首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a phylogenetic perspective in an examination of the direction and extent of sexual dimorphism in body size and body shape in European newts from the Balkan Peninsula (alpine newts, Mesotriton alpestris; crested newts, Triturus cristatus superspecies; smooth newts, Lissotriton vulgaris). We found a strong, female‐biased sexual size dimorphism (SSD) in the analysed clades of alpine newt, whereas within crested newts we found a less stringent female‐biased SSD in Triturus carnifex, Triturus macedonicus and Triturus karelinii, and no significant SSD in T. cristatus or Triturus dobrogicus. Among the smooth newts, we found male‐biased SSD in Lissotriton vulgaris vularis and Lissotriton vulgaris greacus and no SSD in Lissotriton vulgaris meridionalis. Most of these newts also exhibit a significant sexual dimorphism in body shape, which varied more randomly than body size, regardless of SSD level. Female and male body size as well as the degree of SSD displayed statistically significant phylogenetic signal, while sexual dimorphism in body shape was phylogenetically independent. The relationship between independent contrast data for female size and male size indicated that SSD in European newts could be driven by a disproportionate increase in female size as increase in female size was not accompanied by a proportional increase in male size.  相似文献   

2.
3.
We characterized the adult body form of the crested newt (Triturus cristatus superspecies) and explored its evolution. From seven morphometric traits, we determined that body size, interlimb distance and head width define the body form. None of the morphometric traits showed a phylogenetic signal. Three body‐shape morphotypes (Triturus dobrogicus + T. cristatus, Triturus carnifex + Triturus macedonicus and Triturus karelinii + Triturus arntzeni) and three body‐size morphotypes (T. dobrogicus, T. cristatus and all other crested newts) could be recognized. The ancestral phenotype (a large body with a short trunk and a wide head) characterized T. karelinii and T. arntzeni. Triturus carnifex and T. macedonicus had a somewhat different phenotype (large body and wide head, accompanied by mild body elongation). The most derived phenotype included body size reduction and more pronounced body elongation in T. cristatus and, especially, in T. dobrogicus. Body elongation occurred by trunk lengthening but not head and tail lengthening. Additionally, contrary to other tetrapods, evolutionary axis elongation in crested newts was followed by a decrease in body size. We advocate the hypothesis that ecology drives the evolution of body form in crested newts.  相似文献   

4.
Many studies in primate and human evolution focus on aspects of cranial morphology to address issues of systematics, phylogeny, and functional anatomy. However, broad analyses of cranial diversity within Primates as an Order are notably absent. In this study, we present a 3D geometric morphometric analysis of primate cranial morphology, providing a multivariate comparison of the major patterns of cranial shape change during primate evolution and quantitative assessments of cranial diversity among different clades. We digitized a set of 18 landmarks designed to capture overall cranial shape on male and female crania representing 66 genera of living primates. The landmark data were aligned using a Generalized Procrustes Analysis and then subjected to a principal components analysis to identify the major axes of cranial variation. Cranial diversity among clades was compared using multivariate measurements of variance. The first principal component axis reflects differences in cranial flexion, orbit size and orientation, and relative neurocranial volume. In general, it separates strepsirrhines from anthropoids. The second axis reflects differences in relative cranial height and snout length and primarily describes differences among anthropoids. Eulemur, Mandrillus, Pongo, and Homo are among the extremes in cranial shape. Anthropoids, catarrhines, and haplorhines show a higher variance than prosimians or strepsirrhines. Hominoids show the highest variance in cranial shape among extant primate clades, and much of this diversity is driven by the unique cranium of Homo sapiens. Am J Phys Anthropol 142:565–578, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
To explore the relationship between morphological change and species diversification, we reconstructed the evolutionary changes in skull size, skull shape, and body elongation in a monophyletic group of eight species that make up salamander genus Triturus. Their well‐studied phylogenetic relationships and the marked difference in ecological preferences among five species groups makes this genus an excellent model system for the study of morphological evolution. The study involved three‐dimensional imagery of the skull and the number of trunk vertebrae, in material that represents the morphological, spatial, and molecular diversity of the genus. Morphological change largely followed the pattern of descent. The reconstruction of ancestral skull shape indicated that morphological change was mostly confined to two episodes, corresponding to the ancestral lineage that all crested newts have in common and the Triturus dobrogicus lineage. When corrected for common descent, evolution of skull shape was correlated to change in skull size. Also, skull size and shape, as well as body shape, as inferred from the number of trunk vertebrae, were correlated, indicating a marked impact of species' ecological preferences on morphological evolution, accompanied by a series of niche shifts, with the most pronounced one in the T. dobrogicus lineage. The presence of phylogenetic signal and correlated evolutionary changes in skull and body shape suggested complex interplay of niche shifts, natural selection, and constraints by a common developmental system. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 243–255.  相似文献   

6.
Phenetic relationships among four Apodemus species (A. agrarius, A. epimelas, A. flavicollis and A. sylvaticus) inferred from skull (mandible and cranium) variation were explored using landmark-based geometric morphometrics. Analysis of size variation revealed that mandibles and crania of A. epimelas were the largest, followed by those of A. flavicollis, while A. agrarius and A. sylvaticus had the smallest ones. Phenetic relationships inferred from mandible shape variation better reflected phylogenetic relationships among the analyzed Apodemus species than those inferred from cranial differences. Concerning cranial shape variation, the most differentiated species was A. epimelas, whose ecology clearly differs from the other three species. Thus, differentiation of the mandible provided a pattern fully concordant with the phylogeny, while the cranium differentiation was in agreement with ecology expectations. The most evident shape changes of mandible and cranium involved the angular process and facial region, respectively. We also found that allometry had a significant influence on shape variation and that size-dependent shape variation differed among the analyzed species. Moreover, mandible and cranium are differently influenced by allometric changes. Different phenetic relationships inferred from mandible and cranium shape variation imply that phylogeny, ecology, together with factors related to size differences are all involved in the observed morphological divergence among the analyzed Apodemus species.  相似文献   

7.
Caviomorph rodents represent an excellent model to explore morphological diversification on a macroevolutionary scale, as they are ecologically and morphologically diverse. We analysed cranial shape variation using geometric morphometrics and phylogenetic comparative methods. Most variation involved the shape of the rostrum, basicranium, and cranial vault, and clearly matched the phylogenetic structure. At the same time, a strong allometric pattern was associated with the length of the rostrum and cranial vault, size of the auditory bulla, and depth of the zygomatic arch. After accounting for size influence, and taking phylogenetic structure into account, shape variation was significantly associated with habitat. Our results highlight the presence of complex relationships between morphological, phylogenetic, and ecological dimensions in the diversification of the caviomorph cranium. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 898–913.  相似文献   

8.
We analyzed mandible shape variation of 17 genera belonging to three superfamilies (Cavioidea, Chinchilloidea, and Octodontoidea) of South American caviomorph rodents using geometric morphometrics. The relative influence of phylogeny and ecology on this variation was assessed using phylogenetic comparative methods. Most morphological variation was concentrated in condylar, coronoid, and angular processes, as well as the diastema. Features potentially advantageous for digging (i.e. high coronoid and condylar processes, relatively short angular process, and diastema) were present only in octodontoids; cavioids showed opposing trends, which could represent a structural constraint for fossorial habits. Chinchilloids showed intermediate features. Genera were distributed in the morphospace according to their classification into superfamilial clades. The phylogenetic signal for shape components was significant along phylogeny, whereas the relationship between mandibular shape and ecology was nonsignificant when phylogenetic structure was taken into account. An early evolutionary divergence in the mandible shape among major caviomorph clades would explain the observed strong phylogenetic influence on the variation of this structure. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 828–837.  相似文献   

9.
The diversity of items consumed by modern didelphids, varying from mostly fruits in Caluromys Allen to mostly small vertebrates in Lutreolina O. Thomas, may cause changes in molar size and shape. We evaluated the morphometric variation of the first and third upper and lower molars of 16 genera of didelphid marsupials, with the aim of assessing the relationship between molar shape change, diet and phylogeny. We used a geometric morphometric approach to analyse how shape changes with diet. We mapped shape onto the phylogeny of the group to reconstruct ancestral states and analyse the evolution of molar shape. Finally, we statistically estimated the effect of size, diet and phylogeny on molar shape. All the analyses indicated little correlation between diet and molar shape and a strong correlation between the position of each genus on the phylogeny and molar shape. We believe that the wide ecological niche used by most of the groups (at least regarding diet) makes the evolutionary changes not strong enough to override pre‐existing differences that occur among clades, and the absence of highly diet‐specialized species (e.g. hypercarnivory or obligate folivory) causes the need for retaining a molar shape that can be useful to process different kinds of food items. © 2014 The Linnean Society of London  相似文献   

10.
Milan Vogrin 《Biologia》2006,61(5):579-584
Population and ecological parameters such as numbers of larvae, microhabitat use, niche breadth and niche overlap of three species of syntopic larval newts (Alpine newt Triturus alpestris, Italian crested newt T. carnifex, and common newt T. vulgaris) were studied for two years in a small pond at 1160 m a.s.l. in NE Slovenia. Differences in microhabitat partitioning among larval newts were small. The largest niche breadth was estimated for larval T. alpestris, and the narrowest estimate was for larval T. carnifex in both years. Ecological differences seem to be very small and quite variable among sites and years. It appears that the developmental stage and size of newt larvae are more important in explaining resource partitioning than the characteristics of each species. Because of the absence of potential invertebrate predators and adult newts in the second half of the breeding season, the injuries could only be caused by intra-and interspecific predation attempts.  相似文献   

11.
We assess the role of the Carpathians as an extra‐Mediterranean glacial refugium for the crested newt Triturus cristatus. We combine a multilocus phylogeography (one mitochondrial protein‐coding gene, three nuclear introns, and one major histocompatibility complex gene) with species distribution modelling (projected on current and Last Glacial Maximum climate layers). All genetic markers consistently show extensive genetic variation within and genetic depletion outside the Carpathians. The species distribution model suggests that most of the current range was unsuitable at the Last Glacial Maximum, but a small suitable area remained in the Carpathians. Triturus cristatus dramatically expanded its postglacial range, colonizing much of temperate Eurasia from a glacial refugium in the Carpathians. Within the Carpathians, T. cristatus persisted in multiple geographically discrete regions, providing further support for a Carpathian ‘refugia within refugia’ scenario. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 574–587.  相似文献   

12.
As a result of their rather uniform external appearance and gross cranial morphology, the systematics of blind mole rats has been hotly debated over the last century; however, the separation of the large‐bodied and small‐bodied blind mole rats at the genus level (Spalax and Nannospalax, respectively), suggested earlier on morphological grounds, is strongly supported by recent molecular biological evidence. The species of Spalax have so far been distinguished from each other by cranial traits only, especially the outline of sutures of the cranium, and the shape and relative size of the nasal and parietal bones. Based on mitochondrial DNA sequences (with the widest taxonomic and geographic coverage so far) and detailed anatomical comparisons of museum specimens, we herewith provide a revision of the taxonomic and phylogenetic status of the westernmost representative of the genus, Spalax graecus s.l. We clarify that antiquus and istricus – presently regarded as synonyms of graecus – are well‐defined species, and they together form a separate clade within Spalax. The robustness of our conclusions is supported by the combined evidence of morphology, multilocus phylogeny, species distribution, and taxon history (species congruence with past tectonic and climate events). © 2013 The Linnean Society of London  相似文献   

13.
The clade Talpidae consists of specialized fossorial forms, shrew‐like moles and semi‐aquatic desmans. As with all higher jawed vertebrates, different functional, phylogenetic and developmental constraints act on different parts of dentary influencing its shape. In order to determine whether morphological variation in the dentary was unified or dispersed into an integrated complex of structural–functional components, a morphometric analysis of the mole dentary was undertaken. The dentary was subdivided into component parts – horizonal ramus; coronoid, condylar, angular processes of the ascending ramus – and outline‐based geometric morphometric methods used to quantify, compare and contrast modes of shape variation within the clade. These were successful in revealing subtle differences and aspects of shape important in distinguishing between mole genera. Closer examination of shape variation within the two fully fossorial mole clades (Talpini and Scalopini) revealed several similarities in ascending ramus shapes between genera from each clade. For example, the broad, truncated appearance of the coronoid process in the talpine genera Talpa and Parascalops was shared with the scalopine genus Scapanus. Also, the more slender, hook‐shaped coronoid process of Euroscaptor and Parascaptor (Talpini) closely resembles that of Scalopus (Scalopini). Interestingly, subspecies (one from each clade) more closely resembled genera other than their own in coronoid process shape. Important distinctions in horizontal ramus shape were found to exist between the two clades, such as the extent of curvature of the ventral margin and relative depth of the horizontal ramus. Results show shape variation in this region is correlated with dental formulae and the relative sizes of the teeth. The taxonomically important dentition differences characteristic of mammals are also reflected in the horizontal ramus results. Moreover, these results suggest size may be affecting shape and the extent of variation in, for example, the coronoid and condylar processes between the semi‐aquatic moles Desmana and Galemys. It is likely that the effects of morphological integration seen at this level of analysis – covariation between shapes of dentary components – may exist because interacting traits are evolving together. Horizontal ramus and coronoid process shape, for example, are similar across Scapanus and Parascalops, but both these shapes have diverged in Scalopus. © 2008 Trustees of the Natural History Museum (London). Journal compilation © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 153 , 187–211.  相似文献   

14.
Using a geometric morphometric approach, we explored the variation in skull size and skull shape in banded newts (genus Ommatotriton). The genus Ommatotriton is represented by two allopatric, genetically well‐defined species: Ommatotriton ophryticus and O. vittatus. Within each species, two subspecies have been recognised. The samples used in this study cover the geographical and genetic variation within each species. We found statistically significant variation in skull size between species and among populations within species. When corrected for size, there was no significant variation in shape between species. Our results indicate that the variation in skull shape within the genus Ommatotriton is almost entirely due to size‐dependent, allometric shape changes. The exception is the shape of the ventral skull in males. Males of O. ophryticus and O. vittatus significantly diverge in the shape of the ventral cranium. The ventral skull, more precisely the upper jaw and palate, is directly functionally related to feeding. In general, our results indicate that allometry is a significant factor in the morphological variation of banded newts. However, the divergence in the ventral skull shape of males indicates that sexual selection and niche partitioning may have influenced the evolution of skull shape in these newts.  相似文献   

15.
Current ecological surveys for great crested newts are time‐consuming and expensive and can only be carried out within a short survey window. Additional survey methods which would facilitate the detection of rare or protected species such as the great crested newt (Triturus cristatus) would be extremely advantageous. Environmental DNA (eDNA) analysis has been utilized for the detection of great crested newts in Denmark. Here, the same methodology has been applied to water samples taken from UK ponds concurrently with conventional field surveying techniques. Our eDNA analysis exhibited an 84% success rate with a kappa coefficient of agreement between field and eDNA surveys of 0.86. One pond determined to be negative for great crested newt by field survey was positive by eDNA analysis, revealing the potential for improved detection rates using this methodology. Analysis of water samples collected in late summer indicates that eDNA analysis could be used to detect great crested newt after the optimal survey window for current field techniques had passed. Consequently, eDNA analysis could augment currently stipulated techniques for great crested newt surveying as a relatively quick and inexpensive tool for collecting great crested newt presence and distribution data within the UK instead of or prior to full field surveys.  相似文献   

16.
Although diurnal birds of prey have historically been placed in a single order due to a number of morphological characters, recent molecular phylogenies have suggested that this is a case of convergence rather than homology, with hawks (Accipitridae) and falcons (Falconidae) forming two distantly related groups within birds. The feather lice of birds have often been used as a model for comparing host and parasite phylogenies, and in some cases there is significant congruence between the two. Thus, studying the phylogeny of the lice of diurnal raptors may be of particular interest with respect to the independent evolution of hawks vs. falcons. Using one mitochondrial gene and three nuclear genes, we inferred a phylogeny for the feather louse genus Degeeriella (which are all obligate raptor ectoparasites) and related genera. This phylogeny indicated that Degeeriella is polyphyletic, with lice from falcons vs. hawks forming two distinct clades. Falcon lice were sister to lice from African woodpeckers, whereas Capraiella, a genus of lice from rollers lice, was embedded within Degeeriella from hawks. This phylogeny showed significant geographical structure, with host geography playing a larger role than host taxonomy in explaining louse phylogeny, particularly within clades of closely related lice. However, the louse phylogeny does reflect host phylogeny at a broad scale; for example, lice from the hawk genus Accipiter form a distinct clade. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 837–847.  相似文献   

17.
A cross-sectional analysis using different ontogenetic stages (larvae, juveniles, paedotypic, and metamorphic adults) of the smooth newt, Triturus vulgaris, and the alpine newt, T.alpestris, revealed a broad spectrum of perennibranchiation influences on cranial ontogeny in European newts, more pronounced than previously thought. These influences included marked variation in ossification levels, pronounced morphometric variability of many cranial elements, and considerable skull shape changes in the transition from larvae to the adult stage. In comparison with metamorphosed individuals, paedotypic newts had a higher level of variability in both individual cranial traits and cranial shape changes. Sexual size difference of the skull traits was mostly negligible, especially in comparison to the influence of paedogenesis. The main changes in cranial shape of the European newts occurred during metamorphosis. Cranial morphological organization in the majority of examined paedotypes corresponds to cranial organization at late larval stages prior to metamorphosis or at the onset of metamorphosis.  相似文献   

18.
The newts Triturus vulgaris and Triturus montandoni are sister species that exhibit contrasting levels of intraspecific morphological variation. Triturus vulgaris has a broad Eurasiatic distribution encompassing both formerly glaciated and unglaciated areas and shows substantial morphological differentiation in the southern part of its range, while T. montandoni, confined to the Carpathians, is morphologically uniform. We analysed sequence variation of two mtDNA fragments of the total length of c. 1850 bp in 285 individuals of both species collected from 103 localities. Phylogenetic analysis of 200 unique haplotypes defined 12 major clades, their age estimated at c. 4.5-1.0 million years (Myr). Most of the older clades were found in the southern part of the range, and also in central Europe, mainly in Romania. The distribution of mtDNA clades points to the existence of several glacial refugia, located in the Caucasus region, Anatolia, the Balkan Peninsula, Italy, and more to the north in central Europe. The concordance between mtDNA based phylogeny and the distribution of T. vulgaris subspecies was weak. Triturus montandoni haplotypes did not form a monophyletic group. Instead they were found in six clades, in five of them mixed with T. vulgaris haplotypes, most likely as a result of past or ongoing hybridization and multiple introgression of mtDNA from T. vulgaris to T. montandoni. Patterns of sequence variation within clades suggested long-term demographic stability in the southern groups, moderate and relatively old demographic growth in the populations inhabiting central Europe, and high growth in some of the groups that colonized northern parts of Europe after the last glacial maximum.  相似文献   

19.
There has been little agreement on the phylogeny of palaeognathous birds, with major differences amongst and between results from morphological and molecular data. Two recently published phylogenies using nuclear and mitochondrial DNA have substantial agreement in overall topology, with the ostrich as sister group of all other extant palaeognaths and a kiwi‐emu‐cassowary clade. Here I report a morphological phylogeny based mainly on new characters from the tongue apparatus and cranial osteology, with a theoretical ancestor as outgroup. A new interpretation of the evolution of the avian palate is included. This phylogeny is very similar to these recent molecular results; this is the first report of such congruence, and offers a credible basis for understanding the evolution of this clade. This phylogeny is fully consistent with a Gondwana vicariance model of evolution. Dates attributed from known geological events place the first extant radiation (ostrich) in the mid‐Cretaceous, and offer a means of calibration of future molecular clock investigations. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 959–983.  相似文献   

20.
Field observations of courtship displays in a natural population of crested newts, Triturus cristatus, are described. Males were observed both courting females and displaying to other males, and male: male interactions were as frequent as courtships. Many courtships were also interrupted by intruding males, and courtship success was less than 7%. A comparison is made with aquaria studies, which shows that the presence of more individuals in the field, where newts aggregate in leks when breeding, is influencing male behaviour. On the other hand, the different features of the displays observed in the field did not differ to any major extent from behaviour patterns observed in aquaria studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号