首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 371 毫秒
1.
The interaction between Trichoderma pseudokoningii (Rifai) 511, 2212, 741A, 741B and 453 and the arbuscular mycorrhizal fungi Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe BEG12 and Gigaspora rosea Nicolson & Schenck BEG9 were studied in vitro and in greenhouse experiments. All T. pseudokoningii strains inhibited the germination of G. mosseae and Gi. rosea except the strain 453, which did not affect the germination of Gi. rosea. Soluble exudates and volatile substances produced by all T. pseudokoningii strains inhibited the spore germination of G. mosseae. The germination of Gi. rosea spores was inhibited by the soluble exudates produced by T. pseudokoningii 2212 and 511, whereas T. pseudokoningii 714A and 714B inhibited the germination of Gi. rosea spores by the production of volatile substances. The strains of T. pseudokoningii did not affect dry matter and percentage of root length colonization of soybean inoculated with G. mosseae, except T. pseudokoningii 2212, which inhibited both parameters. However, all T. pseudokoningii strains decreased the shoot dry matter and the percentage of AM root length colonization of soybean inoculated with Gi. rosea. The saprotrophic fungi tested seem to affect AM colonization of root by effects on the presymbiotic phase of the AM fungi. No influence of AM fungi on the number of CFUs of T. pseudokoningii was found. The effect of saprotrophic fungi on AM fungal development and function varied with the strain of the saprotrophic species tested.  相似文献   

2.
The ability of ericoid and ectomycorrhizal fungi to utilize 14C-labelled lignin and O14CH3-labelled dehydropolymer of coniferyl alcohol as sole C sources has been assessed in pure culture studies. The results indicate that ericoid mycorrhizal fungi are more effective in degrading lignin than ectomycorrhizal fungi. Amongst the ectomycorrhizal fungi the facultative mycorrhizal fungus Paxillus involutus degraded lignin more readily than those which are normally considered to be obligately mycorrhizal fungi such as Suillus bovinus and Rhizopogon roseolus. The importance of these lignin degrading capabilities is discussed in relation to the predominance of specific mycorrhiza forms along a gradient of increasing organic matter and hence lignin content of soil.  相似文献   

3.
Summary The object of this investigation was the promotion by root exudates of the growth rate of ectomycorrhizal fungi, discovered by Elias Melin in 1954. Eight ectomycorrhizal and ten non-mycorrhizal species were used as test fungi in the experiments. Different species often reacted differently: none of the eight isolated strains of Suillus luteus were promoted by pineroot exudate, whereas the growth rates of all seven strains of S. granulatus were increased. Among the other ectomycorrhizal species, S. variegatus, Laccaria bicolor, Pisolithus tinctorius and Thelephora terrestris, each represented by only one, two or three strains, usually reacted to the pine root exudate with an increased growth rate; S. bovinus and Paxillus involutus did not respond at all. Hitherto, studies of root-exudate effects on fungi have been based exclusively on the responses of ectomycorrhizal species; in the present study saprotrophic fungi were also used as test organisms. Seven out of ten saprotrophic species reacted with markedly accelerated growth when exposed to a pineroot exudate. Melin's assumption that a constituent of the root exudate, the M-factor, could replace the exudate growth-promoting activity was verified. By means of TLC fraction it was found that the fatty acid palmitic acid alone caused an increase in growth rate equal to that of the pine-root exudate. In line with previously published data by Gogala (1970), we also showed that certain cytokinins, especially isopentenylaminopurine, could act as substitutes for the total root exudate. Thus both palmitic acid and isopentenylaminopurine are able to function as M-factors equivalent to a root exudate.  相似文献   

4.
Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the seed-germination activity of root exudates of the Striga hermonthica nonhost plants cowpea and cotton on S. hermonthica. We also tested the effect of AM fungi on the seed-germination activity of the Striga gesnerioides host plant cowpea on S. gesnerioides. Moreover, we studied whether mycorrhization affects the transport of seed-germination activity to above-ground plant parts. Mycorrhization not only resulted in a lower seed germination of S. gesnerioides in the presence of root exudates of the S. gesnerioides host cowpea but also seed germination of S. hermonthica was also lower in the presence of root exudates of the S. hermonthica nonhosts cowpea and cotton. Downregulation of the Striga seed-germination activity occurs not only in root exudates upon root colonization by different AM fungi but also in the compounds produced by stems. The lowered seed-germination activity does not appear to depend on the presence of seed germination inhibitors in the root exudates of mycorrhizal plants. The implication for Striga control in the field is discussed.  相似文献   

5.
Summary From root exudates of three cultivars of chilli (Capsicum annuum L.) 12 amino acids and 7 sugars were detected. Methionine, d-1- phenylalanine, citrulline and d-xylose were detected only from the root exudates of resdistant cultivars. The root exudates of resistant variety inhibited spore germination of the pathogen (Fusarium oxysporum f. sp.capsici), but that of susceptible variety enhanced spore germiantion of the same. Spore germiantion of antagonistic fungi (Trichderma viride andAspergillus sydowi) was also influenced by the root exudates of resistant and susceptible varieties, but the influence was different.Spore germiantion of a number of rhizosphere fungi was studied and in general root exudate of susceptible cultivar enhanced spore germiantion of majority of fungi, but spore germination of antagonistic fungi against the pathogen was inhibited. However, root exudate of resistant cultivar stimulated spore germination of antagonistic fungi.  相似文献   

6.
 The effect of root exudates from onions differing in P status on spore germination and hyphal growth of arbuscular mycorrhizal fungi was investigated. Onion (Allium cepa) was grown in solution culture at different phosphorus concentrations (0, 0.1, 1.0, 8.0 and 24.0 mg P l–1) and root exudates were collected. When spores of the arbuscular mycorrhizal fungus, Gigaspora margarita were incubated with these root exudates, spore germination was only slightly affected but hyphal growth was greatly affected, particularly with exudates from P-deficient plants. This suggests that the P nutrition of host plants influences the composition of root exudates and thereby the hyphal growth of arbuscular mycorrhizal fungi. Accepted: 25 June 1995  相似文献   

7.
Seedlings of pine, infected with two different ectomycorrhizal fungi, Suillus bovinus (Fr.) O. Kuntze and an unidentified isolate (BP), were exposed to various external Zn concentrations. An additional strain of S. bovinus, cultured on a Zn-enriched medium, was also used. The effect of mycorrhizal associations on Zn uptake and distribution within the plant was determined by AAS.The results show that nonmycorrhizal seedlings have the capability to control the uptake and translocation of Zn to the shoot until the external Zn concentration reaches a threshold level, where no limitation of uptake is possible. Excess Zn is accumulated in the root system to protect the shoot against toxic tissue concentrations. The effect of an ectomycorrhizal infection on Zn uptake and distribution depends on (1) the fungal species (2) the external concentration and (3) the Zn content of the fungal culture medium. Under conditions of low external Zn supply, especially a mycorrhizal infection with S. bovinus led to an increased Zn uptake in root and needles of Pinus sylvestris. Under high external conditions the mycobionts varied considerably in their capability to reduce the transport of Zn to the shoot. Only by an infection with S. bovinus the plant was able to maintain the shoot tissue concentration on a low level. This effect can be enhanced by pretreatment of S. bovinus with high Zn concentrations.  相似文献   

8.
Many invasive plants have enhanced mutualistic arbuscular mycorrhizal (AM) fungal associations, however, mechanisms underlying differences in AM fungal associations between introduced and native populations of invasive plants have not been explored. Here we test the hypothesis that variation in root exudate chemicals in invasive populations affects AM fungal colonization and then impacts plant performance. We examined flavonoids (quercetin and quercitrin) in root exudates of native and introduced populations of the invasive plant Triadica sebifera and tested their effects on AM fungi and plant performance. We found that plants from introduced populations had higher concentrations of quercetin in root exudates, greater AM fungal colonization and higher biomass. Applying root exudates more strongly increased AM fungal colonization of target plants and AM fungal spore germination when exudate donors were from introduced populations. The role of root exudate chemicals was further confirmed by decreased AM fungal colonization when activated charcoal was added into soil. Moreover, addition of quercetin into soil increased AM fungal colonization, indicating quercetin might be a key chemical signal stimulating AM fungal associations. Together these results suggest genetic differences in root exudate flavonoids play an important role in enhancing AM fungal associations and invasive plants’ performance, thus considering root exudate chemicals is critical to unveiling mechanisms governing shifting plant-soil microbe interactions during plant invasions.Subject terms: Population dynamics, Community ecology, Plant ecology  相似文献   

9.
The effect of three different nitrogen sources on the growth of external ectomycorrhizal mycelium was studied in Perspex micorocosms. Nonsterile peat was used as substrate. Five different fungal isolates growing in symbiosis with pine seedlings were investigated: two isolates of Paxillus involutus, one of Suillus bovinus and two unidentified ectomycorrhizal fungi isolated from ectomycorrhizal root tips. Three different nitrogen sources were used: ammonium as (NH4)2SO4, nitrate as NaNO3 and a complete nutrient solution (Ingestad 1979), and three different nitrogen concentrations, 1, 2 or 4 mg N/g dry wt. of peat. The mycelial growth of all fungi was found to be negatively affected by the nitrogen amendments, although the sensitivity to nitrogen varied between the isolates. One of the unidentified isolates was extremely sensitive and growth was completely inhibited by all nitrogen treatments. In contrast, the growth of one of the P. involutus isolates was only slightly reduced by the nitrogen amendments. The different nitrogen sources all reduced growth, and since no significant difference was found between the nitrogen sources or between the different nitrogen concentrations the results were pooled to give one value that summarized the effect of nitrogen on mycelial growth. Thus, the mycelial growth of one of the two P. involutus isolates was reduced to approximately 80% of the growth in the control, the other P. involutus and one of the unidentified fungi, vgk 2 89.10, were reduced to 40–50% of the control growth, S. bovinus to 30% of the control and the most sensitive fungus, the unidentified isolate vg 1 87.10, was reduced to 3% of the growth in the control treatment. In all experiments, the shoot to root ratio generally increased, mainly as a result of increased shoot growth.  相似文献   

10.
Patterns of phenoloxidase activity can be used to characterize fungi of different life styles, and changes in phenoloxidase synthesis were suspected to play a role in the interaction between ectomycorrhizal and two species of Trichoderma. Confrontation between the ectomycorrhizal fungi Amanita muscaria and Laccaria laccata with species of Trichoderma resulted in induction of laccase synthesis, and the laccase enzyme was bound to mycelia of ectomycorrhizal fungi. Tyrosinase release was noted only during interaction of L. laccata strains with Trichoderma harzianum and T. virens. Ectomycorrhizal fungi, especially strains of Suillus bovinus and S. luteus, inhibited growth of Trichoderma species and caused morphological changes in its colonies in the zone of interaction. In contrast, hyphal changes occurred less often in the ectomycorrhizal fungi tested. Species of Suillus are suggested to present a different mechanism in their interaction with other fungi than A. muscaria and L. laccata.  相似文献   

11.
Scots pine (Pinus sylvestris L.) seedlings inoculated or not (NM) by a Zn-sensitive or a Zn-tolerant isolate of the ectomycorrhizal fungus Suillus bovinus (L. Fr.) Roussel were exposed to 0.1 or 150 μM Zn2+ for 9 months. We hypothesized that inoculation with a Zn-tolerant S. bovinus isolate should result in added Zn resistance of the host plant. Plant and fungal growth as well as nutrient profiles and photosynthetic pigments in pine needles were quantified. In NM plants and in plants colonized by the Zn-sensitive isolate, plant growth, N, P, Mg and Fe assimilation were strongly inhibited under Zn stress and concurred with significantly reduced chlorophyll concentrations. In contrast, plants colonized by the Zn-tolerant isolate grew much better and remained physiologically healthier when exposed to elevated Zn. These results provide further evidence for the important role metal-adapted mycorrhizal fungi play as an effective biological barrier against metal toxicity in trees.  相似文献   

12.
The production of proteolytic enzymes by several strains of ectomycorrhizal fungi i.e., Amanita muscaria (16-3), Laccaria laccata (9-12), L. laccata (9-1), Suillus bovinus (15-4), Suillus bovinus (15-3), Suillus luteus (14-7) on mycelia of Trichoderma harzianum, Trichoderma virens and Mucor hiemalis and sodium caseinate, yeast extract was evaluated. The strains of A. muscaria (16-3) and L. laccata (9-12) were characterized by the highest activity of the acidic and neutral proteases. Taking the mycelia of saprotrophic fungi into consideration, the mycelium of M. hiemalis was the best inductor for proteolytic activity. The examined ectomycorrhizal fungi exhibited higher activity of acidic proteases than neutral ones on the mycelia of saprotrophic fungi, which may imply the participation of acidic proteases in nutrition.  相似文献   

13.
Development of extraradical mycelia of two strains each of Paxillus involutus and Suillus bovinus in ectomycorrhizal association with Pinus sylvestris seedlings was studied in two dimensions in non-sterile soil microcosms. There were significant inter- and intra-specific differences in extraradical mycelial growth and morphology. The mycelial systems of both strains of P. involutus were diffuse and extended more rapidly than those of S. bovinus. Depending on the strain, P. involutus mycelia were either highly plane filled, with high mass fractal dimension (a measure of space filling) or sparse, low mass fractal dimension systems. Older mycelial systems persisted as linear cords interlinking ectomycorrhizal tips. S. bovinus produced either a mycelium with a mixture of mycelial cords and diffuse fans that rapidly filled explorable area, or a predominately corded mycelium of minimal area cover. In the soil microcosms, mass fractal dimension and mycelial cover tended to increase with time, mycelia encountering litter having significantly greater values. Results are discussed in terms of the ecology of these fungi, their foraging activities and functional importance in forest ecosystems.  相似文献   

14.
Polyphenols histochemically detected in fresh uninfected roots of Quercus, Castanopsis and Lithocarpus growing in Hong Kong and shown to be condensed tannins were found mainly as intracellular material in the cells of the root cap, the epidermal layer and the endodermis. The cell walls of the outer cortex and the endodermis also contained suberin. Following invasion by compatible ectomycorrhizal symbionts, condensed tannins disappeared from cells of the root cap and the epidermal layer but hyphae were prevented from colonizing the cortex presumably due to suberin barriers. In vitro experiments indicated that a number of broad-host ectomycorrhizal fungi could utilise various polyphenolic compounds, including tannins found in the root exudates of the host trees, with different degrees of efficiency.  相似文献   

15.
The ectomycorrhizal (ECM) fungi associated with Pinus thunbergii seedlings grown on sand dune were identified by molecular method, and the diversity of bacteria associated with ECM and Extraradical mycelium were examined by Denaturing Gradient Gel Electrophoresis (DGGE) of PCR-amplified 16S rDNA. The mycorrhizal formation rate of 1-year old P. thunbergii seedlings was more than 95%. Cenococcum geophilum was the most dominant ECM fungus, followed by T01, RFLP-8, Russula spp., and Suillus sp. Bacterial community was most diverse with C. geophilum- and RFLP-8-mycorrhiza. Sequencing analysis showed that Burkholderia spp. and Bradyrhizobium spp. were on the surface of ECM short root of seven ECM. The fungi detected as extraradical mycelium using DGGE of 18S rDNA were Suillus bovinus and RFLP-8-mycorrhiza. Bacterial community on the extraradical mycelium was more diverse than those on ECM root tip. Burkholderia spp. and Bradyrhizobium spp. were found also on extraradical mycelium.  相似文献   

16.
In this study, the mobilization and further translocation of phosphorus from conidia of saprotrophic fungus Trichoderma virens into Pinus sylvestris seedlings by nondestructive measuring of 32P was assessed. The radioactive phosphorus flux from the conidia to the Scots pine seedlings forming mycorrhiza with Laccaria laccata and Suillus bovinus amounted up to 27.82% and 7.42%, respectively, on the 28th day of the experiment, while at the same time in nonmycorrhizal pine seedlings, the detected radioactivity reached only 0.56%. Our studies revealed that both ectomycorrhizal fungi: L. laccata and S. bovinus, mobilized the phosphorus from radioactive conidia of T. virens. On this basis, we conclude that activities of the mycosymbionts may facilitate absorption and further translocation of phosphorus from organic matter into the host plants.  相似文献   

17.
Muscina angustifrons (Diptera: Muscidae) is a mycophagous species that exploits a variety of fungi, including ectomycorrhizal fungi. Larvae of this species have been shown to feed on sporocarps (including spores), and full-grown larvae leave sporocarps and pupate 0–6?cm below the soil surface. In this study, we examined whether M. angustifrons larvae are capable of transporting ectomycorrhizal fungal spores and enhancing ectomycorrhiza growth on host-plant roots. Full-grown larvae were found to move horizontally 10–20?cm from their feeding sites and burrow underground. These wandering larvae retained ectomycorrhizal fungal spores in their intestines, which were excreted following relocation to underground pupation sites. Excreted spores retained germination and infection capacities to form ectomycorrhiza on host-plant roots. In the infection experiments, ectomycorrhizal fungal spores applied in the vicinity of underground host-plant roots were more effective in forming ectomycorrhiza than those applied to the ground surface, suggesting that belowground transportation of spores by M. angustifrons larvae could enhance ectomycorrhizal formation. These results suggested that M. angustifrons larvae act as a short-distance spore transporter of ectomycorrhizal fungi.  相似文献   

18.
The interactions of the collembolan insect Proisotoma minuta with ectomycorrhizal and/or pathogenic fungi was examined in three experiments: (1) in vitro analysis of feeding patterns, (2) in vitro food preference test, and (3) in situ analysis of ectomycorrhizal colonization in relation to population density. The ectomycorrhizal fungi Laccaria laccata, Pisolithus tinctorius, Suillus luteus, Thelephora terrestris and the pathogenic fungi Rhizoctonia solani were employed in all experiments. In vitro and in situ experiments revealed that Pr. minuta consumed all the ectomycorrhizal fungi tested but the feeding pattern and consumption varied with each isolate. In a comparative in vitro feeding preference test, where Pr. minuta was given a choice, R. solani was grazed more heavily than the ectomycorrhizal fungi. Among the ectomycorrhizal fungi examined, Pi. tinctorius was consumed significantly less than L. laccata, S. luteus or T. terrestris in the presence of R. solani. A 10-week in situ analysis of loblolly pine (Pinus taeda L.) seedling root systems inoculated with Pr. minuta revealed that ectomycorrhizal colonization was significantly less than that of control plants (without Pr. minuta). Collectively, these data suggest that mycophagous Collembola may play a major role in the distribution and biomass of ectomycorrhizal fungi in the rhizosphere of tree seedlings.  相似文献   

19.
Abstract

In this study we assessed microconidia germination of the tomato pathogens F. oxysporum f. sp. lycopersici (Fol) and F. oxysporum f. sp. radicis-lycopersici (Forl) in the presence of root exudates. Tomato root exudates stimulated microconidia germination and the level of stimulation was affected by plant age. Treatment of root exudates with insoluble polyvinylpolypyrrolidone, which binds phenolic compounds, indicated that tomato root exudates contain phenolic compounds inhibitory to F. oxysporum microconidia germination. Our study indicates that tomato root exudates similarly stimulate microconidia germination of both Fol and Forl. However, individual F. oxysporum strains differ in the degree of germination response to the root exudates. Furthermore, root exudates from non-host plants also contain compounds that stimulate microconidia germination of Fol. In general, the effects of root exudates from non-host plants did not differ considerably from those of tomato. The ability of phenolic compounds to inhibit germination of Fol seems not to be plant-specific.  相似文献   

20.
In the present study ectomycorrhizal development of Laccaria bicolor, Rhizopogon luteolus and Suillus bovinus associated with Scots pine (Pinus sylvestris) seedings was studied as affected by primary stand humus, secondary stand humus, podsolic sandy soil or peat in perspex growth chambers. After 9 weeks, ectomycorrhizal development with S. bovinus was significantly greater in peat and primary stand humus than in secondary stand humus or podsolic sandy soil. Ectomycorrhizal development with R. luteolus in secondary stand humus was higher than in primary stand humus. Degree of ectomycorrhizal development of L. bicolor, R. lutuelus and S. bovinus on Scots pine was related to potassium concentration, organic matter content and pH of the soils suggesting that chemical composition of the soils affects ectomycorrhizal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号