首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The release of total phosphorus (TP) and nitrogen (N in ammonium) was measured for the five most abundant fish species (>85% of biomass) in Mouse and Ranger Lakes, two biomanipulated, oligotrophic lakes in Ontario. 2. The specific release rate of both nutrients was significantly related to fish mass; log10 TP release rate (μg h?1) = 0.793 (±0.109) [log10 wet mass (g)] + 0.7817 (±0.145), and log10 N release rate (μg h?1) = 0.6946 (±0.079) [log10wet mass (g)] + 1.7481 (±0.108). 3. When fish nutrient release was standardized for abundance (all populations, 1993–95) and epilimnetic volume, fish were estimated to contribute 0.083 (±0.061) μg TP L?1 day?1, and 0.41 (±0.17) μg N L?1 day?1 in Mouse L., and 0.062 (±0.020) μg TP L?1 day?1 and 0.31 (±0.08) μg N L?1 day?1 in Ranger L. 4. In comparison, concurrent rates of total planktonic P regeneration were 1.02 (±0.45) μg L?1 day?1 (Mouse L.) and 0.85 (±0.19) μg L?1 day?1 (Ranger L.). Fish represented 8% of planktonic P release in Mouse L. and 7% in Ranger L. 5. Fish dry mass had mean elemental body compositions of 39.3% carbon, 10.9% nitrogen, and 4.0% phosphorus (all fish combined), with a mean molar C : N : P ratio of 27 : 6 : 1. This comprised about 55% and 23% of the total epilimnetic particulate P and N respectively. 6. Turnover times of P and N in fish were approximately 103 and 48 days respectively. In comparison, planktonic turnover times of particulate P in Mouse and Ranger Lakes were 4.3 and 4.4 days respectively. Given their high P content and low turnover rates, fish appear to be important P sinks in lakes.  相似文献   

2.
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature‐controlled, Brett‐type swimming‐tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (LF), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (Ucrit) was 102·5 ± 13·7 cm s?1 or 4·6 ± 0·9 LF s?1. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (Umax,c) was 99·4 ± 14·4 cm s?1 or 4·5 ± 0·9 LF s?1. Oxygen consumption rate (M in mg O2 min?1) increased with swimming speed and with fish mass, but mass‐specific M (mg O2 kg?1 h?1) as a function of relative speed (LF s?1) did not vary significantly with fish size. Mean standard metabolic rate (RS) was 170 ± 38 mg O2 kg?1 h?1, and the mean ratio of M at Umax,c to RS, an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (Uopt), at which the gross cost of transport was a minimum of 2·14 J kg?1 m?1, was 3·8 LF s?1. In a subset of the fish studied (19·7–22·7 cm LF, 106–164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and LF. The mean propulsive wavelength was 86·7 ± 5·6 %LF or 73·7 ± 5·2 %LT. Mean ±s.d . yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm LF; 23·4, 25·3 and 26·4 cm LT), were 4·6 ± 0·1 and 17·1 ± 2·2 %LT, respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.  相似文献   

3.
The swimming capacity of Barbus bocagei was measured with the critical swimming speed (Ucrit) standard test in a modified Bla?ka‐type swim tunnel. Sixty B. bocagei were tested and they exhibited a mean ±s .d . Ucrit of 0·81 ± 0·11 m s?1 or 3·1 ± 0·86 total lengths per second (LT s?1). Sex had no effect on Ucrit but significant differences were found between the swimming performance of fish with distinct sizes.  相似文献   

4.
The membraneless bioelectrochemical reactor (Ml-BER) is useful for dark hydrogen fermentation. The effect of the electrochemical reaction on microorganisms in the Ml-BER was investigated using glucose as the substrate and compared with organisms in a membraneless non-bioelectrochemical reactor (Ml-NBER) and bioelectrochemical reactor (BER) with a proton exchange membrane. The potentials on the working electrode of the Ml-BER and BER with membrane were regulated to ?0.9 V (versus Ag/AgCl) to avoid water electrolysis with a carbon electrode. The Ml-BER showed suppressed methane production (19.8?±?9.1 mg-C·L?1·day?1) and increased hydrogen production (12.6?±?3.1 mg-H·L?1·day?1) at pHout 6.2?±?0.1, and the major intermediate was butyrate (24.9?±?2.4 mM), suggesting efficient hydrogen fermentation. In contrast, the Ml-NBER showed high methane production (239.3?±?17.9 mg-C·L?1·day?1) and low hydrogen production (0.2?±?0.0 mg-H·L?1·day?1) at pHout 6.3?±?0.1. In the cathodic chamber of the BER with membrane, methane production was high (276.3?±?20.4 mg-C·L?1·day?1) (pHout, 7.2?±?0.1). In the anodic chamber of the BER with membrane (anode-BER), gas production was low because of high lactate production (43.6?±?1.7 mM) at pHout 5.0?±?0.1. Methanogenic archaea were not detected in the Ml-BER and anode-BER. However, Methanosarcina sp. and Methanobacterium sp. were found in Ml-NBER. Prokaryotic copy numbers in the Ml-BER and Ml-NBER were similar, as were the bacterial community structures. Thus, the electrochemical reaction in the Ml-BER affected hydrogenotrophic and acetoclastic methanogens, but not the bacterial community.  相似文献   

5.
This is the first study investigating the plant–herbivore interaction between Sarpa salpa, which has overgrazed seagrass transplants in Portugal, and the seagrasses Cymodocea nodosa, Zostera marina and Zostera noltii, which have been considered for restoration. When offered the choice between the three seagrasses in outdoor tanks, adult S. salpa clearly preferred Z. noltii. Testing the seagrasses separately, mean ± s.d. feeding rates ranged from 21 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. marina to 32 ± 9 g seagrass fresh mass kg?1 fish mass day?1 for C. nodosa and 40 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. noltii (temperature = 16° C). Food‐processing rate in S. salpa did not differ between seagrasses, and there was no evidence of a regulation of processing rate according to food intake. Seagrasses differed substantially in nitrogen content and C:N, with C. nodosa containing the highest nitrogen content and lowest C:N (2·5 ± 0·1% and 14·0 ± 1·0), followed by Z. noltii (2·1 ± 0·1% and 17·0 ± 1·0) and Z. marina (1·4 ± 0·1% and 26·0 ± 2·0). Food‐processing rate in S. salpa and the nutritional value of the seagrasses were not correlated with the observed feeding preference and rate. The study suggests that C. nodosa and Z. marina are less at risk of overgrazing by S. salpa and might thus be preferable to Z. noltii for seagrass restoration in areas with noticeable abundances of this fish.  相似文献   

6.
Ultrasonic telemetry was used to compare post‐release survival and movements of Atlantic sharpnose sharks Rhizoprionodon terraenovae in a coastal area of the north‐east Gulf of Mexico. Ten fish were caught with standardized hook‐and‐line gear during June to October 1999. Atlantic sharpnose sharks were continuously tracked after release for periods of 0·75 to 5·90 h and their positions recorded at a median interval of 9 min. Individual rate of movement was the mean of all distance and time measurements for each fish. Mean ± s.e . individual rate of movement was 0·45 ± 0·06 total lengths per second (LT s?1) and ranged from 0·28 to 0·92 LT s?1 over all fish. Movement patterns did not differ between jaw and internally hooked Atlantic sharpnose sharks. Individual rate of movement was inversely correlated with bottom water temperature at capture (r2 = 0·52, P ≤ 0·05). No consistent direction in movement was detected for Atlantic sharpnose sharks after release, except that they avoided movement towards shallower areas. Capture‐release survival was high (90%), with only one fish not surviving, i.e. this particular fish stopped movement for a period of 10 min. Total rate of movement was total distance over total time (m min?1) for each Atlantic sharpnose shark. Mean total rate of movement was significantly higher immediately after release at 21·5 m min?1 over the first 1·5 h of tracking, then decreased to 11·2 m min?1 over 1·5–6 h, and 7·7 m min?1 over 3–6 h (P ≤ 0·002), which suggested initial post‐release stress but quick recovery from capture. Thus, high survival (90%) and quick recovery indicate that the practice of catch‐and‐release would be a viable method to reduce capture mortality for R. terraenovae.  相似文献   

7.
The growth and mortality rates of Myctophum affine larvae were analysed based on samples collected during the austral summer and winter of 2002 from south‐eastern Brazilian waters. The larvae ranged in size from 2·75 to 14·00 mm standard length (LS). Daily increment counts from 82 sagittal otoliths showed that the age of M. affine ranged from 2 to 28 days. Three models were applied to estimate the growth rate: linear regression, exponential model and Laird–Gompertz model. The exponential model best fitted the data, and L0 values from exponential and Laird–Gompertz models were close to the smallest larva reported in the literature (c. 2·5 mm LS). The average growth rate (0·33 mm day?1) was intermediate among lanternfishes. The mortality rate (12%) during the larval period was below average compared with other marine fish species but similar to some epipelagic fishes that occur in the area.  相似文献   

8.
A fish respirometer-metabolism chamber was used to obtain in vivo respiratory-cardiovascular and chloroethane gill flux data on transected channel catfish (Ictalurus punctatus). Methods used for spinal transection, attachment of an oral membrane (respiratory mast), placement and attachment of blood cannulas and urine catheters are described. Respiratory physiology, cardiac output and chemical extraction efficiencies for 1,1,2,2-tetrachloroethane (TCE), pentachloroethane (PCE), and hexachloroethane (HCE) were determined on 419–990 g catfish. The overall mean values (± s.d.) for ventilation volume (Qv), effective respiratory volume (Qw), oxygen consumption (Vo2 and percentage utilization of oxygen (U) were 17-3 ±4–71 h?1 kg?1, 9·8±l·71 h?1 kg?1, 71·6±12·5mg h?1 kg?1, and 49± 10%, respectively, while cardiac output calculated via the Fick Method was 2·4±0·61 h?1 kg?1. Additional measurements were made on ventilation rate (Vr), total plasma protein, haematocrit (Hct), and urine volume; while both arterial and venous blood were analysed for pH, oxygen partial pressure (P02), carbon dioxide partial pressure (Pco2), total oxygen (To2), total carbon dioxide (Tco2) and total ammonia (TAMM). Physiological measurements taken at 24 h were not significantly different from those taken at 48 h and indicated no deterioration of the in vivo preparation. All of these values agreed well with literature values on UTitransected channel catfish, except for Hct which was lower for cannulated animals used in this study. Overall, these data provide strong support for the use of transected channel catfish for in vivo collection of physiological and chemical gill flux data. The mean initial chemical extraction efficiencies for TCE, PCE and HCE were 41, 61 and 73%, respectively. Chemical clearances (ClX) for these same three chemicals were 5·9, 9·3 and 10·8 1 h?1 kg?1, respectively. The approximate 1: 1 relationship between effective respiratory volume (Qw) and chemical clearance (Clx) indicated that branchial uptake of PCE and HCE was water flow-limited. Chemical gill flux observed for channel catfish and chloroethanes was similar to that observed for rainbow trout in previous studies and provided further support for the flow-limited model of chemical flux across fish gills.  相似文献   

9.
Telemetered heart rate (fH) was examined as an indicator of activity and oxygen consumption rate (VO2) in adult, cultivated, Atlantic salmon, Salmo salar L. Heart rate was measured during sustained swimming in a flume for six fish at 10° C [mean weight, 1114 g; mean fork length (f. l.), 50·6 cm] and seven fish at 15° C (mean weight, 1119 g; mean f. l., 50·7 cm) at speeds of up to 2·2 body lengths/s. Semi–logarithmic relationships between heart rate and swimming speed were obtained at both temperatures. Spontaneously swimming fish in still water exhibited characteristic heart rate increases associated with activity. Heart rate and Vo2 were monitored simultaneously in a 575–1 circular respirometer for six fish (three male, three female) at 4° C (mean weight, 1804 g; mean F. L., 62· cm) and six fish (three male, three female) at 10° C (mean weight, 2045 g; mean f. l., 63·2 cm) during spontaneous but unquantified activity. Linear regressions were obtained by transforming data for both fH and Vo2 to log values. At each temperature, slopes of the regressions between fH and Vo2 for individual fishes were not significantly different, but in some cases elevations were. All differences in elevation were between male and female fish. There were no significant differences in regression slope or elevation for fish of the same sex at the two temperatures and so regressions were calculated for the sexes, pooling data from 4 and 10° C. There was no significant difference in the mean ± S. D. Vo2 between the sexes at 4° C (male, 66·0 ± 59·6 mgO2 kg?1 h?1; female, 88·0 ± 60·1 mgO2 kg?1 h?1) or 10° C (male, 166·2 ± 115·4 mgO2 kg?1 h?1; female, 169·2 ± 111–1 mgO2 kg?1h?1). Resting Vo2 (x?± s. d.) at 4°C was 36·7 ± 8.4 mgO2 kg?1 h?1, and 10° C was 72·8 ± 11·9 mgO2 kg?1 h?1. Maximum Vo2 (x?± S. D.) at 4° C was 250·6 ± 40·2 mgO2 kg?1 h?1, and at 10° C was 423·6 ± 25·2 mgO2 kg?1 h?1. Heart rate appears to be a useful indicator of metabolic rate over the temperature range examined, for the cultivated fish studied, but it is possible that the relationship for wild fish may differ.  相似文献   

10.
Reproductive biology of albacore Thunnus alalunga   总被引:1,自引:0,他引:1  
Reproductive variables in albacore Thunnus alalunga were evaluated by gonad histology in samples of 132 males (58–118 cm fork length, LF) and 112 females (59–101 cm LF) that were collected from the western North Pacific Ocean from 2001 to 2006. In the sex ratio examination, males greatly outnumbered females in large adult fish (LF > 100 cm). Thunnus alalunga exhibited a protracted spawning period from March to September in the waters off eastern Taiwan and the Philippines, and the peak spawning activity occurred in March and April. Minimum sizes associated with the classification of mature fish were 78 and 83 cm LF for males and females, respectively. In addition, the largest LF of immature fish were 93 cm for males and 94 cm for females. The spawning frequency estimate in April was 1·7 days. Batch‐fecundity estimates of 21 females (89–99 cm LF) ranged between 0·17 and 1·66 million eggs (mean ±s.d . = 0·94 ± 0·43). The relative fecundity estimates of the 21 females ranged between 9·2 and 92·4 oocytes g?1 body mass (mean ±s.d . = 50·5 ± 22·8). The results presented in this study provide increased information regarding this species' reproductive‐related characteristics than are currently available in stock status determinations.  相似文献   

11.
The recovery of oxygen uptake to the standard metabolic rate (SMR) following exhaustive chasing exercise in Atlantic salmon Salmo salar parr occurred in three phases (rapid, plateau and slow). The initial recovery phase lasted 0·7 h and contributed 16% to the total excess post‐exercise oxygen consumption (EPOC). It was followed by a longer plateau phase that contributed 53% to the total EPOC. The slow recovery phase that completed recovery of SMR, which has not been reported previously, made a 31% contribution to the total EPOC. The plasticity of EPOC was demonstrated in exercise‐trained fish. Exercise training increased EPOC by 39% when compared with control fish (mean ± S.E., 877·7 ± 73·1 v . 629·2 ± 53·4 mg O2 kg?1, d.f. = 9, P <  0·05), with the duration of the plateau phase increasing by 38% (4·7 ± 0·58 v . 3·4 ± 0·16 h, d.f. = 9, P <  0·05) and the contribution of the slow phase to the total EPOC increasing by 80% (173·9 ± 23·9 v . 312·5 ± 50·4 mg O2 kg?1, d.f. = 9, P  < 0·05). As a result, the combination of the plateau and slow phases of exercise‐trained fish increased by 47% compared with control fish (756·6 ± 71·4 v . 513·6 ± 43·1 mg O2 kg?1; d.f. = 9, P  = 0·01). To substantiate the hypothesis that the plateau and slow recovery phase of EPOC was related to general metabolic recovery following exhaustive exercise, the time‐course for recovery of SMR was compared with previously published metabolite recovery profiles. The final phase of metabolic recovery was temporally associated with the final phases of gluconeogenesis, lactate oxidation and muscle intracellular pH regulation. Therefore, the plasticity of the latter phase of EPOC agreed with the known effects of exercise training in fishes.  相似文献   

12.
The recovery of communities of predatory fishes within a no‐take marine reserve after the eradication of illegal fishing provides an opportunity to examine the role of sharks and other large‐bodied mesopredatory fishes in structuring reef fish communities. We used baited remote underwater video stations to investigate whether an increase in sharks was associated with a change in structure of the mesopredatory fish community at Ashmore Reef, Western Australia. We found an almost fourfold increase in shark abundance in reef habitat from 0.64 hr?1 ± 0.15 SE in 2004, when Ashmore Reef was being fished illegally, to 2.45 hr?1 ± 0.37 in 2016, after eight years of full‐time enforcement of the reserve. Shark recovery in reef habitat was accompanied by a two and a half‐fold decline in the abundance of small mesopredatory fishes (≤50 cm TL) (14.00 hr?1 ± 3.79 to 5.6 hr?1 ± 1.20) and a concomitant increase in large mesopredatory fishes (≥100 cm TL) from 1.82 hr?1 ± 0.48 to 4.27 hr?1 ± 0.93. In contrast, near‐reef habitats showed an increase in abundance of large mesopredatory fishes between years (2.00 hr?1 ± 0.65 to 4.56 hr?1 ± 1.11), although only smaller increases in sharks (0.67 hr?1 ± 0.25 to 1.22 hr?1 ± 0.34) and smaller mesopredatory fishes. Although the abundance of most mesopredatory groups increased with recovery from fishing, we suggest that the large decline of small mesopredatory fish in reef habitat was mostly due to higher predation pressure following the increase in sharks and large mesopredatory fishes. At the regional scale, the structure of fished communities at Ashmore Reef in 2004 resembled those of present day Scott Reefs, where fishing still continues today. In 2016, Ashmore fish communities resembled those of the Rowley Shoals, which have been protected from fishing for decades.  相似文献   

13.
In Bimini, Bahamas, the consistent employment of longlines, beginning in 1982, provided a rare opportunity to explore population trends for large resident sharks. This study assessed three shallow water longline survey periods at this location; 1982–1989, 1992–2002 and 2003–2014, with the aim of determining trends in annual catch per unit effort (CPUE) for an IUCN listed near‐threatened species, the lemon shark Negaprion brevirostris. A general additive model (GAM) was used to analyse the non‐linear annual CPUE values over the entire 32‐year research period. The GAM displayed high variability of annual CPUE, with a peak value of 0·026 N. brevirostris per hook day (hooks day?1) in 2000. The temporal pattern of CPUE indicated an abundance trend with a complete cycle, from trough to trough, occurring over a period of approximately 18 years. The 1982–1989 survey period saw the highest proportion of mature individuals (19·8%) and the smallest average pre‐caudal length (LPC; 124·8 cm). The 1992–2002 survey period had the highest average annual CPUE (0·018 hooks day?1), while the 2003–2014 research period saw largest average LPC size (134·8 cm) and the lowest average CPUE values (0·009 hooks day?1) of the entire research period. The long‐term trend identified in this study provides a baseline for future assessment.  相似文献   

14.
This study verified the effects of CaSO4 on physiological responses of the tropical fish matrinxãBrycon amazonicus (200.2 ± 51.1 g) in water containing CaSO4 after a 4‐h transportation at concentrations of: 0, 75, 150, and 300 mg L?1. Blood samples were collected prior to transportation (initial levels), immediately after packaging, at arrival, and 24 h and 96 h after transportation (recovery). Cortisol levels increased after packaging (118.2 ± 14.2 ng ml?1), and decreased slightly after transportation in water containing CaSO4 (106.8 ± 14.1), but remained higher than initial levels (21.0 ± 2.6 ng ml?1). Fish kept at 150 mg L?1 CaSO4 reached the pre‐transportation levels at 24 h of recovery. Blood glucose increased after transportation in all treatments (8.2 ± 0.2 mmol L?1) and declined after full recovery to values below initial levels (4.8 ± 0.1 mmol L?1). Chloride levels did not change in CaSO4 treatments; serum sodium concentrations decreased after packaging and after transportation. Serum calcium levels did not differ among treatments, but decreased after packaging and increased at 96 h of recovery. Hematocrit and the number of red blood cells were higher in all treatments after packaging and arrival, except in fish exposed to 300 mg L?1 CaSO4. Mean corpuscular volume increased in 75 mg L?1 CaSO4, which reached the higher VCM after transportation. Hemoglobin levels increased only after transportation, regardless of calcium sulfate levels. Handling before transportation and transportation itself were both stressful to fish; calcium sulfate at concentrations tested in the present work had a moderate influence in the reduction of stress responses.  相似文献   

15.
Characteristics of the life history of the coral reef‐dwelling cardinalfish Siphamia tubifer, from Okinawa, Japan, were defined. A paternal mouthbrooder, S. tubifer, is unusual in forming a bioluminescent symbiosis with Photobacterium mandapamensis. The examined S. tubifer (n = 1273) ranged in size from 9·5 to 43·5 mm standard length (LS), and the minimum size at sexual maturity was 22 mm LS. The number of S. tubifer associated during the day among the spines of host urchins was 22·9 ± 16·1 (mean ± s.d .; Diadema setosum) and 3·6 ± 3·2 (Echinothrix calamaris). Diet consisted primarily of crustacean zooplankton. Batch fecundity (number of eggs; FB) was related to LS by the equations: males (fertilized eggs) FB = 27·5LS ? 189·46; females (eggs) FB = 31·3LS ? 392·63. Individual mass (M; g) as a function of LS was described by the equation: . Growth, determined from otolith microstructure analysis, was described with the von Bertalanffy growth function with the following coefficients: L = 40·8 mm LS, K = 0·026 day?1 and t0 = 23·25 days. Planktonic larval duration was estimated to be 30 days. The age of the oldest examined individual was 240 days. The light organ of S. tubifer, which harbours the symbiotic population of P. mandapamensis, increased linearly in diameter as S. tubifer LS increased, and the bacterial population increased logarithmically with S. tubifer LS. These characteristics indicate that once settled, S. tubifer grows quickly, reproduces early and typically survives much less than 1 year in Okinawa. These characteristics are generally similar to other small reef fishes but they indicate that S. tubifer experiences higher mortality.  相似文献   

16.
The influence of surgical implantation of an acoustic transmitter on the swimming performance, growth and survival of juvenile sockeye salmon Oncorhynchus nerka and Chinook salmon Oncorhynchus tshawytscha was examined. The transmitter had a mass of 0·7 g in air while sockeye salmon had a mass of 7·0–16·0 g and Chinook salmon had a mass of 6·7–23·1 g (a transmitter burden of 4·5–10·3% for sockeye salmon and 3·1–10·7% for Chinook salmon). Mean critical swimming speeds (Ucrit) for Chinook salmon ranged from 47·5 to 51·2 cm s?1 [4·34–4·69 body lengths (fork length, LF) s?1] and did not differ among tagged, untagged and sham‐tagged groups. Tagged sockeye salmon, however, did have lower Ucrit than control or sham fish. The mean Ucrit for tagged sockeye salmon was 46·1 cm s?1 (4·1 LF s?1), which was c. 5% less than the mean Ucrit for control and sham fish (both groups were 48·6 cm s?1 or 4·3 LF s?1). A laboratory evaluation determined that there was no difference in LF or mass among treatments (control, sham or tag) either at the start or at the end of the test period, suggesting that implantation did not negatively influence the growth of either species. None of the sockeye salmon held under laboratory conditions died from the influence of surgical implantation of transmitters. In contrast, this study found that the 21 day survival differed between tagged and control groups of Chinook salmon, although this result may have been confounded by the poor health of Chinook salmon treatment groups.  相似文献   

17.
A laboratory-scale study was conducted in a 20.0-L sequencing batch reactor (SBR) to explore the feasibility of simultaneous removal of organic carbon and nitrogen from abattoir wastewater. The reactor was operated under three different combinations of aerobic-anoxic sequence, viz., (4+4), (5+3), and (5+4) h of total react period, with influent soluble chemical oxygen demand (SCOD) and ammonia nitrogen (NH4+-N) level of 2200 ± 50 and 125 ± 5 mg L?1, respectively. In (5+4) h cycle, a maximum 90.27% of ammonia reduction corresponding to initial NH4+-N value of 122.25 mg L?1 and 91.36% of organic carbon removal corresponding to initial SCOD value of 2215.25 mg L?1 have been achieved, respectively. The biokinetic parameters such as yield coefficient (Y), endogenous decay constant (kd), and half-velocity constant (Ks) were also determined to improve the design and operation of package effluent treatment plants comprising SBR units. The specific denitrification rate (qDN) during anoxic condition was estimated as 6.135 mg N/g mixed liquor volatile suspended solid (MLVSS)·h on 4-h average contact period. The value of Y, kd and Ks for carbon oxidation and nitrification were found to be in the range of 0.6225–0.6952 mg VSS/mg SCOD, 0.0481–0.0588 day?1, and 306.56–320.51 mg L?1, and 0.2461–0.2541 mg VSS/mg NH4+-N, 0.0324–0.0565 day?1, and 38.28–50.08 mg L?1, respectively, for different combinations of react periods.  相似文献   

18.
This study provides the first measurements of the standard respiration rate (RS) and growth dynamics of European sardine Sardina pilchardus larvae reared in the laboratory. At 15° C, the relationship between RS (µl O2 individual?1 h?1) and larval dry mass (MD, µg) was equal to: RS = 0·0057(±0·0007, ± s.e.)·MD0·8835(±0·0268), (8–11% MD day?1). Interindividual differences in RS were not related to interindividual differences in growth rate or somatic (Fulton's condition factor) or biochemical‐based condition (RNA:DNA).  相似文献   

19.
The stress response of Oncorhynchus mykiss in high‐altitude farms in central Mexico was investigated over two seasons: the cool (9·1–13·7° C) dry winter season, and the warmer (14·7–15·9° C), wetter summer season. Fish were subjected to an acute stress test followed by sampling of six physiological variables: blood cortisol, glucose, lactate, total antioxidant capacity, haemoglobin concentration and per cent packed cell volume (VPC%). Multivariate analyses revealed that lactate and total antioxidant capacity were significantly higher in the summer, when water temperatures were warmer and moderate hypoxia (4·9–5·3 mg l?1) prevailed. In contrast, plasma cortisol was significantly higher in the winter (mean ± s.e .: 76·7 ± 4·0 ng ml?1) when temperatures were cooler and dissolved oxygen levels higher (6·05–7·9 mg l?1), than in the summer (22·7 ± 3·8 ng ml?1). Haemoglobin concentrations (mg dl?1) were not significantly different between seasons, but VPC% was significantly higher in the summer (50%) than in the winter (35%). These results suggest that in summer, effects of high altitude on farmed fish are exacerbated by stresses of high temperatures and hypoxia, resulting in higher blood lactate, increased total antioxidant capacity and elevated VPC% levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号