首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A particulate enzyme preparation from horseradish root tissue was shown to catalyze the transfer of 2-acetamido-2-deoxy-D-[14C1]glucose from uridine diphosphate 2-acetamido-2-deoxy-D-[14C1]glucose to an exogenous acceptor molecule derived from horseradish peroxidase. The acceptor was produced from purified peroxidase by the action of a mixture of glycoside hydrolases covalently bound to Sepharose. The membrane preparation containing the transferase was purified approximately 12-fold by aqueous two phase distribution and by discontinuous sucrose density gradient centrifugation. Hydrolysis of the reaction product yielded glucosamine as the only radio-labeled substance. Precipitation of the reaction product by antiserum against peroxidase showed that the label was incorporated into peroxidase. The transferase utilized the acceptor most efficiently when only 12% of the 2-acetamido-2-deoxy-D-glucose was removed from the acceptor. The acceptor lost no accepting capabilities when heated to 100 degrees C for 3 min prior to assay. Trypsin treatment caused a 14% decrease in label incorporated while pronase treatment caused a 93% decrease,  相似文献   

2.
Dextransucrase from Leuconostoc mesenteroides B-512 catalyzes the polymerization of dextran from sucrose. The resulting dextran has 95% α-1 → 6 linkages and 5% α-1 → 3 branch linkages. A purified dextransucrase was insolubilized on Bio-Gel P-2 beads (BGD, Bio-Gel-dextransucrase). The BGD was labeled by incubating it with a very low concentration of [14C]sucrose or it was first charged with nonlabeled sucrose and then labeled with a very low concentration of [14C]sucrose. After extensive washings with buffer, the 14C label remained attached to BGD. This labeled material was previously shown to be [14C]dextran and was postulated to be attached covalently at the reducing end to the active site of the enzyme. When the labeled BGD was incubated with a low molecular weight nonlabeled dextran (acceptor dextran) all of the BGD-bound label was released as [14C]dextran whereas essentially no [14C]dextran was released when the labeled BGD was incubated in buffer alone under comparable conditions. The released [14C]dextran was shown to be a slightly branched dextran by hydrolysis with an exodextranase. Acetolysis of the released dextran gave 7.3% of the radioactivity in nigerose. Reduction with sodium borohydride, followed by acid hydrolysis, gave all of the radioactivity in glucose, indicating that the nigerose was exclusively labeled in the nonreducing glucose unit. These results indicated that [14C]dextran was being released from BGD by virtue of the action of the low molecular weight dextran and that this action gave the formation of a new α-1 → 3 branch linkage. A mehanism for branching is proposed in which a C3-OH on an acceptor dextran acts as a nucleophile on C1 of the reducing end of a dextranosyl-dextransucrase complex, thereby displacing dextran from dextransucrase and forming an α-1 → 3 branch linkage. It is argued that the biosynthesis of branched linkages does not require a separate branching enzyme but can take place by reactions of an acceptor dextran with a dextranosyl-dextransucrase complex.  相似文献   

3.
The synthesis of fatty acids and lipids in Nannochloropsis sp. was investigated by labeling cells in vivo with [14C]-bicarbonate or [14C]-acetate. [14C]-bicarbonate was incorporated to the greatest extent into 16:0, 16:1, and 14:0 fatty acids, which are the predominant fatty acids of triacylglycerols. However, more than half of the [14C]-acetate was incorporated into longer and more desaturated fatty acids, which are constituents of membrane lipids. [14C]-acetate was incorporated most strongly into phosphatidylcholine, which rapidly lost label during a 5-h chase period. The label associated with phosphatidylethanolamine also decreased during the chase period, whereas label in other membrane lipids and triacylglycerol increased. The dynamics of labeling, along with information regarding the acyl compositions of various lipids, suggests that 1) the primary products of chloroplast fatty acid synthesis are 14:0, 16:0, and 16:1; 2) C20 fatty acids are formed by an elongation reaction that can utilize externally supplied acetate; 3) phosphatidylcholine is a site for desaturation of C18 fatty acids; and 4) phosphatidylethanolamine may be a site for desaturation of C20 fatty acids.  相似文献   

4.
D,L-Homocysteine, at the concentration of 10 mM, inhibited the methylation reaction of sterol side chain in cell-free extract of yeast, but did not inhibit 14C-incorporation from [14C]mevalonate into nonsaponifiable lipids. Under this condition, a radioactive C27-sterol was accumulated. Examination by gas-chromatography on a DEGS column, partial hydrogenation, side chain cleavage, and by methylation with crude methyl transferase preparation, suggested the accumulated sterol to be 5α-cholesta-7, 24-diene-3 β-ol. The possible role of this sterol as a natural acceptor of the methyl group in ergosterol biosynthesis of yeast was discussed.  相似文献   

5.
When a membrane preparation from the lactating bovine mammary gland is incubated with GDP-[14C] mannose, mannose is incorporated into a [14C] mannolipid, a [Man-14C] oligosaccharide-lipid, and metabolically stable endogenous acceptor(s). The rate of mannosyl incorporation is the fastest into [14C] mannolipid, intermediate in [Man-14C] oligosaccharide-lipid, and least into [Man-14C] endogenous acceptor(s). The [14C] mannolipid has been partially purified and characterized. Mild acid hydrolysis of this compound gives [14C] mannose, whereas alkaline hydrolysis yielded [14C] mannose phosphate as the labeled product. The t½ of hydrolysis of the mannolipid under the acidic and basic conditions are comparable to values obtained for mannosyl phosphoryl dolichol in other systems. The mannolipid is chromatographically indistinguishable from calf brain mannosyl phosphoryl polyisoprenol and chemically synthesized β-mannosyl phosphoryl dolichol. Exogenous dolichol phosphate stimulates the synthesis of mannolipid in mammary particulate preparations 8.5-fold. Synthesis of mannolipid is freely reversible; in the presence of GDP, the transfer of mannosyl moiety from endogenously labeled mannolipid to GDP-mannose is obtained. All of these results indicate that the structure of mannolipid is mannosyl phosphoryl polyisoprenol. Even though the precise chain length of the polyisoprenol portion has not been established, it is tentatively suggested to be dolichol. Partially purified [14C] mannolipid can directly serve as a mannosyl donor in the synthesis of [Man-14C] oligosaccharide-lipid and [Man-14C] endogenous acceptor(s). Pulse and chase kinetics utilizing GDP-mannose to chase the mannosyl transfer from GDP-[14C] mannose in the mammary membrane incubations caused an immediate and rapid turnover of [14C] mannose from [14C] mannolipid while the incorporation of label in [Man-14C] oligosaccharide-lipid and radioactive endogenous acceptor(s) continued for a short period before coming to a halt. Both gel filtration and electrophoresis indicate that the endogenous acceptor(s) are a mixture of 2 or more glycoproteins since incubation with proteases releases all of the radioactivity into water soluble low-molecular-weight components, perhaps glycopeptides. All of the above evidence is consistent with the following precursor-product relationship: GDP-mannose ? mannosyl phosphoryl polyisoprenol → mannosyl-oligosaccharide-lipid → mannosyl-proteins. The exact structure of the oligosaccharide-lipid and the endogenous glycoproteins is unknown.  相似文献   

6.
Uptake and efflux of 6-deoxy-d-[3H]glucose and of 2-deoxy-d-[14C]glucose by the yeast Kluyveromyces lactis was studied. The tritiated, nonphosphorylatable hexose analogue leaves the cell in the absence and presence of intracellular 2-deoxy-d-glucose 6-phosphate. In energy-rich cells containing pools of hexose 6-phosphate, 2-deoxy-d-glucose is trapped in the cells, for it neither effluxes into glucose-free medium nor exchanges with external, free sugar. In starved, poisoned cells containing negligible amounts of 2-deoxy-d-glucose 6-phosphate, 2-deoxy-d-glucose does leave the cells upon transfer to glucose-free medium. An involvement of analogue structure and availability of metabolites of energy-rich cells in hexose retention is suggested. An internal pool of 6-deoxy-d-glucose does not affect the rate of uptake of 6-deoxy-d-[3H]glucose, nor does internal 2-deoxy-d-[14C]glucose 6-phosphate influence that rate. Hence, transport of glucose by this yeast is probably not regulated by internal pools of glucose 6-phosphate.  相似文献   

7.
Sliced root tissue of the horseradish plant (Armoracia rusticana), when incubated with mannose-U-14C, incorporated radioactivity into peroxidase isoenzymes. Over 90% of the radioactivity in the highly purified peroxidase isoenzymes was present in the neutral sugar residues of the molecule, i.e. fucose, arabinose, xylose, mannose. When the root slices were incubated simultaneously with leucine-4,5-3H and mannose-U-14C, cycloheximide strongly inhibited leucine incorporation into the peptide portion of peroxidase isoenzymes but had little effect on the incorporation of 14C into the neutral sugars. These results indicated that synthesis of the peptide portion of peroxidase was completed before the monosaccharide residues were attached to the molecule. This temporal relationship between the synthesis of protein and the attachment of carbohydrate residues in the plant glycoprotein, horseradish peroxidase, appears to be similar to that reported for glycoprotein biosynthesis in many mammalian systems.  相似文献   

8.
Sulfhydryl oxidase from bovine kidney cortex was purified 2500-fold by covalent chromatography using cysteinylsuccinamidopropyl-glass. GSH oxidation catalyzed by the resulting preparation was found to be totally enzymatic, as judged by the inability of the preparation to reduce nitro blue tetrazolium, and H2O2 was found to be a product, as had been previously observed with milk sulfhydryl oxidase. No GSH peroxidase activity could be detected, using either H2O2 or t-butylhydroperoxide. The chromatographically purified renal sulfhydryl oxidase was resolved from γ-glutamyltransferase as evidenced by a 12,000-fold increase in ratio of the two enzymatic activities over that exhibited by crude kidney homogenates, and antibodies raised against purified milk sulfhydryl oxidase cross-reacted with the kidney oxidase, but not the kidney transferase.  相似文献   

9.
Biosynthesis of the aliphatic components of suberin was studied in suberizing potato (Solanum tuberosum) slices with [1-14C]oleic acid and [1-14C]acetate as precursors. In 4-day aged tissue, [1-14C]oleic acid was incorporated into an insoluble residue, which, upon hydrogenolysis (LiA1H4), released the label into chloroform-soluble products. Radio thin layer and gas chromatographic analyses of these products showed that 14C was contained exclusively in octadecenol and octadecene-1, 18-diol. OsO4 treatment and periodate cleavage of the resulting tetraol showed that the labeled diol was octadec-9-ene-1, 18-diol, the product expected from the two major components of suberin, namely 18-hydroxyoleic acid and the corresponding dicarboxylic acid. Aged potato slices also incorporated [1-14C]acetate into an insoluble material. Hydrogenolysis followed by radio chromatographic analyses of the products showed that 14C was contained in alkanols and alkane-α,ω-diols. In the former fraction, a substantial proportion of the label was contained in aliphatic chains longer than C20, which are known to be common constituents of suberin. In the labeled diol fraction, the major component was octadec-9-ene-1,18-diol, with smaller quantities of saturated C16, C18, C20, C22, and C24-α,ω-diols. Soluble lipids derived from [1-14C]acetate in the aged tissue also contained labeled very long acids from C20 to C28, as well as C22 and C24 alcohols, but no labeled ω-hydroxy acids or dicarboxylic acids were detected. Label was also found in n-alkanes isolated from the soluble lipids, and the distribution of label among them was consistent with the composition of n-alkanes found in the wound periderm of this tissue; C21 and C23 were the major components with lesser amounts of C19 and C25. The amount of 14C incorporated into these bifunctional monomers in 0-, 2-, 4-, 6-, and 8-day aged tissue were 0, 1.5, 2.5, 0.8, and 0.3% of the applied [1-14C]oleic acid, respectively. Incorporation of [1-14C]acetate into the insoluble residue was low up to the 3rd day of aging, rapid during the next 4 days of aging, and subsequently the rate decreased. These changes in the rates of incorporation of exogenous oleic acid and acetate reflected the development of diffusion resistance of the tissue surface to water vapor. As the tissue aged, increasing amounts of the [1-14C]acetate were incorporated into longer aliphatic chains of the residue and the soluble lipids, but no changes in the distribution of radioactivity among the α-ω-diols were obvious. The above results demonstrated that aging potato slices constitute a convenient system with which to study the biochemistry of suberization.  相似文献   

10.
When mannose was included in the enzyme incubation medium during the preparation of protoplasts from leaves of spinach, maltose was an early product of protoplast photosynthesis and, after 12 minutes, accounted for up to 15% of the 14C incorporated from 14CO2. Maltose was not detected in protoplasts prepared in the normal enzyme medium. Rapid separation of cytoplasm and chloroplasts following exposure to 14CO2 showed that maltose was present in both fractions. Direct measurements of [14C]maltose uptake indicated transport across the chloroplast envelope at rates similar to the transport of glucose. The source of maltose and site of its initial formation are discussed.  相似文献   

11.
Summary The impact of an acute temperature transition between 5 °C and 15 °C on energy metabolism and performance of sea raven (Hemitripterus americanus) heart was assessed. Maximal in vitro activity of hexokinase was 1.2 and 3.7 mol · min-1 · g-1 at 5 °C and 15 °C, respectively. Carnitine palmitoyl transferase and carnitine palmitoleoyl transferase activities were 0.07 mol · min-1 · g-1 at 15 °C and declined substantially at 5 °C. Oxygen consumption and power output of perfused isolated hearts offered glucose alone as a metabolic fuel decreased significantly between 15 °C and 5 °C. When palmitoleate was included in the perfusion medium, oxygen consumption and power development remained constant between 15 °C and 5 °C, suggesting that glucose alone was not an adequate metabolic fuel at low temperature. However, maximal in vitro activity of HK implied that the catalytic potential at this locus was quite capable of meeting demands of carbon flow, while the maximal in vitro activity of the carnitine acyl CoA transferases implied that fatty acid metabolism should be greatly compromised at low temperatures. In an effort to resolve the contradiction, hearts were perfused with medium containing 14C-glucose or 14C-palmitate. Rates of 14CO2 production from labelled metabolic fuels could account for only about 2% of the oxygen consumption rates. Most of the label from 14C-glucose was incorporated into the glycogen and lipid fractions and label from 14C-palmitate was incorporated into the lipid fraction. The net incorporation rates of label into intracellular pools were temperature insensitive over the range 5–15 °C. The incorporation of exogenous glucose into the lipid fraction suggests that activity of the entire glycolytic pathway was maintained over the temperature range. Thus, the relatively low rate of oxygen consumption of hearts perfused with glucose alone as an exogenous substrate cannot be attributed to a limitation of glucose catabolism. The alternative explanation is that the presence of fatty acids induces an increase in oxygen consumption, especially at 5 °C. It is speculated that this is due to alterations in Ca2+ balance.Abbreviations ATPase adenosine triphosphatase - BSA bovine serum albumin - CoA coenzyme A - C palmitoyl T carnitine palmitoyl transferase - CS citrate synthase - HK hexokinase - MO oxygen consumption - PFK phosphofructokinase - PO 2 oxygen partial pressure  相似文献   

12.
Intact cells of Flavobacterium dehydrogenans grown on glucose or acetate did not incorporate mevalonic acid-[14C]. After treatment with lysozyme the protoplasts were lysed by sonication in a dilute medium containing mevalonic acid-[14C] and the cell-free system produced incorporated label into uncyclized C40, monocyclic C45 and bicyclic C50 carotenoids of which decaprenoxanthin was the most abundant.With mevalonate-[2-14C,4R-4-3H1] the 14C:3H ratios of the carotenoids showed that the hydrogen atoms at C-2 and C-6 of the ring and that at C-3 of the 1-hydroxy, 2-methyl but-2-ene-4-yl residues of decaprenoxanthin were derived from the 4-pro-R hydrogen atom of mevalonic acid.Mevalonate-[2-14C,2R-2-3H1] and mevalonate-[2-14C,2S-2-3H1] gave ratios which showed that the C-4 hydrogen atoms of decaprenoxanthin were derived from the 2-pro-S hydrogen atom of mevalonic acid.  相似文献   

13.
The black yeast-like fungus NRRL YB-4163, now tentatively identified as Rhinocladiella elatior Mangenot, has been found to produce an extracellular microbial polysaccharide composed mainly of 2-acetamido-2-deoxy-d-glucuronic acid residues. Polysaccharide (PS) YB-4163, when isolated in good yield as the neutral potassium salt, dissolves readily in water to produce extremely viscous solutions, which form stable foams and emulsions. By depolymerizing PS YB-4163 with [14C]methanol—HCl, the polysaccharide can be both identified and quantitated radiochemically by determining the individual [14C]methyl glycosides after their separation by paper chromatography. When the methyl glycosides of PS YB-4163 were reduced with NaB3H4, only the methyl glycosides of 2-acetamido-2-deoxy-d-[6-3H]glucose were found. Analysis of the monosaccharide released from carboxyl-reduced PS YB-4163 by acid hydrolysis or methanolysis also showed 2-acetamido-2-deoxy-d-glucuronic acid to be the main constituent. Previously, the only polysaccharides known to be composed entirely or hexosaminuronic acid have been cellular products from pathogens. Of these, the antigenic polysaccharide (SPSA) from Staphylococcus aureus is composed entirely of 2-amino-2-deoxy-d-glucuronic acid, but its amino groups are substituted equally with acetyl and N-acetylalanyl groups. The specific optical rotation of PS YB-4163,
75° (c 0.5, water), is similar to that of SPSA (?91°), and suggests β-d-linkages that must be either (1→3) or (1→4).  相似文献   

14.
The chlorophyll-based specific activity of cytochrome oxidase and three exclusively mitochondrial enzymes of the tricarboxylic acid cycle showed little variation between leaves of C3 and C4 plants or between mesophyll and bundle sheath cells of Atriplex spongiosa and Sorghum bicolor. However, a large, light-dependent transfer of label from intermediates of the tricarboxylic acid cycle to photosynthetic products was a feature of leaves of C4 plants. This light-dependent transfer of label was barely detectable in leaves of C3 plants and in leaves of F1 and F3 hybrids of Atriplex rosea (C4) and Atriplex patula spp hastata (C3). The light-dependent transfer of label to photosynthetic products in leaves of C4 plants was inhibited by the tricarboxylic acid cycle inhibitors malonate and fluoroacetate. The requirement for continued tricarboxylic acid cycle activity was also indicated in experiments with specifically labeled succinate-14C. These experiments, together with the distribution of 14C in glucose prepared from sucrose-14C formed during the metabolism of succinate-2,3-14C, confirmed that the photosynthetic metabolism of malate and aspartate derived from the tricarboxylic acid cycle, and not the refixation of respiratory CO2, was the main path of carbon from the cycle to photosynthesis.  相似文献   

15.
Derek J. Baisted 《Phytochemistry》1979,18(10):1639-1641
Label appeared in several cell fractions isolated from the cotyledons of pea seeds germinated for 48 hr with mevalonate-[2-14C]. The major radioactive metabolite in each fraction was amyrin. In a similar experiment, a fraction sedimenting between 1000 and 25 000 g and a microsomal pellet were labeled with 3H from mevalonate-[2-3H]. Each of these tritiated fractions on incubation with UDP-glucose-[U-14C] yielded CHCl3-MeOH-soluble material bearing 14C and 3H. TLC of the extracts gave a compound chromatographically identical with a glucoside and bearing the two isotopes. Acid hydrolysis of this compound gave an ether-soluble material carrying 3H alone. On TLC it co-chromatographed with amyrin. Of the two tritiated cotyledon fractions, the microsomal pellet had the lower glucosyltransferase activity. The labeled amyrin residing in this fraction served as an acceptor for glucose from UDP-glucose in the presence of a glucosyltransferase from pea seedling axis tissue. In such a mixed preparation, the axis tissue transferase suffers a marked inhibition by the cotyledon preparation.  相似文献   

16.
The oxidative decarboxylation of retinoic acid was investigated utilizing a model system concisting of all-trans-retinoic acid, H2O2 and horseradish peroxidase. The decarboxylation products were purified by high-performance liquid chromatography on bonded, octadecylsilane columns. Based on mass spectral, nuclear magnetic resonance, ultraviolet and Fourier transform infrared analyses, the major decarboxylation product was identified as a 4-oxo-C19 aldehyde with a hyrdoxyl group on the side chain at C9, specifically 8-(2,6,6,-trimethyl-3-oxocyclohex-1-enyl)2,6-dimethyl-6-hydroxyoctatrienal.  相似文献   

17.
Labeling patterns from 14CO2 pulses to leaves and whole leaf metabolite contents were examined during photosynthetic induction in Flaveria trinervia, a C4 dicot of the NADP-malic enzyme subgroup. During the first one to two minutes of illumination, malate was the primary initial product of 14CO2 assimiltion (about 77% of total 14C incorporated). After about 5 minutes of illumination, the proportion of initial label to aspartate increased from 16 to 66%, and then gradually declined during the following 7 to 10 minutes of illumination. Nutrition experiments showed that the increase in 14CO2 partitioning to aspartate was delayed about 2.5 minutes in plants grown with limiting N, and was highly dampened in plants previously treated 10 to 12 days with ammonia as the sole N source. Measurements of C4 leaf metabolites revealed several transients in metabolite pools during the first few minutes of illumination, and subsequently, more gradual adjustments in pool sizes. These include a large initial decrease in malate (about 1.6 micromoles per milligram chlorophyll) and a small initial decrease in pyruvate. There was a transient increase in alanine levels after 1 minute of illumination, which was followed by a gradual, prolonged decrease during the remainder of the induction period. Total leaf aspartate decreased initially, but temporarily doubled in amount between 5 and 10 minutes of illumination (after its surge as a primary product). These results are discussed in terms of a plausible sequence of metabolic events which lead to the formation of the intercellular metabolite gradients required in C4 photosynthesis.  相似文献   

18.
The importance of glyoxylate in amino acid biosynthesis in plants   总被引:3,自引:1,他引:2       下载免费PDF全文
1. [14C2]Glyoxylate was rapidly metabolized by carrot storage tissues, pea leaves, pea cotyledons, sunflower cotyledons, corn coleoptiles, corn roots and pea roots. In many tissues over 70% of the supplied [14C2]glyoxylate was utilized during the 6hr. experimental periods. 2. In all tissues, the chief products of [14C2]-glyoxylate metabolism were carbon dioxide, glycine and serine. In several of the tissues, there was also a considerable incorporation of the label into the organic acids, particularly into glycollate. 3. Degradations of the labelled serine produced during [14C2]glyoxylate metabolism showed that glyoxylate carbon was incorporated into all three positions of the serine molecule. 4. The results are interpreted as indicating that glyoxylate is utilized by the tissues by pathways involving transamination, transmethylation, reduction and oxidative decarboxylation of the supplied glyoxylate.  相似文献   

19.
Epimerization of either 2-acetamido-2-deoxy-d-glucose (1) or 2-acetamido-2-deoxy-d-mannose (2) in basic tritium oxide gave 2-acetamido-2-deoxy-d-[2-3H]-glucose (3) and 2-acetamido-2-deoxy-d[2-3H]mannose (4). In both cases, compound 3 was isolated in higher proportion and higher specific activity than 4. The mechanism of the epimerization of 1 and 2 is discussed.  相似文献   

20.
Rapid metabolism of propylene by pea seedlings   总被引:1,自引:1,他引:0       下载免费PDF全文
Beyer EM 《Plant physiology》1978,61(6):893-895
Propylene uptake by intact pea seedlings (Pisum sativum L. cv. Alaska) was easily detected using standard gas chromatographic techniques suggesting rapid metabolism. Comparative studies with highly purified 14C3H6 and 14C2H4 under aseptic conditions verified that propylene was rapidly metabolized and indicated that some aspects of its metabolism were similar to that of ethylene since 14C3H6, like 14C2H4 (Beyer, Nature 1975, 255: 144-147), was oxidized to 14CO2 and incorporated into water-soluble tissue metabolites. However, 14C2H6 was metabolized at a substantially faster rate and unlike 14C2H4 the rate of 14C3H6 tissue incorporation exceeded its rate of oxidation to 14CO2. In addition the neutral 14C-metabolites derived from 14C3H6 were chromatographically distinct from those formed from 14C2H4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号