首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioluminescence is known to be of great ecological importance to a luminous organism but extremely few studies investigate the ontogeny of luminous capabilities. The photogenic pattern of the velvet belly lantern shark Etmopterus spinax was investigated over ontogeny (14.0–52.5 cm total length) to determine the scaling of the surface area and the photophore density of different luminous zones as well as the ecological consequences of ontogenetic variations in bioluminescence efficiency. According to the luminous zone considered, different scaling patterns were found for the surface areas while the photophore densities of all zones scale with negative allometry, even though photophore insertion occurs. No sexual differences in these relationships were found. Luminous zones can be placed in two morphologically different groups: the “coverage” and the “isolated” zones. While counter-illumination is certainly the function of the former, the latter are probably involved in intraspecific behaviours. Due to the discrepancy between luminous capabilities of these two luminous zone categories, there is an ontogenetic increase in the luminescence heterogeneity of the luminous pattern as it was shown by luminescence modelling and confirmed by direct observations of spontaneous luminescence in living sharks. This heterogeneity certainly represents a trade-off between an efficient ventral camouflage and a strong identification tool for intraspecific behaviours such as coordinate hunting, which would be particularly useful when E. spinax become fish eaters (>19 cm total length), and for sexual recognition in mature individuals.  相似文献   

2.
Photogenic organs (photophores) of the velvet belly lantern shark (Etmopterus spinax) are under hormonal control, since melatonin (MT) and prolactin (PRL) trigger luminescence while α-melanocyte-stimulating hormone (α-MSH) prevents this light to be emitted. A recent study supported, however, the presence of numerous nerve fibres in the photogenic tissue of this shark. Immunohistochemical and pharmacological results collected in this work support these nerve fibres to be inhibitory GABAergic nerves since (i) GABA immunoreactivity was detected inside the photogenic tissue, where previous labelling detected the nerve fibre structures and (ii) GABA was able to inhibit MT and PRL-induced luminescence, which was on the other hand increased by the GABA(A) antagonist bicuculline (BICU). In addition, we also demonstrated that BICU can induce light per se by provoking pigment retraction in the pigmented cells composing the iris-like structure of the photophore, attaining, however, only about 10% of hormonally induced luminescence intensity at 10(-3)mol L(-1). This strongly supports that a GABA inhibitory tonus controls photophore "aperture" in the photogenic tissue of E. spinax but also that MT and PRL have more than one target cell type in the photophores.  相似文献   

3.
Etmopterus spinax Linnaeus, 1758 is a deep-sea lantern shark that emits blue light thanks to thousands of tiny cup-shaped organs made of a pigmented sheath enclosing light-emitting cells topped by an iris-like structure and a lens. In this study, we investigate the ultrastructure of these photophores in order to improve our understanding of the light emission process. The presence of a novel layer, a putative reflector upholstering the pigmented sheath, is highlighted. The intracellular organization of the photocytes is addressed. They appear as regionalized cells: their basal area is occupied by an ovoid nucleus, their medial area is highly vesiculated and their apical area, oriented toward the photophore center, displays small granular inclusions. We hypothesize this granular area to be the intracellular site of photogenesis in E. spinax, as it is also the most fluorescent part of the photocyte.  相似文献   

4.
1. Isolated photophores from the luminous fish Porichthys produce light in response to adrenaline and the metabolic inhibitors iodoacetic acid (IAA) or potassium cyanide (KCN).2. We attempted to analyse the interactions of cellular metabolism and adrenergic stimulation of the photogenic cells.3. Photophores were treated with IAA in the presence of pyruvate. In these conditions, IAA does inhibit glycolysis without inducing any luminescent activity of the cells.4. Similarly, other photophores were incubated with KCN in the presence of glucose, in order to inhibit cellular respiration while keeping the luminous system inactive.5. We observed that adrenergic stimulation of these photophores remained effective and induced a light emission, demonstrating that glycolytic and oxidative metabolism are not absolutely essential to the mechanism underlying adrenergic activation of the luminous system.6. The comparison of these luminescences with adrenergic responses of control photophores showed that the light emission to adrenaline was markedly inhibited by glycolysis blockade but potentiated by an inhibition of cellular respiration.7. As the inhibitory effect of IAA does not result from a direct action of IAA on the luminous system, these results suggest that adrenaline activation of adrenergic receptors might interact with glycolysis in photogenic cells.8. Glyceraldehyde 3-phosphate, or some derivatives, could be implicated in the glycolytic control of luminescence in the photophores.  相似文献   

5.
The putatively luminous villous tissue in an abdominal pouch of a male specimen of the oceanic midwater shark Euprotomicroides zantedeschia is described. The epithelium within the pouch is probably stratified. The most conspicuous cell type is tall columnar cells, typically containing small cytoplasmic granules and a large inclusion. Cells with similar cytoplasmic characteristics, thought to be photogenic cells, are present in the epidermal skin photophores in other selachians which are known to be luminous.  相似文献   

6.
By combining an examination of stomach contents yielding a snapshot of the most recent trophic niche and the structure of parasite communities reflecting a long‐term feeding niche, this study aimed at gaining more comprehensive information on the role of the small‐sized deep‐water velvet belly lantern shark Etmopterus spinax in the local food webs of the Galicia Bank and the canyon and valley system of the Avilés Canyon, which have been both proposed for inclusion in the Natura 2000 network of protected areas. As far as is known, this study provides the first comparative parasite infracommunity data for a deep‐sea shark species. Component parasite communities in E. spinax were relatively rich, whereas the infracommunities were rather depauperate, with similar low diversity at both localities. The significant differences in the composition and structure of both parasite communities and prey assemblages indicate differential effects of the two deep‐sea ecosystems on both long‐term and most recent trophic niches of E. spinax. These results underline the importance of the use of multivariate analyses for the assessment of geographical variation in shark populations based on parasites and diet data.  相似文献   

7.
8.
1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.  相似文献   

9.
I. Preciado    J. E. Cartes    A. Serrano    F. Velasco    I. Olaso    F. Sánchez    I. Frutos 《Journal of fish biology》2009,75(6):1331-1355
The feeding habits of birdbeak dogfish Deania calcea, velvet belly lantern shark Etmopterus spinax and blackmouth catshark Galeus melastomus at Le Danois Bank, Cantabrian Sea, south Bay of Biscay were studied in relation to their bathymetric distribution. Deep‐sea sharks were collected during two multidisciplinary surveys carried out in October 2003 and April 2004 at the Le Danois Bank. Two different habitats were defined: (1) the top of the bank, ranging from 454 to 642 m depth and covered by fine‐sand sediments with a low percentage of organic matter, and (2) the inner basin located between the bank and the Cantabrian Sea's continental shelf, at depths of 810–1048 m, which was characterized by a high proportion of silt and organic matter. Deania calcea was not present at the top of the bank but was abundant below 642 m, while E. spinax was abundant in the shallower top of the bank but was not found in the deeper inner basin. There was almost no bathymetric overlap between these two deep‐sea shark species. Galeus melastomus was found over the whole depth range. There seemed to be an ontogenetic segregation with depth for this species, however, since 80% of the specimens collected at the top of the bank were < 600 mm total length (LT) (mean 510 mm LT), whereas larger individuals (mean 620 mm LT) inhabited deeper zones. Galeus melastomus exhibited a significantly higher feeding intensity than both E. spinax at the top of the bank and D. calcea in the inner basin. Little dietary overlap between D. calcea and G. melastomus in the inner basin was found, with D. calcea being an ichthyophagous predator while the diet of G. melastomus at these depths was composed of a variety of meso‐bathypelagic shrimps (e.g. Acantephyra pelagica, Pasiphaea spp. and Sergia robusta), cephalopods and fishes. The diets of E. spinax and G. melastomus at the top of the bank showed a high dietary overlap of euphausiids, which represented the main prey taxa for both species. Euphausiids declined in abundance with depth which was reflected in the diet of G. melastomus. The cluster analysis of prey affinities among hauls depicted two major groups, corresponding to the two different habitats (top of the bank and inner basin). Redundancy analysis also indicated top–basin segregation, with euphausiids representing the main prey taxa at the top of the bank and bathypelagic shrimps in the inner basin. Euphausiids and Micromesistius poutassou were key prey within the Le Danois Bank ecosystem since they were positively selected by the three deep‐sea shark species. These results show that the feeding ecology of these predators in Le Danois Bank ecosystem is highly influenced by depth‐related variables, as a result of changes in prey availability. Overall results were analysed in relation to the deep‐sea Le Danois ecosystem structure and functioning.  相似文献   

10.
Multiple paternity seems common within elasmobranchs. Focusing on two deep-sea shark species, the velvet belly lanternshark (Etmopterus spinax) and the slendertail lanternshark (Etmopterus molleri) we inferred the paternity in 31 E. spinax litters from Norway (three to 18 embryos per litter) and six E. molleri litters from Japan (three to six embryos), using 21 and 10 specific microsatellites, respectively. At least two E. spinax litters were sired from multiple fathers each, with highly variable paternal skew (1:1 to 9:1). Conversely, no clear signal of genetic polyandry was found in E. molleri.  相似文献   

11.
This study reports on the metabolic rate of the blacktip shark Carcharhinus limbatus and the energetic costs of external tag attachment. Metabolic rates, swimming speed and tail‐beat (BT) frequency were measured in a static respirometer with untagged animals and animals equipped with a small data logger. Tagged sharks showed significantly higher routine oxygen consumption and lower swimming speeds than untagged animals, indicating that tagging significantly affected the swimming efficiency and energetic requirements in these small sharks, and that these effects must be accounted for when interpreting telemetry data from free‐ranging individuals.  相似文献   

12.
Deep water sharks are commonly caught as by-catch of longlines targeting bony fishes and trawlers targeting crustaceans in deep water off the southern Portuguese coast. Due to low or no commercial value, these species are most of the times discarded at sea, with only the larger specimens of some species commercialized at very low prices. In this study we present size distributions, maturity distributions, and sex ratios of 2,138 specimens belonging to four different species, namely the lantern sharks Etmopterus pusillus and Etmopterus spinax and the catsharks Galeus melastomus and Galeus atlanticus, caught with these two gears. Trawls generally caught smaller-sized specimens, in a wider length range than longlines. Trawls caught mostly immature specimens of all species, namely 83.7% immature of E. pusillus, 84.3% of E. spinax, 89.5% of G. melastomus, and 95.5% of G. atlanticus, while longlines caught mostly immature E. pusillus (69.2%) and G. melastomus (78.6%) and mostly mature E. spinax (88.2%) and G. atlanticus (87.2%). Trawls tended to catch more males than females of all species except E. spinax, while longlines caught more females than males of E. spinax and G. melastomus and more males than females of the other two species. The main conclusion of this work is that trawls are catching smaller-sized and mostly immature specimens when compared to longlines, meaning that they are probably having a more detrimental effect on these shark populations. The data presented here have significant implications for the conservation of these shark populations since sizes, sexes, and the immature and mature components of the populations are being affected differently by these two fishing gears. Guest editors: J. Davenport, G. Burnell, T. Cross, M. Emmerson, R. McAllen, R. Ramsay & E. Rogan Challenges to Marine Ecosystems  相似文献   

13.
Spatial and temporal aspects of luminous responses in several common species of Southern California lanternfish (Myctophidae) were analyzed using T.V. image intensifier and photomultiplier techniques.The two principal types of luminous tissue, photophores and luminous tissue patches, responded in strikingly and consistently different ways to both mechanical and electrical stimulation. While typically producing a variable intensity glow spontaneously, the entire photophore array proved capable of coordinated, simultaneous activation by electrical stimulation. Although never active in undisturbed shipboard animals, luminous tissue patches, primarily, supra- and infracaudal organs, produced brilliant, rapid, transient displays to both mechanical and electrical stimulation. Light from the supra- and infracaudal organs is produced by 3–9 visually distinct subunits capable of both simultaneous and temporally variable activation.Electrical excitation gave maximum response rates of up to 30 flashes/sec in the luminous patches of all the species tested, whether tissue was from caudal organs or ventral or supraorbital patches. Chemical stimulation never triggered luminous responses from luminous tissue patches, and gave only ambiguous results with photophores.The results are discussed in terms of effector control and functional potential of the various luminous displays.  相似文献   

14.
This study sought to observe the effects of submerged weight and frontal cross‐sectional area of external telemetry packages on the kinematics, activity levels and swimming performance of small‐bodied juvenile sharks, using lemon sharks Negaprion brevirostris (60–80 cm total length, LT) as a model species. Juveniles were observed free‐swimming in a mesocosm untagged and with small and large external accelerometer packages that increased frontal cross‐sectional area of the animals and their submerged weight. Despite adhering to widely used standards for tag mass, the presence of an external telemetry package altered swimming kinematics, activity levels and swimming performance of juvenile N. brevirostris relative to untagged individuals, suggesting that tag mass is not a suitable standalone metric of device suitability. Changes in swimming performance could not be detected from tail‐beat frequency, which suggests that tail‐beat frequency is an unsuitable standalone metric of swimming performance for small N. brevirostris. Lastly, sharks experienced treatment‐specific changes in activity level and swimming kinematics from morning to afternoon observation. Therefore, the presence of external telemetry packages altered the kinematics, activity levels and swimming performance of small young‐of‐the‐year N. brevirostris and these data may therefore be relevant to other similar‐sized juveniles of other shark species.  相似文献   

15.
Pyroteuthis margaritifera has morphologically distinctive photophores on the tentacles, eyeball and in the mantle cavity. The photogenic tissue in each photophore is identical, has a blue-green fluorescence and luminesces on treatment with dilute hydrogen peroxide. The photocytes frequently contain organized fibrillar material akin to that in the photocytes of certain other cephalopods. Several different types of blood vessel are present among the photocytes, including some, apparently restricted to the photophores, with a microvillous endothelium. Haemocyanin is present not only within identifiable blood vessels but also in some intercellular spaces.
On the basis of their characteristic optical systems the photophores can be separated into three types: (1) tentacular; (2) ocular and anal; (3) branchial and median abdominal. The tentacular photophores have collagenous reflector and light guide systems and the median ones are double organs. The ocular and anal organs do not have collagenous optical structures but an elaborate variety of reflective iridosomes. Those in the aperture of the photophores appear to act as interference filters. The branchial and abdominal organs have iridosomes as the major reflective tissue but collagenous fibrils function as light guides in the aperture of these organs and their emission is diffuse rather than collimated.  相似文献   

16.
Krönström, J. and Mallefet, J. 2009. Evidence for a widespread involvement of NO in control of photogenesis in bioluminescent fish. —Acta Zoologica (Stockholm) 91 : 474–483. The presence of nitric oxide synthase (NOS) and nerve fibres in the photophores of seven bioluminescent fish species (Hygophum benoiti, Myctophum punctatum, Electrona risso, Cyclothone braueri, Vinciguerria attenuata, Maurolicus muelleri and Porichthys notatus) with endogenous photocytes, were investigated. Antibodies directed against neuronal and inducible NOS (n and iNOS respectively) and NADPH‐diaphorase activity were used to reveal the locations of NOS, while antibodies directed against acetylated tubulin were used to visualize nerve fibres. The nNOS antibody labelled structures in all investigated photophores except in the organs from P. notatus. The photocytes of P. notatus showed NADPH‐diaphorase activity. In the myctophid species, NOS‐like immunoreactivity was found in small intracellular structures of the photocytes and in nerve fibres reaching the photocytes. nNOS‐positive fibres were also found among lens/filter cells in V. attenuata, and in M. muelleri the cytoplasm of lens/filter cells contained NOS‐like material. In C. braueri, a cell type located at a collecting chamber for luminous products in the photophore contained NOS‐like material. All photophores received an innervation reaching the photocytes, as well as other components including lens/filter areas. The results of this study comply with an involvement of nitric oxide in the control of bioluminescence in several fish species.  相似文献   

17.
18.
Several species of the luminescent tubeshoulder fish (family Platytroctidae) show extensive ontogenetic transformations in the development of bioluminescent structures from larvae to adults. Several types of luminescent tissues are present in platytroctids, although these tissues are poorly known for most species because specimens are rarely observed. The present study describes the ontogenetic transformation of photogenic structures in Sagamichthys schnakenbecki, a species that is found in meso and bathy-pelagic depths of the Atlantic Ocean. Five newly described luminous structures are included in addition to a review of all known bioluminescent tissues described in the family. The newly discovered photogenic tissues were observed at the pectoral-fin base in early juveniles, as a pair of large globule-like tissues inside the caudal peduncle of early juveniles, at the pelvic girdle of late juveniles and early adults and as photogenic tissue observed as pigment over the cleithral bone in adults. A peculiar skin-slit structure, which was observed only in S. schnakenbecki, is described and discussed. Skin slits were associated with certain bioluminescent structures during the transformation into adulthood. In addition, coI sequence data from nine of 13 recognized platytroctid genera were used to construct the first molecular phylogenetic tree for the family. Finally, the first photographic evidence of the rarely observed luminous discharge of a tubeshoulder shoulder organ is presented from observations off south-east Greenland.  相似文献   

19.
20.
In most symbioses between animals and luminous bacteria it has been assumed that the bacterial symbionts luminesce continuously, and that the control of luminescent output by the animal is mediated through elaborate accessory structures, such as chromatophores and muscular shutters that surround the host light organ. However, we have found that while in the light organ of the sepiolid squid Euprymna scolopes, symbiotic cells of Vibrio fischeri do not produce a continuously uniform level of luminescence, but instead exhibit predictable cyclic fluctuations in the amount of light emitted per cell. This daily biological rhythm exhibits many features of a circadian pattern, and produces an elevated intensity of symbiont luminescence in juvenile animals during the hours preceding the onset of ambient darkness. Comparisons of the specific luminescence of bacteria in the intact light organ with that of newly released bacteria support the existence of a direct host regulation of the specific activity of symbiont luminescence that does not require the intervention of accessory tissues. A model encompassing the currently available evidence is proposed for the control of growth and luminescence activity in the E. scolopes/V. fischeri light organ symbiosis.Abbreviations CFU colony-forming-unit - LD light-dark  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号