首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Abstract: The potential involvement of L- and N-type voltage-sensitive calcium (Ca2+) channels and a voltage-independent receptor-operated Ca2+ channel in the release of adenosine from dorsal spinal cord synaptosomes induced by depolarization with K+ and capsaicin was examined. Bay K 8644 (10 n M ) augmented release of adenosine in the presence of a partial depolarization with K+ (addition of 6 m M ) but not capsaicin (1 and 10 μ M ). This augmentation was dose dependent from 1 to 10 n M and was followed by inhibition of release from 30 to 100 n M . Nifedipine and nitrendipine inhibited the augmenting effect of Bay K 8644 in a dose-dependent manner, but neither antagonist had any effect on release of adenosine produced by K+ (24 m M ) or capsaicin (1 and 10 μ M ) ω-Conotoxin inhibited K+-evoked release of adenosine in a dose-dependent manner but had no effect on capsaicin-evoked release. Ruthenium red blocked capsaicin-induced release of adenosine but had no effect on K+-evoked release. Although L-type voltage-sensitive Ca2+ channels can modulate release of adenosine when synaptosomes are partially depolarized with K+, N-type voltage-sensitive Ca2+ channels are primarily involved in K+-evoked release of adenosine. Capsaicin-evoked release of adenosine does not involve either L- or N-type Ca2+ channels, but is dependent on a mechanism that is sensitive to ruthenium red.  相似文献   

2.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

3.
Abstract: Transmitter release at the nerve terminal is mediated by the influx of Ca2+ through voltage-sensitive calcium channels (VSCCs). Many types of VSCCs have been found in neurons (T, N, L, and P), but uncertainty remains about which ones are involved in neuronal excitation-secretion coupling. Specific ligands for the L- and N-type VSCCs were used to determine which of these subtypes might be involved in the K+-evoked [3H]noradrenaline release from superfused rat brain cortical and hippocampal synaptosomes. In cortical presynaptic terminals the 1,4-dihydropyridine agonist Bay K 8644 enhanced the K+ (15 m M )-evoked [3H]noradrenaline release. This effect was reversed by the 1,4-dihydropyridine antagonists nimodipine and nitrendipine. The L-type VSCC ligands had no effect on hippocampal synaptosomes. In contrast, the N-type VSCC blocker ω-conotoxin markedly reduced the K+-evoked [3H]noradrenaline release in nerve terminals from both regions. Inhibition was greater in hippocampal synaptosomes. When applied together the inhibitory actions of nimodipine and ω-conotoxin were approximately additive. These findings indicate that both L- and N-type VSCCs participate in noradrenaline release in rat brain cortex and suggest that noradrenergic terminals in the two regions examined may have distinct populations of VSCCs: L type in cortex and N type in hippocampus.  相似文献   

4.
Abstract: Using a range of Ca2+ channel blockers we have investigated the Ca2+ channel subtypes that mediate the depolarisation-induced elevation of the intracellular free Ca2+ concentration ([Ca2+]i) and glutamate release from cultured rat cerebellar granule cells. ω-Conotoxin-GVIA had little effect on either the transient or plateau phase of the depolarisation-induced [Ca2+]i rise or on glutamate release, ruling out a significant role for N-type Ca2+ channels. Nifedipine substantially inhibited the initial transient rise in [Ca2+]i and the plateau phase of the [Ca2+]i rise and glutamate release, suggesting the involvement of L-type Ca2+ channels. Both ω-agatoxin and ω-conotoxin-MVIIC also inhibited the transient rise in [Ca2+]i and glutamate release but not the plateau phase of the [Ca2+]i rise. The inhibitions by nifedipine were not increased by coaddition of ω-conotoxin-MVIIC, suggesting overlapping sensitivity to these channel blockers. These data show that glutamate release from granule cells in response to depolarisation with a high KCI level involves Ca2+ currents that are sensitive to nifedipine, ω-agatoxin-IVA, and also ω-conotoxin-MVIIC. The overlapping sensitivity of the channels to these toxins prevents attribution of any of the phases of the [Ca2+]i rise or glutamate release to distinct P-, Q-, or O-type Ca2+ currents.  相似文献   

5.
Abstract: We investigated the effect of the adenosine receptor agonist 5'-( N -ethylcarboxamido)adenosine (NECA) in catecholamine secretion from adrenal chromaffin cells that exhibit only the A2b subtype adenosine receptor. NECA reduced catecholamine release evoked by the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) in a time-dependent manner. Inhibition reached 25% after 30–40-min exposure to NECA. This effect on DMPP-evoked catecholamine secretion was mirrored by a similar (27.7 ± 3.3%), slowly developing inhibition of [Ca2+]i transients induced by DMPP that peaked at 30-min preincubation with NECA. The capacity of the chromaffin cells to buffer Ca2+ load was not affected by the treatment with NECA. Short-term treatment with NECA failed both to modify [Ca2+]i levels and to increase endogenous diacylglycerol production, showing that NECA does not activate the intracellular Ca2+/protein kinase C signaling pathway. The inhibitory effects of NECA were accompanied by a 30% increase of protein phosphatase activity in chromaffin cell cytosol. We suggest that dephosphorylation of a protein involved in DMPP-evoked Ca2+ influx pathway (e.g., L-type Ca2+ channels) could be the mechanism of the inhibitory action of adenosine receptor stimulation on catecholamine secretion from adrenal chromaffin cells.  相似文献   

6.
Abstract: Recently we have shown that 4-aminopyridine (4-AP), a drug known to enhance transmitter release, stimulates the phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat brain synaptosomes and that this effect is dependent on the presence of extracellular Ca2+. Hence, we were interested in the relationship between changes induced by 4-AP in the intracellular free Ca2+ concentration ([Ca2+]i) and B-50 phosphorylation in synaptosomes. 4-AP (100 μ M ) elevates the [Ca2+]i (as determined with fura-2) to approximately the same extent as depolarization with 30 m M K+ (from an initial resting level of 240 n M to ∼480 n M after treatment). However, the underlying mechanisms appear to be different: In the presence of 4-AP, depolarization with K+ still evoked an increase in [Ca2+]i, which was additive to the elevation caused by 4-AP. Several Ca2+ channel antagonists (CdCl2, LaCl3, and diphenylhydantoin) inhibited the increase in B-50 phosphorylation by 4-AP. It is interesting that the increase in [Ca2+]i and the increase in B-50 phosphorylation by 4-AP were attenuated by tetrodotoxin, a finding pointing to a possible involvement of Na+ channels in this action. These results suggest that 4-AP (indirectly) stimulates both Ca2+ influx and B-50 phosphorylation through voltage-dependent channels by a mechanism dependent on Na+ channel activity.  相似文献   

7.
Abstract: Substance P and neurokinin A both potentiated N -methyl- d -aspartate (NMDA)-induced currents recorded in acutely isolated neurons from the dorsal horn of the rat. To elucidate the mechanism underlying this phenomenon, we measured the effects of tachykinins and glutamate receptor agonists on [Ca2+]i in these cells. Substance P, but not neurokinin A, increased [Ca2+]i in a subpopulation of neurons. The increase in [Ca2+]i was found to be due to Ca2+ influx through voltage-sensitive Ca2+ channels. Substance P and neurokinin A also potentiated the increase in [Ca2+]i produced by NMDA, but not by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, or 50 m M K+. Phorbol esters enhanced the effects of NMDA and staurosporine inhibited the potentiation of NMDA effects by tachykinins. It is concluded that activation of protein kinase C may mediate the enhancement of NMDA effects by tachykinins in these cells. However, the effects of tachykinins on [Ca2+]i can be dissociated from their effects on NMDA receptors.  相似文献   

8.
Abstract: During K+ -induced depolarization of isolated rat brain nerve terminals (synaptosomes), 1 m M Ba2+ could substitute for 1 m M Ca2+ in evoking the release of endogenous glutamate. In addition, Ba2+ was found to evoke glutamate release in the absence of K+-induced depolarization. Ba2+ (1–10 m M ) depolarized synaptosomes, as measured by voltage-sensitive dye fluorescence and [3H]-tetraphenylphosphonium cation distribution. Ba2+ partially inhibited the increase in synaptosomal K+ efflux produced by depolarization, as reflected by the redistribution of radiolabeled 86Rb+. The release evoked by Ba2+ was inhibited by tetrodotoxin (TTX). Using the divalent cation indicator fura-2, cytosolic [Ca2+] increased during stimulation by approximately 200 n M , but cytosolic [Ba2+] increased by more than 1 μ M . Taken together, our results indicate that Ba2+ initially depolarizes synaptosomes most likely by blocking a K+ channel, which then activates TTX-sensitive Na+ channels, causing further depolarization, and finally enters synaptosomes through voltage-sensitive Ca2+channels to evoke neurotransmitter release directly. Though Ba2+-evoked glutamate release was comparable in level to that obtained with K+-induced depolarization in the presence of Ca2+, the apparent intrasynaptosomal level of Ba2+ required for a given amount of glutamate release was found to be several-fold higher than that required of Ca2+.  相似文献   

9.
Abstract: Elevated concentrations of extracellular K+ increased inositol phosphate accumulation in primary cultures of chick retinal photoreceptors and multipolar neurons. K+-evoked stimulation of inositol phosphate accumulation was greater in photoreceptor-enriched cell cultures than in cultures where multipolar neurons were the predominant cell type. Destroying multipolar neurons, but not photoreceptors, with kainic acid and N -methyl- d -aspartate did not reduce the K+-evoked stimulation of inositol phosphate accumulation. Both of these observations indicate that the observed effects occur in photoreceptor cells. The K+-evoked stimulation of inositol phosphate accumulation was blocked by omitting Ca2+ from the incubation medium or by adding the dihydropyridine-sensitive Ca2+-channel antagonists, nitrendipine and nifedipine. Bay K 8644, a dihydropyridine agonist, stimulated inositol phosphate accumulation and enhanced the effect of K+. ω-Conotoxin GVIA, an inhibitor of N-type Ca2+ channels, had no significant effect on K+-stimulated inositol phosphate accumulation. Pretreatment with pertussis toxin neither blocked K+-evoked inositol phosphate accumulation nor altered the inhibitory effect of nifedipine. K+-evoked inositol phosphate accumulation appears to reflect activation of phosphatidylinositol-specific phospholipase C, as it is inhibited by U-73122. These results indicate that Ca2+ influx through voltage-gated, dihydropyridine-sensitive channels activates phospholipase C in photoreceptor inner segments and/or synaptic terminals.  相似文献   

10.
Abstract: Neuropeptide FF (NPFF), an FMRFamide-like peptide with antiopioid properties, inhibits morphine-induced analgesia but also produces hyperalgesia. In the present study, the mechanisms of NPFF release were investigated in an in vitro superfusion system with rat spinal cord slices. The opening of voltage-sensitive Na+ channels with veratridine (20 µ M ) induced calcium-dependent NPFF release, which was abolished by tetrodotoxin (1 µ M ), suggesting that NPFF release depends on nerve impulse activity. We also showed that NPFF release was a function of the extent of depolarization and was calcium dependent. The 30 m M K+-induced release was blocked by Co2+ or Ni2+ (2.5 m M ) but was unaffected by Ca2+ channel blockers of the L type—Cd2+ (100 µ M ), nifedipine or nimodipine (10 µ M ), diltiazem (20 µ M ), or verapamil (50 µ M )—or the N type—ω-conotoxin GVIA (1 µ M ). In contrast, ω-agatoxin IVA (1 µ M ) led to a 65% reduction in NPFF release, suggesting that P-type Ca2+ channels play a prominent role. The 35% remaining release resulted from activation of an unknown subtype. The NPFF-like material in superfusates recognized spinal NPFF receptors, suggesting that NPFF release in the spinal cord has a physiological role.  相似文献   

11.
Abstract: Rapid Ca2+ signals evoked by K+ depolarization of rat cerebral cortical synaptosomes were measured by dual-channel Ca2+ spectrofluorometry coupled to a stopped-flow device. Kinetic analysis of the signal rise phase at various extracellular Ca2+ concentrations revealed that the responsible voltage-dependent Ca2+ channels, previously identified as P-type Ca2+ channels, inactivate owing to the rise in intracellular Ca2+ levels. At millimolar extracellular Ca2+ concentrations the channels were inactivated very rapidly and the rate was dependent on the high influx rate of Ca2+, thus limiting the Ca2+ signal amplitudes to 500–600 n M. A slower, probably voltage-dependent regulation appears to be effective at lower Ca2+ influx rates, leading to submaximal Ca2+ signal amplitudes. The functional feedback regulation of calcium channels via a sensor for intracellular Ca2+ levels appears to be responsible for the different inhibition characteristics of Cd2+ versus ω-agatoxin IVa.  相似文献   

12.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

13.
Abstract: Forskolin has been used to stimulate adenylyl cyclase. However, we found that forskolin inhibited voltage-sensitive Ca2+ channels (VSCCs) in a cyclic AMP (cAMP)-independent manner in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 m M K+ was inhibited when cells were preincubated with 10 µ M forskolin. Almost maximum inhibitory effect on Ca2+ influx without any significant increase in cellular cAMP level was observed in PC12 cells exposed to forskolin for 1 min. In addition, the forskolin effect on Ca2+ influx was not affected by the presence of 2',5'-dideoxyadenosine, an inhibitor of adenylyl cyclase that reduces dramatically forskolin-induced cAMP production. 1,9-Dideoxyforskolin, an inactive analogue of forskolin, also inhibited ∼80% of Ca2+ influx induced by 70 m M K+ without any increase in cAMP. The data suggest that forskolin and its analogue inhibit VSCCs in PC12 cells and that the inhibition is independent of cAMP generation.  相似文献   

14.
Parkinson's disease (PD) is characterized in part by the presence of α-synuclein (α-syn) rich intracellular inclusions (Lewy bodies). Mutations and multiplication of the α-synuclein gene ( SNCA ) are associated with familial PD. Since Ca2+ dyshomeostasis may play an important role in the pathogenesis of PD, we used fluorimetry in fura-2 loaded SH-SY5Y cells to monitor Ca2+ homeostasis in cells stably transfected with either wild-type α-syn, the A53T mutant form, the S129D phosphomimetic mutant or with empty vector (which served as control). Voltage-gated Ca2+ influx evoked by exposure of cells to 50 mM K+ was enhanced in cells expressing all three forms of α-syn, an effect which was due specifically to increased Ca2+ entry via L-type Ca2+ channels. Mobilization of Ca2+ by muscarine was not strikingly modified by any of the α-syn forms, but they all reduced capacitative Ca2+ entry following store depletion caused either by muscarine or thapsigargin. Emptying of stores with cyclopiazonic acid caused similar rises of [Ca2+]i in all cells tested (with the exception of the S129D mutant), and mitochondrial Ca2+ content was unaffected by any form of α-synuclein. However, only WT α-syn transfected cells displayed significantly impaired viability. Our findings suggest that α-syn regulates Ca2+ entry pathways and, consequently, that abnormal α-syn levels may promote neuronal damage through dysregulation of Ca2+ homeostasis.  相似文献   

15.
Abstract: The σ ligand 1,3-di- O -tolylguanidine (DTG) increased basal dynamin and decreased depolarization-stimulated phosphorylation of the synaptosomal protein synapsin Ib without having direct effects on protein kinases or protein phosphatases. DTG dose-dependently decreased the basal cytosolic free Ca2+ concentration ([Ca2+]i) and blocked the depolarization-dependent increases in [Ca2+]i. These effects were inhibited by the σ antagonists rimcazole and BMY14802. The nitric oxide donors sodium nitroprusside (SNP) and 8-( p -chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate decreased basal [Ca2+]i and the KCl-evoked rise in [Ca2+]i to an extent similar to DTG. SNP, but not DTG, produced a rise in cyclic GMP levels, suggesting that the effect of DTG on [Ca2+]i was not mediated via downstream regulation of cyclic GMP levels. DTG increased 45Ca2+ uptake and efflux under basal conditions and inhibited the 45Ca2+ uptake induced by depolarization with KCl. The KCl-evoked rise in [Ca2+]i was inhibited by ω-conotoxin (ω-CgTx)-GVIA and -MVIIC but not nifedipine and ω-agatoxin-IVA. The effect of DTG on decreasing the KCl-evoked rise in [Ca2+]i was additive with ω-CgTx-MVIIC but not with ω-CgTx-GVIA. These data suggest that DTG was producing some of its effects on synapsin I and dynamin phosphorylation and intrasynaptosomal Ca2+ levels via inhibition of N-type Ca2+ channels.  相似文献   

16.
Abstract: Amyloid β protein (Aβ), the central constituent of senile plaques in Alzheimer's disease (AD) brain, is known to exert toxic effects on cultured neurons. The role of the voltage-sensitive Ca2+ channel (VSCC) in β(25–35) neurotoxicity was examined using rat cultured cortical and hippocampal neurons. When L-type VSCCs were blocked by application of nimodipine, β(25–35) neurotoxicity was attenuated, whereas application of ω-conotoxin GVIA (ω-CgTX-GVIA) or ω-agatoxin IVA (ω-Aga-IVA), the blocker for N- or P/Q-type VSCCs, had no effects. Whole-cell patch-clamp studies indicated that the Ca2+ current density of β(25–35)-treated neurons is about twofold higher than that of control neurons. Also, β(25–35) increased Ca2+ uptake, which was sensitive to nimodipine. The 2',7'-dichlorofluorescin diacetate assay showed the ability of β(25–35) to produce reactive oxygen species. Nimodipine had no effect on the level of free radicals. In contrast, vitamin E, a radical scavenger, reduced the level of free radicals, neurotoxicity, and Ca2+ uptake. These results suggest that β(25–35) generates free radicals, which in turn, increase Ca2+ influx via the L-type VSCC, thereby inducing neurotoxicity.  相似文献   

17.
Abstract: In cultured bovine adrenal medullary cells, stimulation of nicotinic receptors by carbachol evoked the Ca2+-dependent exocytotic cosecretion of proadrenomedullin N-terminal 20 peptide (PAMP) (EC50 = 50.1 µ M ) and catecholamines (EC50 = 63.0 µ M ), with the molar ratio of PAMP/catecholamines secreted being equal to the ratio in the cells. Addition of PAMP[1–20]NH2 inhibited carbachol-induced 22Na+ influx via nicotinic receptors (IC50 = 2.5 µ M ) in a noncompetitive manner and thereby reduced carbachol-induced 45Ca2+ influx via voltage-dependent Ca2+ channels (IC50 = 1.0 µ M ) and catecholamine secretion (IC50 = 1.6 µ M ). It did not alter high K+-induced 45Ca2+ influx via voltage-dependent Ca2+ channels or veratridine-induced 22Na+ influx via voltage-dependent Na+ channels. PAMP seems to be a novel antinicotinic peptide cosecreted with catecholamines by a Ca2+-dependent exocytosis in response to nicotinic receptor stimulation.  相似文献   

18.
Abstract: The [Ca2+]1 of cerebellar granule cells can be increased in a biphasic manner by addition of NMDA or by depolarization (induced by elevating the extracellular K+ level), which both activate Ca2+ influx. The possibility that these stimuli activate Ca2+-induced Ca2+ release was investigated using granule cells loaded with fura 2-AM. Dantrolene, perfused onto groups of cells during the sustained plateau phase of the [Ca2+]1 response to K+ or NMDA, was found to reduce the response to both agents in a concentration-dependent manner. Preincubation with thapsigargm (10 μ M ) substantially reduced the plateau phase of the [Ca2+], response to K+ and both the peak and plateau phases of the NMDA response. Preincubation with ryanodine (10 μ M ) also reduced both the K+-evoked plateau response and both phases of the NMDA response. Neither had a consistent effect on the peak response to K+. The effects of thapsigargin and ryanodine on the NMDA response were partially additive. These results demonstrate that in cerebellar granule cells a major component of both K+- and NMDA-induced elevation of [Ca2+]1 appears to be due to release from intracellular stores. The partial additivity of the effects of thapsigargin and ryanodine suggests that these agents affect two overlapping but nonidentical Ca2+ pools.  相似文献   

19.
Abstract: Confocal microscopy was used to assess internal calcium level changes in response to presynaptic receptor activation in individual, isolated nerve terminals (synaptosomes) from rat corpus striatum, focusing, in particular, on the serotonin 5-HT3 receptor, a ligand-gated ion channel. The 5-HT3 receptor agonist-induced calcium level changes in individual synaptosomes were compared with responses evoked by K+ depolarization. Using the fluorescent dye fluo-3 to measure relative changes in internal free Ca2+ concentration ([Ca2+]i), K+-induced depolarization resulted in variable but rapid increases in apparent [Ca2+]i among the individual terminals, with some synaptosomes displaying large transient [Ca2+]i peaks of varying size (two- to 12-fold over basal levels) followed by an apparent plateau phase, whereas others displayed only a rise to a sustained plateau level of [Ca2+]i (two- to 2.5-fold over basal levels). Agonist activation of 5-HT3 receptors induced slow increases in [Ca2+]i (rise time, 15–20 s) in a subset (∼5%) of corpus striatal synaptosomes, with the increases (averaging 2.2-fold over basal) being dependent on Ca2+ entry and inhibited by millimolar external Mg2+. We conclude that significant increases in brain nerve terminal Ca2+, rivaling that found in response to excitation by depolarization but having distinct kinetic properties, can therefore result from the activation of presynaptic ligand-gated ion channels.  相似文献   

20.
Abstract: Ouabain, an Na+,K+-ATPase inhibitor, increases the release of acetylcholine (ACh) from various preparations in a Ca2+-independent way. However, in other preparations the release of ACh evoked by ouabain is dependent on the presence of extracellular calcium. In the present study, we have labeled the ACh of myenteric plexus longitudinal muscles of guinea pig ileum and compared the effect of calcium channel blockers on ouabain-evoked release of [3H]ACh. Release of [3H]ACh evoked by ouabain is dose dependent and decreased markedly in the absence of calcium or in the presence of cadmium, a nonspecific calcium channel blocker. N-type calcium channel blockage by the ω-conotoxins GVIA (selective N-type calcium channel blocker) and MVIIC (a nonselective calcium channel blocker) inhibited by 45 and 55%, respectively, the release of [3H]ACh. L-type calcium channel suppression by low concentrations of verapamil, nifedipine, and diltiazem had no effect on the release of [3H]ACh. The release of transmitter was also not affected significantly by nickel, a T-type calcium channel blocker. In addition, ω-agatoxin-IVA, at concentrations that block P- and Q-type calcium channels, did not affect significantly the release of [3H]ACh. Thus, extracellular Ca2+ is essential for the release of ACh induced by ouabain from guinea pig ileum myenteric plexus. In this preparation, the N-type calcium channel plays a dominant role in transmitter release evoked by inhibition of Na+,K+-ATPase, but other routes of calcium entry in addition to these channels can also support the release of neurotransmitter induced by ouabain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号