not directly exposed to the solvent.

3. In a mixture of cytochrome c and cytochrome c oxidase, cytochrome c is first reduced by hydrated electrons (k = 4 · 1010 M−1 · s−1 at 22 °C and pH 7.2) after which it transfers electrons to cytochrome c oxidase with a rate constant of 6 · 107 M−1 · s−1 at 22 °C and pH 7.2.

4. It was found that two equivalents of cytochrome c are oxidized initially per equivalent of heme a reduced, showing that one electron is accepted by a second electron acceptor, probably one of the copper atoms of cytochrome c oxidase.

5. After the initial reduction, redistribution of electrons takes place until an equilibrium is reached similar to that found in redox experiments of Tiesjema, R. H., Muijsers, A. O. and Van Gelder, B. F. (1973) Biochim. Biophys. Acta 305, 19–28.  相似文献   


5.
Hiroshi Seki  Yael A. Ilan  Yigal Ilan  Gabriel Stein   《BBA》1976,440(3):573-586
The reduction of ferricytochrome c by O2 and CO2 was studied in the pH range 6.6–9.2 and Arrhenius as well as Eyring parameters were derived from the rate constants and their temperature dependence. Ionic effects on the rate indicate that the redox process proceeds through a multiply-positively charged interaction site on cytochrome c. It is shown that the reaction with O2 and correspondingly with O2 of ferrocytochrome c) is by a factor of approx. 103 slower than warranted by factors such as redox potential. Evidence is adduced to support the view that this slowness is connected with the role of water in the interaction between O2/O2 and ferri-ferrocytochrome c in the positively charged interaction site on cytochrome c in which water molecules are specifically involved in maintaining the local structure of cytochrome c and participate in the process of electron equivalent transfer.  相似文献   

6.
J. Butler  G.G. Jayson  A.J. Swallow 《BBA》1975,408(3):215-222

1. 1. The superoxide anion radical (O2) reacts with ferricytochrome c to form ferrocytochrome c. No intermediate complexes are observable. No reaction could be detected between O2 and ferrocytochrome c.

2. 2. At 20 °C the rate constant for the reaction at pH 4.7 to 6.7 is 1.4 · 106 M−1 · s−1 and as the pH increases above 6.7 the rate constant steadily decreases. The dependence on pH is the same for tuna heart and horse heart cytochrome c. No reaction could be demonstrated between O2 and the form of cytochrome c which exists above pH ≈ 9.2. The dependence of the rate constant on pH can be explained if cytochrome c has pKs of 7.45 and 9.2, and O2 reacts with the form present below pH 7.45 with k = 1.4 · 106 M−1 · s−1, the form above pH 7.45 with k = 3.0 · 105 M−1 · s−1, and the form present above pH 9.2 with k = 0.

3. 3. The reaction has an activation energy of 20 kJ mol−1 and an enthalpy of activation at 25 °C of 18 kJ mol−1 both above and below pH 7.45. It is suggested that O2 may reduce cytochrome c through a track composed of aromatic amino acids, and that little protein rearrangement is required for the formation of the activated complex.

4. 4. No reduction of ferricytochrome c by HO2 radicals could be demonstrated at pH 1.2–6.2 but at pH 5.3, HO2 radicals oxidize ferrocytochrome c with a rate constant of about 5 · 105–5 · 106 M−1 · s−1

.  相似文献   


7.
Philip John  F. R. Whatley 《BBA》1970,216(2):342-352
A procedure is described for preparing particles from cells of Micrococcus denitrificans which were broken osmotically after treatment with lysozyme.

1. 1. The preparations catalysed ATP synthesis coupled to O2 uptake or NO3 reduction. With NADH or succinate as the electron donors the P:O ratios were about 1.5 and 0.5, respectively; and the P:NO3 ratios were about 0.9 and 0.06, respectively.

2. 2. Addition of ADP or Pi to the reaction mixture increased the rates of NADH-dependent O2 uptake and NO3 reduction. Addition of 1 mM 2,4-dinitrophenol, which inhibited phosphorylation by 50–60%, increased the basal rates of electron transport.

3. 3. Evidence derived from spectrophotometry and from the differential inhibition by antimycin A of O2 and NO3 reduction leads to the conclusion that the nitrate reductase interacted with the respiratory chain in the region of the b-type cytochrome, and that the c-type cytochrome present was not involved in the reduction of NO3 to NO2.

Abbreviations: TMPD; tetramethyl-p-phenylenediamine  相似文献   


8.
T. C. Morton  R. W. Henderson 《BBA》1972,267(3):485-492
1. Haem c was synthesized and purified. It was shown unequivocally that the method gives a product with the cysteine residues on the -carbon atoms at the 2 and 4 positions of the haem.

2. Redox potentials of haem c in the presence of 2.5 M pyridine were determined in the pH range 1.5–13; it was found necessary to add cetyl trimethyl ammonium bromide (CTAB) to prevent precipitation in the acid range below about pH 4. The Em vs pH curve shows three slopes (−dE/dpH) of value, 0.18, 0.01 and 0.06 with points of inflexion at pH 3.8 and 10.6. The potentials are intermediate between those of protohaem and mesohaem obtained under similar conditions.

3. With constant haem c concentration (a) 10−4 M and (b) 10−5 M and varying pyridine concentration (0.12–5 M) it was found at pH 9.0 that Em values increased as the pyridine concentration was increased and there was a tendency to reach a plateau value. The explanation appears to be that pyridine binds more firmly to ferroporphyrin c than to ferriporhyrin c.

4. When the pyridine concentration was kept constant (2.5 M) and the haem c concentration was varied in the range 7 · 10−4–7 · 10−6 M, it was found that a decrease in haem c concentration brought about an increase in redox potential. The results are explained as being due to dimerization of the oxidized form.

5. The results are discussed in comparison with a number of related haem systems.  相似文献   


9.
The concentration of nitrite (NO2) increases under inflammatory conditions. However, the physiological role of nitrite is so far controversial discussed: it was reported that effects of HOCl (an important inflammation mediator) on phospholipids (PL) may be enhanced but also reduced in the presence of nitrite.

In this paper a simple model system was used: unsaturated phosphatidylcholine (PC) vesicles were treated with HOCl in the presence of varying NaNO2 concentrations and the yield of reaction products was determined by MALDI-TOF MS: the extent of chlorohydrin generation was significantly reduced in the presence of NaNO2 because HOCl is consumed by the oxidation of NO2 to NO3.

Similar results were obtained when HOCl was generated by the myeloperoxidase (MPO)/H2O2/Cl system or the experiments were carried out in the presence of a simple peptide. It is concluded that the transient products of the reaction between HOCl and NO2 do not have a sufficient reactivity to modify PL.  相似文献   


10.
M. Gutman  A. Schejter  Y. Avi-Dor 《BBA》1968,162(4):506-517
1. The membrane bound DPNH oxidase of Escherichia coli can reduce the artificial electron acceptors: ferricyanide, dichlorophenolindophenol (DCIP) and menadione. All three are reduced by the flavoprotein of DPNH oxidase, but at different sites of the enzyme.

2. Freeze-drying of the bacterial membranes causes a selective detachment of DPNH dehydrogenase (DPNH: (acceptor) oxidoreductase, EC 1.6.99.3) from the membranes. This solubilization is accompanied by a decrease of Km(K3Fe(CN)6) from 2.0 to 0.25 mM, while no change is detected in Km(DPNH). This enzyme is not the DPNH diaphorase found in the bacteria.

3. DPNH dehydrogenase of E. coli is a metalloflavoprotein, containing non-heme iron, labile sulfide, FMN and FAD.

4. Reduction of the enzyme with DPNH in the absence of electron acceptor (ferricyanide or DCIP) causes a rapid and irreversible change to a less active state, Form II. Form II is characterized by a higher Km(DPNH) and slower vmax., while the Km(K3Fe(CN)6) remains unchanged.

5. The transformation of the enzyme to Form II is accompanied by the reduction of the non-heme iron component. The role of non-heme iron in the enzymic reaction is discussed.  相似文献   


11.
Nitrogen dioxide (NO2) is a key biological oxidant. It can be derived from peroxynitrite via the interaction of nitric oxide with superoxide, from nitrite with peroxidases, or from autoxidation of nitric oxide. In this study, submicromolar concentrations of NO2 were generated in < 1 μs using pulse radiolysis, and the kinetics of scavenging NO2 by glutathione, cysteine, or uric acid were monitored by spectrophotometry. The formation of the urate radical was observed directly, while the production of the oxidizing radical obtained on reaction of NO2 with the thiols (the thiyl radical) was monitored via oxidation of 2,2′-azino-bis-(3-ethylthiazoline-6-sulfonic acid). At pH 7.4, rate constants for reaction of NO2 with glutathione, cysteine, and urate were estimated as 2 × 107, 5 × 107, and 2 × 107 M−1 s−1, respectively. The variation of these rate constants with pH indicated that thiolate reacted much faster than undissociated thiol. The dissociation of urate also accelerated reaction with NO2 at pH > 8. The thiyl radical from GSH reacted with urate with a rate constant of 3 × 107 M−1 s−1. The implications of these values are: (i) the lifetime of NO2 in cytosol is < 10 μs; (ii) thiols are the dominant ‘sink’ for NO2 in cells/tissue, whereas urate is also a major scavenger in plasma; (iii) the diffusion distance of NO2 is 0.2 μm in the cytoplasm and < 0.8 μm in plasma; (iv) urate protects GSH against depletion on oxidative challenge from NO2; and (v) reactions between NO2 and thiols/urate severely limit the likelihood of reaction of NO2 with NO• to form N2O3 in the cytoplasm.  相似文献   

12.
A field study measured the rate of soil mineral N supply and its effects on plant biomass and N accumulation in a 13-year-old, naturally regenerating, calcareous grassland. Gross rates of N mineralisation (2 μg g−1 day−1, i.e. 0.69 kg ha−1 day−1), assessed using 15N pool dilution, were at the lower end of the range previously reported for grasslands. Weekly additions of liquid N fertiliser ([NH4]2SO4, NH4NO3 or KNO3) and, to a lesser extent the addition of water, increased plant growth substantially, demonstrating that the primary constraint to plant growth was low N availability. In plants that had received NO3, the activity of the inducible enzyme nitrate reductase in shoots initially increased in proportion to the amount of NO3 supplied. However, as above-ground herbage accumulated, nitrate reductase activity declined to similar low levels in all treatments, despite the continuance of the constant NO3 additions. The decline in NR specific activity reflected declining tissue NO3 concentrations, although total plant NRA may have remained constant during the period of study. The study has shown that plant growth is limited by low N mineralisation rates and indeed the soil is a sink for much added N. Low water availability provides an additional constraint on N mineralisation in this calcareous grassland soil. Any disturbances in the N cycle which increase the availability of mineral N will result in a substantial increase in plant growth within this ecosystem.  相似文献   

13.
Satoru Higashi  Kiyozo Kawai 《BBA》1970,216(2):274-281
1. The spermatozoa of the freshwater mussel (Hyriopsis schlegelii) contain cytochromes aa3, b and c, flavoproteins and nicotinamide nucleotides in molar ratios of 1.0:0.9:1.8:1.8:8.7. Cytochrome c1 is not detectable even at liquid-N2 temperature, but a c1-like cytochrome with an -band at 550 mμ is found at liquid-N2 temperature in a cell preparation from which cytochrome c is completely removed.

2. The near-ultraviolet difference spectrum of whole cells reveals an absorption peak at 315 mμ with a shoulder around 350 mμ.

3. Both the endogenous respiration and motility of spermatozoa are completely blocked by 0.2 mM CN and by 0.2 μM antimycin A. 2,4-Dinitrophenol and pentachlorophenol completely inhibit motility at the maximal stimulation of respiration. Rotenone strongly inhibits NADH oxidase of spermatozoa, although it has no effect on the respiration of whole cells.

4. It is concluded that the motility of mussel spermatozoa is tightly coupled to respiration, and the respiratory chain phosphorylating process is the only energy-supplying system for motility.  相似文献   


14.
Laboratory-scale experiments were conducted to examine the N2O emission during the denitrification process. For each of the 6 runs carried out, synthetic effluent was fed in a 10 l batch mixed liquor to investigate the effect of nitrite on N2O emission and Helium was continuously bubbled through the reactor at constant rate (0.12 l/min) to favour N2O transfer and detection. An increasing COD/NO3-N influent ratio from 3 to 7 was firstly applied (runs 1–3). Secondly, NO2 pulse additions were performed during run 4 and 5 (10 and 20 mg N/l, respectively). Finally, the reactor was fed with influent containing both NO2 and NO3. We showed that N2O emission was detected shortly after NO2 accumulation, few minutes after the substrate feeding. The highest emission occurred at the lower COD/NO3-N ratio (=3) and at the higher NO2 addition (20 mg N/l). In addition, the higher nitrogen conversion to N2O gas (14.4%) was obtained with an influent containing initially both NO2 and NO3. Our results suggest a direct effect of the NO2 concentration on the N2O emission. We have also confirmed the inhibitory effect of NO2 concentration on N2O reduction.  相似文献   

15.
1. Rate constants for reduction of paraquat ion (1,1′-dimethyl-4,4′-bipyridy-lium, PQ2+) to paraquat radical (PQ+·) by eaq and CO2· have been measured by pulse radiolysis. Reduction by eaq is diffusion controlled (k = 8.4·1010 M−1·s−1) and reduction by CO2· is also very fast k = 1.5·1010 M−1·s−1).

2. The reaction of paraquat radical with oxygen has been analysed to give rate constants of 7.7·108 M−1·s−1 and 6.5·108 M−1·s−1 for the reactions of paraquat radical with O2 and O2·, respectively. The similarity in these rate constants is in marked contrast to the difference in redox potentials of O2 and O2· (− 0.59 V and + 1.12 V, respectively).

3. These rate constants, together with that for the self-reaction of O2·, have been used to calculate the steady-state concentration of O2· under conditions thought to apply at the site of reduction of paraquat in the plant cell. On the basis of these calculations the decay of O2· appears to be governed almost entirely by its self-reaction, and the concentration 5 μm away from the thylakoid is still 90% of that at the thylakoid itself. Thus, O2· persists long enough to diffuse as far as the chloroplast envelope and tonoplast, which are the first structures to be damaged by paraquat treatment. O2· is therefore sufficiently long-lived to be a candidate for the phytotoxic product formed by paraquat in plants.  相似文献   


16.
J. A. Berden  E. C. Slater 《BBA》1970,216(2):237-249
1. Succinate-cytochrome c reductase activity was reconstituted by incubating a mixture of succinate dehydrogenase, cytochrome c1, ubiquinone-10, phospholipid and a preparation of cytochrome b, made by the method of .

2. Preparations of cytochrome b active in reconstitution contained 5–28% native cytochrome b, as adjudged by reducibility with succinate in the reconstituted preparation and by lack of reaction with CO. Preparations of cytochrome b containing no native cytochrome b according to this criterion were inactive in reconstitution.

3. With a fixed amount of cytochrome b, the activity of the reconstituted preparation increased with increasing amounts of cytochrome c1 until a ratio of about 2b (total): 1c1 (allowing for the cytochrome c1 present in the cytochrome b preparation) was reached.

4. The amount of antimycin necessary for maximal inhibition of the reconstituted enzyme is a function of the amount of the cytochrome b and is independent of the amount of cytochrome c1. It is equal to about one half the amount of native cytochrome b.

5. Preparations of intact or reconstituted succinate-cytochrome c reductase or of cytochrome b completely quench the fluorescence of added antimycin, until an amount of antimycin equal to onehalf the amount of native cytochrome b present was added. Antimycin added in excess of this amount fluoresces with normal intensity. The quenching is only partial in the presence of Na2S2O4. Denatured cytochrome b does not quench the fluorescence.

6. Since preparations of cytochrome b active in reconstitution contained cytochrome c1 in an amount exceeding one half the amount of native cytochrome b present in the preparation, there is no evidence that native cytochrome b has been resolved from cytochrome c1. The stimulatory action of cytochrome c1 may be due to the restoration of a damaged membrane conformation.

7. Based on the assumption that the bc1 segment of the respiratory chain contains 2b:1c1:1 antimycin-binding sites, the specific quenching of antimycin fluorescence by binding to cytochrome b enables an accurate determination of the absorbance coefficients of cytochromes b and c1. These are 25.6 and 20.1 mM−1×cm−1 for the wavelength pairs 563–577 nm and 553–539 nm, respectively, in the difference spectrum reduced minus oxidized.  相似文献   


17.
The perchlorate (ClO4)-respiring organism, strain perc1ace, can grow using nitrate (NO3) as a terminal electron acceptor. In resting cell suspensions, NO3 grown cells reduced ClO4, and ClO4 grown cells reduced NO3. Activity assays showed that nitrate reductase (NR) activity was 1.31 μmol min−1 (mg protein)−1 in ClO4 grown cells, and perchlorate reductase (PR) activity was 4.24 μmol min−1 (mg protein)−1 in NO3 grown cells. PR activity was detected within the periplasmic space, with activities as high as 14 μmol min−1 (mg protein)−1. The NR had a pH optimum of 9.0 while the PR had an optimum of 8.0. This study suggests that separate terminal reductases are present in strain perclace to reduce NO3 and ClO4.  相似文献   

18.
Eugene Mochan  Hans Degn 《BBA》1969,189(3):354-359
1. Ferricytochrome c acts as a catalyst in the peroxidation of ferrocytochrome c thereby giving rise to an autocatalytic reaction.

2. The rate of the peroxidation reaction is proportional to the concentration of H2O2 and ferricytochrome c but is independent of the concentration of ferrocytochrome c in the concentration ranges studied.

3. Integration of the rate equation, d[c3+]/dt = k[c3+][H2O2], gives a theoretical expression which fits the experimental time courses for the ferrocytochrome c peroxidation reaction.

4. No direct spectral evidence was found for the formation of a catalytically active ferricytochrome c-H2O2 derivative. Kinetic evidence is presented, however, which indicates the existence of such an intermediate.

5. Ferricytochrome c was more susceptible than ferrocytochrome c to an apparent degradation reaction caused by excess H2O2, thus supporting the idea that the cytochrome c heme iron is more accessible in the oxidized form.  相似文献   


19.
A novel nutrient removal/waste heat utilization process was simulated using semicontinuous cultures of the thermophilic cyanobacterium Fischerella. Dissolved inorganic carbon (DIC)-enriched cultures, maintained with 10 mg l−1 daily productivity, diurnally varying temperature (from 55°C to 26–28°C), a 12:12 light cycle (200 μE sec−1 m−2) and 50% biomass recycling into heated effluent at the beginning of each light period, removed > 95% of NO3 + NO2−N, 71% of NH3-N, 82% of PO43− −P, and 70% of total P from effluent water samples containing approximately 400 μg l−1 combined N and 60 μg l−1 P. Nutrient removal was not severely impaired by an altered temperature gradient, doubled light intensity, or DIC limitation. Recycling 75% of the biomass at the end of each light period resulted in unimpaired NO3 + NO2 removal, 38–45% P removal and no net NH3 removal. Diurnally varying P removal, averaging 50–60%, and nearly constant > 80% N removal, are therefore projected for a full-scale process with continuous biomass recycling.  相似文献   

20.
The kinetics of the reaction of hydrated electron (eaq) and carboxyl anion radical (CO2) with Pseudomonas aeruginosa ferricytochrome c-551 were studied by pulse radiolysis. The rate of reaction of eaq with the negatively charged ferricytochrome c-551 (17 nM−1 · s−1) is significantly slower than the larger positively charged horse heart ferricytochrome c (70 nM · s). This difference cannot be explained solely by electrostatic effects on the diffusion-controlled reactions. After the initial encounter of eaq with the protein, ferricytochrome c-551 is less effective in transferring an electron to the heme which may be due to the negative charge on the protein. The charge on ferricytochrome c-551 is estimated to be −5 at pH 7 from the effect of ionic strength on the reaction rate. A slower relaxation (2 · 104 s−1) observed after fast eaq reduction is attributed to a small conformational change. The rate of reaction of CO2 with ferricytochrome c-551 (0.7 nM−1 · s) is, after electrostatic correction, the same as ferricytochrome c, indicating that the steric requirements for reaction are similar. This reaction probably takes place through the exposed heme edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号