首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We analysed mandible shape of the orders Dasyuromorpha, Didelphimorphia, and Carnivora using two‐dimensional geometric morphometrics, in order to explore the relationship between shape, size, and phylogeny. We studied 541 specimens, covering most of the genera of the terrestrial Carnivora (115 species) and a wide sample of marsupials (36 species). The observed shape variation had an ecological component. As an example, omnivorous carnivores have thick mandibles and large talonids in the carnassials, while hypercarnivores possess short mandibles and reduced talonids. There is also a discrimination between different taxonomic groups (i.e. marsupials and Carnivora), indicating some kind of constraint. Size explains a large percentage of total variance (large species had shorter and stronger mandibles, with anteriorly displaced carnassials), was significant when phylogeny was taken into account with a comparative method, but not when size and shape were optimized on the phylogeny. Carnivora presents a larger disparity and variation in body size, which could be related to the difference in teeth replacement. The optimization of mandible shape on the phylogenetic tree indicates that functional aspects, such as diet, are a key factor in the evolution of the carnivore mandible, but also that there is a phylogenetic pattern that cannot be explained by differences in diet alone. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 836–855.  相似文献   

2.
Evolutionary shape changes in skull and mandibular anatomy was analysed in 223 specimens of pantherine felids (Neofelis nebulosa, Panthera leo, Panthera onca, Panthera pardus, Panthera tigris, Panthera uncia) compared to a small‐felid outgroup, consisting of 86 specimens of nine different species, using digital surface morphometry on 25 (skull) and 17 (mandible) landmarks. Shape evolution in the pantherine species is complex and nonlinear, and involves both large‐scale and small‐scale shape changes. Shape changes frequently differ among the ingroup species, but the four large Panthera species (leo, onca, pardus, tigris) bear some resemblance to each other. The leopard and jaguar bear the closest resemblance to each other, and several shape changes are common to the lion and tiger, but have probably evolved convergently as a result of large size. The lion has undergone the largest and most numerous shape changes from a small‐felid outgroup. Certain shape changes in the skull and, in some respects, the mandible of the clouded leopard bear resemblance to those in the four large Panthera species. The snow leopard is often regarded as the most primitive of the extant Panthera, and skull and mandibular shape changes often diverge markedly from those observed in the other five ingroup taxa; its overall skull shape is rather similar to the small‐felid outgroup. This indicates that the shape changes in the clouded leopard are convergent with those of the four large Panthera species. Landmark integration showed no significant correlation with molecular phylogeny, chiefly owing to the snow leopard being placed among the four large Panthera species. A traditional phylogenetic topology with the snow leopard as the basal‐most species of Panthera yielded a weak but nonsignificant phylogenetic signal. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 766–778.  相似文献   

3.
The aim of this study was to understand the mandible of the giant panda in morphometric terms to explore differences between the giant panda and other carnivores distributed in China, in terms of functional adaptation. Twelve mandibular variables were studied using bivariate (allometry) and multivariate (principal components analysis, PCA, and discriminant functional analysis, DFA) tools. When deviations were produced from allometric baselines consisting of all the species studied, the giant panda displayed a much more developed mandibular structure than the bear, leopard, and tiger. This may be related to its specific dietary preference for bamboo, which has very strong fibers. Results also indicate that the mandibular structure among carnivores mainly reflects the differences in their dietary preferences and functional adaptation. Three groups were found referring to dispersal profiles expressed by the first two axes of PCA and DFA: (1) the two panda species – the herbivorous carnivores; (2) the black bear – the omnivorous carnivore; and (3) the tiger and leopard – the hypercarnivores. Nevertheless, a significant separation between the two panda species was also found with the profiles displayed by the first and third axes of DFA. In addition to no close evolutionary relationship and phylogenetic development, a noticeable separation between the two panda species found in DFA analysis may be associated with their variation in consuming different parts of the bamboo plant: the giant panda feeds on stems and the red panda feeds on leaves.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 449–456.  相似文献   

4.
The relative simplicity of the mandible and its functional integration with the upper dentition in carnivorans makes it an ideal subject for functional morphological studies. To compare the mandibular biomechanics of two convergently evolved bone‐cracking ecomorphologies, we used finite element modelling to analyse mandibular corpus stress. The bone‐cracking spotted hyena Crocuta crocuta was used as a living analogue to the late Miocene percrocutid Dinocrocuta gigantea, using the grey wolf Canis lupus as a molar bone‐crushing outgroup. Mandibular stress values during p3, p4, and m1 tooth biting are found to be lowest in Cr. crocuta, and elevated in both Ca. lupus and D. gigantea. However, the stress‐dissipation patterns of the pre‐m1 corpus are similar between Cr. crocuta and D. gigantea. Lastly, D. gigantea has a relatively weaker corpus at the post‐m1 position than either Cr. crocuta or Ca. lupus. These findings suggest that even though stress patterns are similar amongst the bone‐cracking ecomorphs, the extinct D. gigantea had a weaker mandibular structure when performing a comparable bone‐cracking task as in Cr. crocuta because of its slender post‐m1 corpus. Ontogeny could potentially play an important role in strengthening the post‐m1 corpus by growth in the dorsoventral axis, and continuous increase in biting performance through adulthood in living Cr. crocuta suggests the possibility of a relatively more delayed development to full bone‐cracking capability in D. gigantea. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 683–696.  相似文献   

5.
Among mammals, Carnivora presents an ideal group for investigating the complex interplay between functional adaptation and phylogenetic history. Here we explore mandibular form and its relationship to ecology and phylogeny using geometric morphometrics applied to mandibles of extant Carnivora. Both mandibular size and shape discriminate carnivoran ecological adaptations (diet, membership to small or large predatory guilds), but the interplay of morphology with phylogenetic history is profound. In general, families do not overlap in mandible shape; however, Viverridae, Herpestidae, Canidae, and Mustelidae exhibit functional and morphological convergence. Mandibular allometric trajectories are distinct among families and ecological categories. Our findings suggest that variability in mandibular form among Carnivora is primarily influenced by major evolutionary changes occurring at the family level and less, but significantly so, by ecological adaptations. Small generalist feeders (insectivores, omnivores) exhibit stronger convergence in mandibular shape than highly specialized predators; bigger taxa, such as bears, evolved unique morphologies constrained by allometric scaling. Thus, the findings of this study serve to demonstrate how ecological factors mold anatomical structures in similar ways to serve similar functions. As such, carnivoran species can be usefully grouped into functional ‘guilds’ in eco-morphological studies irrespective of their phylogenetic history.  相似文献   

6.
Percentages of tooth fracture and mandible shape are robust predictors of feeding habits in Carnivora. If these parameters co‐vary above the species level, more robust palaeobiological inferences could be made on fossil species. A test of association is presented between mandible shape and tooth fracture in a subset of extant carnivorans together with large Pleistocene fossil predators from Rancho La Brea (Canis dirus, Panthera atrox, and Smilodon fatalis). Partial least square (PLS) and comparative methods are employed to validate co‐variation of these two parameters in extant carnivorans. Association between mandible shape and percentage of tooth fracture is strongly supported, even if both blocks of data exhibit a phylogenetic signal to a different degree. Dietary adaptations drive shape/fracture co‐variation in extant species, although no significant differences occur in the PLS scores between carnivores and bone/hard food consumers. The fossil species project into PLS morphospace as outliers. Their position suggests a unique feeding behaviour. The increase in the size of prey, together with consumption of skin and hair from carcasses in a cold environment, might have generated unusual tooth breakage patterns in large predators from Rancho La Brea. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 70–80.  相似文献   

7.
Feeding behaviour and bite force of sabretoothed predators   总被引:2,自引:0,他引:2  
The feeding behaviour of extinct sabretoothed predators (machaeroidines, nimravids, barbourofelids, machairodonts and thylacosmilines) is investigated using beam theory. Because bite force applied along the mandible should be proportional to the external dimension of the mandibular corpus, patterns of variation in these dimensions at interdental gaps will reflect the adaptation of the jaw to specific loads, related to killing methods. Comparison of the mandibular force profiles of sabretooths to those of extant conical‐toothed carnivorans of known feeding behaviour reveals that sabretooths had a powerful bite, as strong or stronger than extant felids of similar mandibular length. Loads exerted at the lower canine were better constrained in the sagittal plane than in extant conical‐toothed carnivorans, indicating that prey was efficiently restrained when the sabre bite was delivered. The mandibular symphysis is generally better buttressed dorsoventrally in dirk‐toothed sabretooths than in scimitar‐toothed sabretooths, implying different killing strategies for the two ecomorphs: dirktooths delivered powerful sabre bites on prey they restrained with their forelimbs, while scimitartooths delivered slashing sabre bites and may have used their incisor battery to subdue their prey. The mandibular symphysis of Smilodon fatalis is less buttressed dorsoventrally than that of other dirk‐toothed sabretooths, possibly as a consequence of the greater torsional stresses induced while feeding rapidly on carcasses in response to intense competition. The mandibular symphysis of Thylacosmilus atrox is better buttressed dorsoventrally in juveniles than in adults, suggesting that young marsupial sabretooths underwent an extended period of parental care as typically observed in modern felids and inferred for eutherian sabretooths. Finally, machaeroidines and the nimravid Nimravus brachyops are exceptional in exhibiting a degree of dorsoventral buttressing of the mandibular symphysis that is intermediate between advanced sabretooths and conical‐toothed felids but similar to the extant Neofelis nebulosa, suggesting that the latter taxon may be close to the ancestral condition of a new sabretooth radiation. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 393–426.  相似文献   

8.
The common occurrence of parallel phenotypic patterns suggests that a strong relationship exists between ecological dynamics and micro‐evolution. Comparative studies from a large number of populations under varying sets of ecological drivers could contribute to a better understanding of this relationship. We used data on morphology of arctic charr (Salvelinus alpinus) and ecological factors from 35 Icelandic lakes to test the hypothesis that morphological patterns among monomorphic charr populations from different lakes are related to interlake variation in ecological characteristics. There is extensive phenotypic diversity among populations of Icelandic charr, and populations are easily distinguished based on overall body morphology. The results obtained in the present study showed that the morphological diversity of charr was related to large‐scale diversity in lake ecology. Variation in charr morphology was related to water origin (e.g. spring fed versus run‐off), bedrock age, and fish community structure. The present study shows how various ecological factors can shape the biological diversity that we observe. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 761–771.  相似文献   

9.
Using the Australian marine‐freshwater terapontid fishes as a model system, we examined the role of dietary phenotypic optima in an adaptive macro‐evolutionary landscape. Comparative modelling relying on both a priori and data‐driven identification of selective regimes suggested multi‐peak models as best describing much of the dietary phenotypic landscape of terapontids. Both approaches identified common phenotypic optima for different lineages of marine and freshwater herbivores, and minimal differentiation between carnivores and omnivores, irrespective of their phylogenetic relationships, as the model best describing morphological evolution. Significant correlations also existed between these phenotypic axes and proportions of non‐animal dietary items in species’ diets. While simulation results provided evidence for a multi‐peak adaptive landscape in the evolution of trophic morphology in terapontids, they could not rule out chance convergence in these adaptive peaks. However, they do provide scope for identifying areas for more detailed, functionally specific study of phenotypic convergence in herbivorous terapontid trophic habits. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 623–634.  相似文献   

10.
Variation in recent human mandibular form is often thought to reflect differences in masticatory behavior associated with variation in food preparation and subsistence strategies. Nevertheless, while mandibular variation in some human comparisons appear to reflect differences in functional loading, other comparisons indicate that this relationship is not universal. This suggests that morphological variation in the mandible is influenced by other factors that may obscure the effects of loading on mandibular form. It is likely that highly strained mandibular regions, including the corpus, are influenced by well‐established patterns of lower facial skeletal integration. As such, it is unclear to what degree mandibular form reflects localized stresses incurred during mastication vs. a larger set of correlated features that may influence bone distribution patterns. In this study, we examine the relationship between mandibular symphyseal bone distribution (i.e., second moments of area, cortical bone area) and masticatory force production (i.e., in vivo maximal bite force magnitude and estimated symphyseal bending forces) along with lower facial shape variation in a sample of n = 20 living human male subjects. Our results indicate that while some aspects of symphyseal form (e.g., wishboning resistance) are significantly correlated with estimates of symphyseal bending force magnitude, others (i.e., vertical bending resistance) are more closely tied to variation in lower facial shape. This suggests that while the symphysis reflects variation in some variables related to functional loading, the complex and multifactorial influences on symphyseal form underscores the importance of exercising caution when inferring function from the mandible especially in narrow taxonomic comparisons. Am J Phys Anthropol 153:387–396, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Developing animals must resolve the conflicting demands of survival and growth, ensuring that they can function as infants or juveniles while developing toward their adult form. In the case of the mammalian skull, the cranium and mandible must maintain functional integrity to meet the feeding needs of a juvenile even as the relationship between parts must change to meet the demands imposed on adults. We examine growth and development of the cranium and mandible, using a unique ontogenetic series of known‐age coyotes (Canis latrans), analyzing ontogenetic changes in the shapes of each part, and the relationship between them, relative to key life‐history events. Both cranial and mandibular development conform to general mammalian patterns, but each also exhibits temporally and spatially localized maturational transformations, yielding a complex relationship between growth and development of each part as well as complex patterns of synchronous growth and asynchronous development between parts. One major difference between cranium and mandible is that the cranium changes dramatically in both size and shape over ontogeny, whereas the mandible undergoes only modest shape change. Cranium and mandible are synchronous in growth, reaching adult size at the same life‐history stage; growth and development are synchronous for the cranium but not for the mandible. This synchrony of growth between cranium and mandible, and asynchrony of mandibular development, is also characteristic of a highly specialized carnivore, the spotted hyena (Crocuta crocuta), but coyotes have a much less protracted development, being handicapped relative to adults for a much shorter time. Morphological development does not predict life‐history events in these two carnivores, which is contrary to what has been reported for two rodent species. The changes seen in skull shape in successive life‐history stages suggest that adult functional demands cannot be satisfied by the morphology characterizing earlier life‐history stages. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

12.
Tree frogs Hyla arborea and Hyla savignyi are similar, closely‐related species distributed in Europe and the Middle East. We investigated geographic variation in body shape within and between these species, and tested its relationships to macroclimatic conditions. We used morphometric distances (based on size corrected external measurements) to construct phenetic trees (unweighted pair‐group method of arithmetical averages, Neighbour‐joining), and to test correlations between morphology, geography, and climate by the partial Mantel test. Regardless of their specific affiliation, the parapatric populations of both species from the eastern Mediterranean, where they occupy comparable habitats, are closer to each other in morphospace than to conspecific populations from distal regions. This local interspecific similarity is probably driven by the common response to environment, expressed here as macroclimatic conditions. In support, the geographically close but ecologically vicariant populations of both species from the Caucasus region differ quite substantially in body shape. We suggest that climate‐provoked phenotypic variation in closely‐related parapatric species should be taken into account as a potential complication to character displacement in morphology. Contrariwise, morphological diversification between related species or their populations could be enhanced by habitat shifts resulting in occupation of different environmental space. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 539–556.  相似文献   

13.
To assess the pollen hosts of 60 western palaearctic bee species of the genus Colletes (Colletidae), we microscopically analysed 1336 pollen loads of collected females. Twenty‐six species (43.3%) were found to be specialized at the level of plant family, subfamily or genus. Thirty‐four species (56.7%) proved to be pollen generalists to varying degrees, visiting the flowers of up to 15 different plant families. Flowers of the subfamily Asteroideae (Asteraceae) are by far the most important pollen source, contributing 23.6% to the pollen‐plant spectrum of the whole bee genus. The high significance of Asteroideae pollen is due to the large number of specialists: 14 Colletes species belonging to four different taxonomic groups harvest pollen exclusively or predominantly on flowers of the Asteroideae. By striking contrast, Asteroideae pollen plays only a marginal role in the diets of the pollen generalists: it was recorded in only 2.7% of the pollen loads and in seven out of the 34 pollen generalists. Among the few generalists exploiting Asteroideae for pollen, three closely related species have ancestors which were possibly specialized on Asteraceae. The pattern of use of Asteroideae pollen by the Colletes bees supports recent findings that this pollen possesses unfavourable or protective properties, which render its digestion difficult, and suggests that bees need physiological adaptations to successfully utilize it. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 719–733.  相似文献   

14.
Variations in scales from nine regions on the flank of teleost fish were examined from the point of view of functional adaptation and with regard to which scales best differentiate species. Three teleost species were selected; two are from the genus Mugil, M. cephalus and M. curema, which are phylogenetically distant from the third, Dicentrarchus labrax. Scale form was described using seven landmarks, the coordinates of which were subjected to generalized Procrustes analysis followed by principal components analysis. Principal component scores were submitted to cross‐validated discriminant analysis to assess the utility of each scale in identifying species. The best discrimination (98%) was obtained with the scale from the central‐dorsal area. Scales from the anterior and central zones are relatively wide dorsoventrally and narrow anteroposteriorly. This appears to be related to the profile of the lateral body wall and with subcarangiform swimming. Scales from the posterior region are anteroposteriorly long and dorsoventrally narrow, this shape possibly being related to thrust. Despite the wide phylogenetic separation between mullets and D. labrax, the pattern of scale variation is similar. This may imply strong functional convergence, although studies of sister taxa with different swimming modes are required to confirm this. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 834–844.  相似文献   

15.
Phylogenetic relationships between taxa are not necessarily reflected by morphological data due to widespread homoplasy and convergence. However, combining morphological and molecular data provides insights into the evolution of biological forms and into the potential factors involved. Here we focus on a complex of three taxa of bats with unclear taxonomic affinities: Myotis myotis, Myotis blythii and Myotis punicus. Traditional morphometric methods failed to separate them, whereas recent molecular‐based studies suggested that they constitute separate biological species. In the present study, landmark‐based geometric morphometrics methods have been used to analyse the skull variability of 218 specimens belonging to this species complex. Patterns of size and shape delimitate three morphological groups that are congruent with the proposed taxonomic assignments, and therefore support species rank for all three major groups. These morphometrics results, however, suggest that M. myotis and M. punicus share shape characteristics in the rostrum and in the posterior part of the skull that differ from M. blythii. Because previous molecular phylogenetic analyses suggested that M. myotis and M. blythii are sister species, we interpret the similitude in skull morphology between M. myotis and M. punicus as a convergence probably related to their similar feeding habits. Within the taxon M. punicus, the skull of Corsican and Sardinian populations significantly differs from that of Maghrebian ones, suggesting the existence of further cryptic taxonomic diversity. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 529–538.  相似文献   

16.
The ability of sabretoothed felids to achieve sufficiently high bite forces for predation at extreme gape angles has been the subject of decades of debate. Previous studies have indicated that bite forces in derived sabretoothed felids would have been low, but that they were probably augmented by head depressing muscles. However, bite mechanics is a dynamic process, and mechanical properties change with changes in gape angles. In this study, I present the first comprehensive model of bite mechanics, vector angles, and forces about the temporomandibular joint at gape angles from occlusion to maximal inferred gape in sabretoothed felids. Primitive sabrecats (Machairodus, Paramachairodus) appear broadly comparable to extant large felids (Panthera, Puma), but derived sabrecats in the groups Homotherini (Amphimachairodus, Homotherium, Xenosmilus) and Smilodontini (Megantereon, Smilodon) are often substantially different from either of the former. The ability of the mandibular adductors to generate torque changes with gape angle, indicating that previous models fail to capture potentially important differences in bite function. Inferred muscle sizes and the angles of effective torque from individual adductor fibres in derived sabrecats are different from those of primitive sabrecats and extant large felids, but they had evolved a number of compensatory adaptations for maximizing force output at the canine and carnassial, primarily changes in muscle fibre angles and more compact crania. Inferred outforces at the canines and carnassials were comparable amongst all groups at low gape angles, but at extreme gape angles outforces would have been low, supporting previous hypotheses of head flexor contribution during initial stages of the killing bite in sabrecats. Mandibular adduction in extant carnivores is a complicated pattern of differences in twitch tension and electromyographical activity at different gape angles, and inference of maximal isotonic bite forces from reconstructed mandibular adductor sizes in fossils will give estimates primarily suitable for comparative purposes. Potentially, derived sabrecats could have evolved differences from extant felids in adductor histochemistry or pinnation angle of individual fibres. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 220–242.  相似文献   

17.
The present study explores the shape changes of cranial structures directly involved in food capturing during growth after reef settlement in two species of Pomacentridae (Dascyllus aruanus and Pomacentrus pavo). Landmark‐based geometric morphometrics were used to study allometric patterns and related shape changes in four skeletal units: neurocranium, suspensorium and opercle, mandible and premaxilla. At settlement, the larvae of both species have a relatively similar morphology, especially with respect to the mandible. Their shapes suggest a feeding mode defined as ram/suction‐feeding. Ontogenetic shape changes show a shift to a suction feeding mode of prey capture. The main transformations involved are an increase in height of the suspensorium and the opercle, an elevation of the supraoccipital crest, a relative shortening of the mandible, and a lengthening of the ascending process of the premaxilla. Shape changes of the mandible in the two studied species also reflect an increase of biting capacities. The high disparity between adult shape results from differences in the rate and in the length of ontogenetic trajectories, from divergence of the ontogenetic trajectories (neurocranium, mandible, and premaxilla) and parallel shifts of the trajectories in the size‐shape space (suspensorium and opercle). In an evolutionary context, allometric heterochronies during ontogeny of different skeletal unit of the head may be considered as a basis for the explanation of the diversity of damselfishes. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 92–105.  相似文献   

18.
The clade Talpidae consists of specialized fossorial forms, shrew‐like moles and semi‐aquatic desmans. As with all higher jawed vertebrates, different functional, phylogenetic and developmental constraints act on different parts of dentary influencing its shape. In order to determine whether morphological variation in the dentary was unified or dispersed into an integrated complex of structural–functional components, a morphometric analysis of the mole dentary was undertaken. The dentary was subdivided into component parts – horizonal ramus; coronoid, condylar, angular processes of the ascending ramus – and outline‐based geometric morphometric methods used to quantify, compare and contrast modes of shape variation within the clade. These were successful in revealing subtle differences and aspects of shape important in distinguishing between mole genera. Closer examination of shape variation within the two fully fossorial mole clades (Talpini and Scalopini) revealed several similarities in ascending ramus shapes between genera from each clade. For example, the broad, truncated appearance of the coronoid process in the talpine genera Talpa and Parascalops was shared with the scalopine genus Scapanus. Also, the more slender, hook‐shaped coronoid process of Euroscaptor and Parascaptor (Talpini) closely resembles that of Scalopus (Scalopini). Interestingly, subspecies (one from each clade) more closely resembled genera other than their own in coronoid process shape. Important distinctions in horizontal ramus shape were found to exist between the two clades, such as the extent of curvature of the ventral margin and relative depth of the horizontal ramus. Results show shape variation in this region is correlated with dental formulae and the relative sizes of the teeth. The taxonomically important dentition differences characteristic of mammals are also reflected in the horizontal ramus results. Moreover, these results suggest size may be affecting shape and the extent of variation in, for example, the coronoid and condylar processes between the semi‐aquatic moles Desmana and Galemys. It is likely that the effects of morphological integration seen at this level of analysis – covariation between shapes of dentary components – may exist because interacting traits are evolving together. Horizontal ramus and coronoid process shape, for example, are similar across Scapanus and Parascalops, but both these shapes have diverged in Scalopus. © 2008 Trustees of the Natural History Museum (London). Journal compilation © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 153 , 187–211.  相似文献   

19.
This study used pollen morphology to address taxonomic controversies related to several species belonging to subgenus Hebeclada of the genus Polygala (Polygalaceae). According to the last traditionally accepted revision of this subgenus, it comprises 40 species. Nevertheless, a recent taxonomic treatment applying more comprehensive criteria reduced this number to only nine species. Our work focused on 15 traditionally accepted species that occur in Brazil, fourteen of which have been considered as only six species in this recent taxonomic study. Pollen grains from floral buds at pre‐anthesis were collected from herbarium specimens and analysed using both visible light and scanning electron microscopy. Most of the traditionally accepted species were distinguished by different combinations of several pollen‐related features, in particular colpi number (13 or 15), pollen size and shape, and endoaperture type (endocingulate or not) and arrangement (parallel or sinuous). The species accepted in the recent taxonomic treatment could not be discriminated by pollen characters. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157 , 609–619.  相似文献   

20.
Measurements were taken on skulls of 253 adult female anthropoid primates from 32 species, in order to determine patterns and possible causes for variation among species in the cross-sectional size and shape of the mandibular corpus under M1. When all 32 species are considered as a group, there is a tendency for corpus shape to become more robust with increasing body size. However, this does not hold for colobines or cercopithecines evaluated separately. When diets are classified into the general categories of folivory or frugivory, neither size-adjusted measurements of mandibular corpus breadth and height, nor estimates of the second moments of inertia or the polar moment of inertia of the mandibular cross section, show any relationship to dietary variation among species. Species reported to include hard nuts in their diets have larger mandibular cross sections than other species, and the size of the corpus is significantly correlated with size of the dentition and molar enamel thickness. A biomechanical model taking into account frictional effects of tooth-to-tooth contact indicates that mandibular corpus robusticity may not be related to a large horizontal component of force during mastication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号