首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Dengue is the most prevalent mosquito-borne viral disease in tropical regions. Severe cases may progress to Dengue hemorrhagic fever, suggesting vascular endothelial dysfunction in disease pathogenesis. In our previous study, we found that Dengue virus type 2 (DENV2) induced apoptosis of vascular endothelial cells via FasL/Fas- and XIAP-associated factor 1 (XAF1)-dependent pathways. In this paper, we demonstrate that DENV2 can induce autophagy in primary human umbilical vein endothelial cells (HUVECs) and the human umbilical vein endothelial cell line EA.hy926. Inhibition of autophagy with 3-methyl adenine promoted apoptosis, while inhibition of apoptosis with Z-VAD-FMK facilitated autophagy in DENV2-infected HUVECs and EA.hy926 cells. Interferon-alpha-inducible protein 6 (IFI6), a putative apoptosis regulator, inhibited DENV2-induced autophagy in EA.hy926 cells, while XAF1, an inhibitor of anti-apoptotic XIAP, facilitated autophagy. Molecular regulators of apoptosis and autophagy interact at multiple levels to determine cell fate. Our data suggest that XAF1 and IFI6 are involved in regulating the balance between autophagy and apoptosis in DENV2-infected endothelial cells.  相似文献   

2.
Dengue virus (DENV) is a mosquito-borne pathogen that causes a spectrum of diseases including life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage is a common clinical crisis in DHF/DSS patients and highly associated with increased endothelial permeability. The presence of vascular leakage causes hypotension, circulatory failure, and disseminated intravascular coagulation as the disease progresses of DHF/DSS patients, which can lead to the death of patients. However, the mechanisms by which DENV infection caused the vascular leakage are not fully understood. This study reveals a distinct mechanism by which DENV induces endothelial permeability and vascular leakage in human endothelial cells and mice tissues. We initially show that DENV2 promotes the matrix metalloproteinase-9 (MMP-9) expression and secretion in DHF patients’ sera, peripheral blood mononuclear cells (PBMCs), and macrophages. This study further reveals that DENV non-structural protein 1 (NS1) induces MMP-9 expression through activating the nuclear factor κB (NF-κB) signaling pathway. Additionally, NS1 facilitates the MMP-9 enzymatic activity, which alters the adhesion and tight junction and vascular leakage in human endothelial cells and mouse tissues. Moreover, NS1 recruits MMP-9 to interact with β-catenin and Zona occludens protein-1/2 (ZO-1 and ZO-2) and to degrade the important adhesion and tight junction proteins, thereby inducing endothelial hyperpermeability and vascular leakage in human endothelial cells and mouse tissues. Thus, we reveal that DENV NS1 and MMP-9 cooperatively induce vascular leakage by impairing endothelial cell adhesion and tight junction, and suggest that MMP-9 may serve as a potential target for the treatment of hypovolemia in DSS/DHF patients.  相似文献   

3.
MicroRNAs have been shown to contribute to a repertoire of host-pathogen interactions during viral infection. Our previous study demonstrated that microRNA-30e* (miR-30e*) directly targeted the IκBα 3′-UTR and disrupted the NF-κB/IκBα negative feedback loop, leading to hyperactivation of NF-κB. This current study investigated the possible role of miR-30e* in the regulation of innate immunity associated with dengue virus (DENV) infection. We found that DENV infection could induce miR-30e* expression in DENV-permissive cells, and such an overexpression of miR-30e* upregulated IFN-β and the downstream IFN-stimulated genes (ISGs) such as OAS1, MxA and IFITM1, and suppressed DENV replication. Furthermore, suppression of IκBα mediates the enhancing effect of miR-30e* on IFN-β-induced antiviral response. Collectively, our findings suggest a modulatory role of miR-30e* in DENV induced IFN-β signaling via the NF-κB-dependent pathway. Further investigation is needed to evaluate whether miR-30e* has an anti-DENV effect in vivo.  相似文献   

4.
Dengue is the most prevalent human arboviral disease. The morbidity related to dengue infection supports the need for an early, quick and effective diagnostic test. Brazil is a hotspot for dengue, but no serological diagnostic test has been produced using Brazilian dengue virus isolates. This study aims to improve the development of immunodiagnostic methods for dengue virus (DENV) detection through the production and characterization of 22 monoclonal antibodies (mAbs) against Brazilian isolates of DENV-1, -2 and -3. The mAbs include IgG2bκ, IgG2aκ and IgG1κ isotypes, and most were raised against the envelope or the pre-membrane proteins of DENV. When the antibodies were tested against the four DENV serotypes, different reactivity patterns were identified: group-specific, subcomplex specific (DENV-1, -3 and -4 and DENV-2 and -3) and dengue serotype-specific (DENV-2 or -3). Additionally, some mAbs cross-reacted with yellow fever virus (YFV), West Nile virus (WNV) and Saint Louis encephalitis virus (SLEV). None of the mAbs recognized the alphavirus Venezuelan equine encephalitis virus (VEEV). Furthermore, mAbs D3 424/8G, D1 606/A12/B9 and D1 695/12C/2H were used to develop a capture enzyme-linked immunosorbent assay (ELISA) for anti-dengue IgM detection in sera from patients with acute dengue. To our knowledge, these are the first monoclonal antibodies raised against Brazilian DENV isolates, and they may be of special interest in the development of diagnostic assays, as well as for basic research.  相似文献   

5.
Approximately 500,000 people are hospitalized with severe dengue illness annually. Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is believed to contribute to the pathogenic cytokine storm described in severe dengue patients, but the precise signaling pathways contributing to elevated cytokine production are not elucidated. IL-1β is a potent inflammatory cytokine that is frequently elevated during severe dengue, and the unique dual regulation of IL-1β provides an informative model to study ADE-induced cytokines. This work utilizes patient-derived anti-DENV mAbs and primary human monocytes to study ADE-induced IL-1β and other cytokines. ADE of DENV serotype 2 (DENV-2) elevates mature IL-1β secretion by monocytes independent of DENV replication by 4 h postinoculation (hpi). Prior to this, DENV immune complexes activate spleen tyrosine kinase (Syk) within 1 hpi. Syk induces elevated IL1B, TNF, and IL6 mRNA by 2 hpi. Syk mediates elevated IL-1β secretion by activating ERK1/2, and both Syk and ERK1/2 inhibitors ablated ADE-induced IL-1β secretion. Maturation of pro-IL-1β during ADE requires caspase-1 and NLRP3, but caspase-1 is suboptimally increased by ADE and can be significantly enhanced by a typical inflammasome agonist, ATP. Importantly, this inflammatory Syk-ERK signaling axis requires DENV immune complexes, because DENV-2 in the presence of serotype-matched anti-DENV-2 mAb, but not anti-DENV-1 mAb, activates Syk, ERK, and IL-1β secretion. This study provides evidence that DENV-2 immune complexes activate Syk to mediate elevated expression of inflammatory cytokines. Syk and ERK may serve as new therapeutic targets for interfering with ADE-induced cytokine expression during severe dengue.  相似文献   

6.
Background/ObjectivesIn vitro studies have shown that dengue virus (DENV) can thwart the actions of interferon (IFN)-α/β and prevent the development of an antiviral state in infected cells. Clinical studies looking at gene expression in patients with severe dengue show a reduced expression of interferon stimulated genes compared to patients with dengue fever. Interestingly, there are conflicting reports as to the ability of DENV or other flaviviruses to inhibit IFN-α/β signaling.ConclusionsThe ability of DENVs to inhibit IFN-α/β signaling is conserved. Although some variation in the inhibition was observed, the moderate differences may be difficult to correlate with clinical outcomes. DENVs were unable to inhibit pSTAT1 in NHP cell lines, but their ability to inhibit pSTAT1 in primary Rhesus macaque dendritic cells suggests that this may be a cell specific phenomena or due to the transformed nature of the cell lines.  相似文献   

7.
Hepatic cells are major sites of dengue virus (DENV) replication and liver injury constitutes a characteristic of severe forms of dengue. The role of hepatic cells in dengue pathogenesis is not well established, but since hepatocytes are the major source of plasma proteins, changes in protein secretion by these cells during infection might contribute to disease progression. Previously, we showed that DENV infection alters the secretion pattern of hepatic HepG2 cells, with α-enolase appearing as one of the major proteins secreted in higher levels by infected cells. ELISA analysis demonstrated that DENV infection modulates α-enolase secretion in HepG2 cells in a dose-dependent manner, but has no effect on its gene expression and on the intracellular content of the protein as assessed by PCR and western blot analyses, respectively. Two-dimensional western blots showed that both intracellular and secreted forms of α-enolase appear as five spots, revealing α-enolase isoforms with similar molecular weights but distinct isoeletric points. Remarkably, quantification of each spot content revealed that DENV infection shifts the isoform distribution pattern of secreted α-enolase towards the basic isoforms, whereas the intracellular protein remains unaltered, suggesting that post-translational modifications might be involved in α-enolase secretion by infected cells. These findings provide new insights into the mechanisms underlying α-enolase secretion by hepatic cells and its relationship with the role of liver in dengue pathogenesis. In addition, preliminary results obtained with plasma samples from DENV-infected patients suggest an association between plasma levels of α-enolase and disease severity. Since α-enolase binds plasminogen and modulates its activation, it is plausible to speculate the association of the increase in α-enolase secretion by infected hepatic cells with the haemostatic dysfunction observed in dengue patients including the promotion of fibrinolysis and vascular permeability alterations.  相似文献   

8.
Dengue is a potentially fatal acute febrile illness caused by four mosquito-transmitted dengue viruses (DENV-1–4). Although dengue outbreaks regularly occur in many regions of the Pacific, little is known about dengue in the Republic of the Marshall Islands (RMI). To better understand dengue in RMI, we investigated an explosive outbreak that began in October 2011. Suspected cases were reported to the Ministry of Health, serum specimens were tested with a dengue rapid diagnostic test (RDT), and confirmatory testing was performed using RT-PCR and IgM ELISA. Laboratory-positive cases were defined by detection of DENV nonstructural protein 1 by RDT, DENV nucleic acid by RT-PCR, or anti-DENV IgM antibody by RDT or ELISA. Secondary infection was defined by detection of anti-DENV IgG antibody by ELISA in a laboratory-positive acute specimen. During the four months of the outbreak, 1,603 suspected dengue cases (3% of the RMI population) were reported. Of 867 (54%) laboratory-positive cases, 209 (24%) had dengue with warning signs, six (0.7%) had severe dengue, and none died. Dengue incidence was highest in residents of Majuro and individuals aged 10–29 years, and ∼95% of dengue cases were experiencing secondary infection. Only DENV-4 was detected by RT-PCR, which phylogenetic analysis demonstrated was most closely related to a virus previously identified in Southeast Asia. Cases of vertical DENV transmission, and DENV/Salmonella Typhi and DENV/Mycobacterium leprae co-infection were identified. Entomological surveys implicated water storage containers and discarded tires as the most important development sites for Aedes aegypti and Ae. albopictus, respectively. Although this is the first documented dengue outbreak in RMI, the age groups of cases and high prevalence of secondary infection demonstrate prior DENV circulation. Dengue surveillance should continue to be strengthened in RMI and throughout the Pacific to identify and rapidly respond to future outbreaks.  相似文献   

9.
Dengue virus (DENV), a global disease, is divided into four serotypes (DENV1-4). Cross-reactive and non-neutralizing antibodies against envelope (E) protein of DENV bind to the Fcγ receptors (FcγR) of cells, and thereby exacerbate viral infection by heterologous serotypes via antibody-dependent enhancement (ADE). Identification and modification of enhancing epitopes may mitigate enhancement of DENV infection. In this study, we characterized the cross-reactive DB21-6 and DB39-2 monoclonal antibodies (mAbs) against domain I-II of DENV; these antibodies poorly neutralized and potently enhanced DENV infection both in vitro and in vivo. In addition, two enhancing mAbs, DB21-6 and DB39-2, were observed to compete with sera antibodies from patients infected with dengue. The epitopes of these enhancing mAbs were identified using phage display, structural prediction, and mapping of virus-like particle (VLP) mutants. N8, R9, V12, and E13 are the reactive residues of DB21-6, while N8, R9, and E13 are the reactive residues of DB39-2. N8 substitution tends to maintain VLP secretion, and decreases the binding activity of DB21-6 and DB39-2. The immunized sera from N8 substitution (N8R) DNA vaccine exerted greater neutralizing and protective activity than wild-type (WT)-immunized sera, both in vitro and in vivo. Furthermore, treatment with N8R-immunized sera reduced the enhancement of mortality in AG129 mice. These results support identification and substitution of enhancing epitope as a novel strategy for developing safe dengue vaccines.  相似文献   

10.
Dengue, caused by the four serotypes of dengue virus (DENV), is the most prevalent mosquito-borne viral disease of humans. To examine the incidence and transmission of dengue, the authors performed a prospective community-based cohort study in 5,545 children aged 2–14 years in Managua, Nicaragua, between 2004 and 2010. Children were provided with medical care through study physicians who systematically recorded medical consult data, and yearly blood samples were collected to evaluate DENV infection incidence. The incidence of dengue cases observed was 16.1 cases (range 3.4–43.5) per 1,000 person-years (95% CI: 14.5, 17.8), and a pattern of high dengue case incidence every other year was observed. The incidence of DENV infections was 90.2 infections (range 45.2–105.3) per 1,000 person-years (95% CI: 86.1, 94.5). The majority of DENV infections in young children (<6 years old) were primary (60%) and the majority of infections in older children (≥9 years of age) were secondary (82%), as expected. The incidence rate of second DENV infections (121.3 per 1,000 person-years; 95% CI: 102.7, 143.4) was significantly higher than the incidence rate of primary DENV infections (78.8 per 1,000 person-years; 95% CI: 73.2, 84.9). The rigorous analytic methodology used in this study, including incidence reporting in person-years, allows comparison across studies and across different infectious diseases. This study provides important information for understanding dengue epidemiology and informing dengue vaccine policy.  相似文献   

11.
Single stranded RNA (ssRNA) virus infection activates the retinoic acid inducible gene I (RIG-I)- mitochondrial antiviral signaling (MAVS) complex, a complex that coordinates the host innate immune response via the NF-κB and IRF3 pathways. Recent work has shown that the IκB kinase (IKK)γ scaffolding protein is the final common adapter protein required by RIG-I·MAVS to activate divergent rate-limiting kinases downstream controlling the NF-κB and IRF3 pathways. Previously we discovered a ubiquitous IKKγ splice-variant, IKKγΔ, that exhibits distinct signaling properties.

Methodology/Principal Findings

We examined the regulation and function of IKKγ splice forms in response to ssRNA virus infection, a condition that preferentially induces full length IKKγ-WT mRNA expression. In IKKγΔ-expressing cells, we found increased viral translation and cytopathic effect compared to those expressing full length IKKγ-WT. IKKγΔ fails to support viral-induced IRF3 activation in response to ssRNA infections; consequently type I IFN production and the induction of anti-viral interferon stimulated genes (ISGs) are significantly attenuated. By contrast, ectopic RIG-I·MAVS or TNFα-induced canonical NF-κB activation is preserved in IKKγΔ expressing cells. Increasing relative levels of IKKγ-WT to IKKγΔ (while keeping total IKKγ constant) results in increased type I IFN expression. Conversely, overexpressing IKKγΔ (in a background of constant IKKγ-WT expression) shows IKKγΔ functions as a dominant-negative IRF3 signaling inhibitor. IKKγΔ binds both IKK-α and β, but not TANK and IKKε, indicating that exon 5 encodes an essential TANK binding domain. Finally, IKKγΔ displaces IKKγWT from MAVS explaining its domainant negative effect.

Conclusions/Significance

Relative endogenous IKKγΔ expression affects cellular selection of inflammatory/anti-viral pathway responses to ssRNA viral infection.  相似文献   

12.
The chimpanzee monoclonal antibody (MAb) 5H2 is specific for dengue virus type 4 (DENV-4) and neutralizes the virus at a high titer in vitro. The epitope detected by the antibody was mapped by sequencing neutralization escape variants of the virus. One variant contained a Lys174-Glu substitution and another contained a Pro176-Leu substitution in domain I of the DENV-4 envelope protein (E). These mutations reduced binding affinity for the antibody 18- to >100-fold. Humanized immunoglobulin G (IgG) 5H2, originally produced from an expression vector, has been shown to be a variant containing a nine-amino-acid deletion in the Fc region which completely ablates antibody-dependent enhancement of DENV replication in vitro. The variant MAb, termed IgG 5H2 ΔD, is particularly attractive for exploring its protective capacity in vivo. Passive transfer of IgG 5H2 ΔD at 20 μg/mouse afforded 50% protection of suckling mice against challenge with 25 50% lethal doses of mouse neurovirulent DENV-4 strain H241. Passive transfer of antibody to monkeys was conducted to demonstrate proof of concept for protection against DENV challenge. Monkeys that received 2 mg/kg of body weight of IgG 5H2 ΔD were completely protected against 100 50% monkey infectious doses (MID50) of DENV-4, as indicated by the absence of viremia and seroconversion. A DENV-4 escape mutant that contained a Lys174-Glu substitution identical to that found in vitro was isolated from monkeys challenged with 106 MID50 of DENV-4. This substitution was also present in all naturally occurring isolates belonging to DENV-4 genotype III. These studies have important implications for possible antibody-mediated prevention of DENV infection.  相似文献   

13.

Background

The lack of a suitable animal model to study viral and immunological mechanisms of human dengue disease has been a deterrent to dengue research.

Methodology/Principal Findings

We sought to establish an animal model for dengue virus (DENV) infection and immunity using non-obese diabetic/severe combined immunodeficiency interleukin-2 receptor γ-chain knockout (NOD-scid IL2rγnull) mice engrafted with human hematopoietic stem cells. Human CD45+ cells in the bone marrow of engrafted mice were susceptible to in vitro infection using low passage clinical and established strains of DENV. Engrafted mice were infected with DENV type 2 by different routes and at multiple time points post infection, we detected DENV antigen and RNA in the sera, bone marrow, spleen and liver of infected engrafted mice. Anti-dengue IgM antibodies directed against the envelope protein of DENV peaked in the sera of mice at 1 week post infection. Human T cells that developed following engraftment of HLA-A2 transgenic NOD-scid IL2rγnull mice with HLA-A2+ human cord blood hematopoietic stem cells, were able to secrete IFN-γ, IL-2 and TNF-α in response to stimulation with three previously identified A2 restricted dengue peptides NS4b 2353(111–119), NS4b 2423(181–189), and NS4a 2148(56–64).

Conclusions/Significance

This is the first study to demonstrate infection of human cells and functional DENV-specific T cell responses in DENV-infected humanized mice. Overall, these mice should be a valuable tool to study the role of prior immunity on subsequent DENV infections.  相似文献   

14.
Dengue virus (DENV) transmission is ubiquitous throughout the tropics. More than 70% of the current global dengue disease burden is borne by people who live in the Asia-Pacific region. We sequenced the E gene of DENV isolated from travellers entering Western Australia between 2010–2012, most of whom visited Indonesia, and identified a diverse array of DENV1-4, including multiple co-circulating viral lineages. Most viruses were closely related to lineages known to have circulated in Indonesia for some time, indicating that this geographic region serves as a major hub for dengue genetic diversity. Most notably, we identified a new lineage of DENV-2 (Cosmopolitan genotype) that emerged in Bali in 2011–2012. The spread of this lineage should clearly be monitored. Surveillance of symptomatic returned travellers provides important and timely information on circulating DENV serotypes and genotypes, and can reveal the herald wave of dengue and other emerging infectious diseases.  相似文献   

15.
In portions of South Asia, vectors and patients co-infected with dengue (DENV) and chikungunya (CHIKV) are on the rise, with the potential for this occurrence in other regions of the world, for example the United States. Therefore, we engineered an antiviral approach that suppresses the replication of both arboviruses in mosquito cells using a single antiviral group I intron. We devised unique configurations of internal, external, and guide sequences that permit homologous recognition and splicing with conserved target sequences in the genomes of both viruses using a single trans-splicing Group I intron, and examined their effectiveness to suppress infections of DENV and CHIKV in mosquito cells when coupled with a proapoptotic 3'' exon, ΔN Bax. RT-PCR demonstrated the utility of these introns in trans-splicing the ΔN Bax sequence downstream of either the DENV or CHIKV target site in transformed Aedes albopictus C6/36 cells, independent of the order in which the virus specific targeting sequences were inserted into the construct. This trans-splicing reaction forms DENV or CHIKV ΔN Bax RNA fusions that led to apoptotic cell death as evidenced by annexin V staining, caspase, and DNA fragmentation assays. TCID50-IFA analyses demonstrate effective suppression of DENV and CHIKV infections by our anti-arbovirus group I intron approach. This represents the first report of a dual-acting Group I intron, and demonstrates that we can target DENV and CHIKV RNAs in a sequence specific manner with a single, uniquely configured CHIKV/DENV dual targeting group I intron, leading to replication suppression of both arboviruses, and thus providing a promising single antiviral for the transgenic suppression of multiple arboviruses.  相似文献   

16.
17.

Background

Interleukin (IL)-10 levels are increased in dengue virus (DENV)-infected patients with severe disorders. A hypothetical intrinsic pathway has been proposed for the IL-10 response during antibody-dependent enhancement (ADE) of DENV infection; however, the mechanisms of IL-10 regulation remain unclear.

Principle Finding

We found that DENV infection and/or attachment was sufficient to induce increased expression of IL-10 and its downstream regulator suppressor of cytokine signaling 3 in human monocytic THP-1 cells and human peripheral blood monocytes. IL-10 production was controlled by activation of cyclic adenosine monophosphate response element-binding (CREB), primarily through protein kinase A (PKA)- and phosphoinositide 3-kinase (PI3K)/PKB-regulated pathways, with PKA activation acting upstream of PI3K/PKB. DENV infection also caused glycogen synthase kinase (GSK)-3β inactivation in a PKA/PI3K/PKB-regulated manner, and inhibition of GSK-3β significantly increased DENV-induced IL-10 production following CREB activation. Pharmacological inhibition of spleen tyrosine kinase (Syk) activity significantly decreased DENV-induced IL-10 production, whereas silencing Syk-associated C-type lectin domain family 5 member A caused a partial inhibition. ADE of DENV infection greatly increased IL-10 expression by enhancing Syk-regulated PI3K/PKB/GSK-3β/CREB signaling. We also found that viral load, but not serotype, affected the IL-10 response. Finally, modulation of IL-10 expression could affect DENV replication.

Significance

These results demonstrate that, in monocytes, IL-10 production is regulated by ADE through both an extrinsic and an intrinsic pathway, all involving a Syk-regulated PI3K/PKB/GSK-3β/CREB pathway, and both of which impact viral replication.  相似文献   

18.
Dengue constitutes a global health concern. The clinical manifestation of this disease varies from mild febrile illness to severe hemorrhage and/or fatal hypovolemic shock. Flavivirus nonstructural protein 1 (NS1) is a secreted glycoprotein that is displayed on the surface of infected cells but is absent in viral particles. NS1 accumulates at high levels in the plasma of dengue virus (DENV)-infected patients, and previous reports highlight its involvement in immune evasion, dengue severity, liver dysfunction and pathogenesis. In the present study, we performed a yeast two-hybrid screen to search for DENV2 NS1-interacting partners using a human liver cDNA library. We identified fifty genes, including human complement component 1 (C1q), which was confirmed by coimmunoprecipitation, ELISA and immunofluorescence assays, revealing for the first time the direct binding of this protein to NS1. Furthermore, the majority of the identified genes encode proteins that are secreted into the plasma of patients, and most of these proteins are classified as acute-phase proteins (APPs), such as plasminogen, haptoglobin, hemopexin, α-2-HS-glycoprotein, retinol binding protein 4, transferrin, and C4. The results presented here confirm the direct interaction of DENV NS1 with a key protein of the complement system and suggest a role for this complement protein in the pathogenesis of DENV infection.  相似文献   

19.

Background

Nearly half of the world’s population is at risk for dengue, yet no licensed vaccine or anti-viral drug is currently available. Dengue is caused by any of four dengue virus serotypes (DENV-1 through DENV-4), and infection by a DENV serotype is assumed to provide life-long protection against re-infection by that serotype. We investigated the validity of this fundamental assumption during a large dengue epidemic caused by DENV-2 in Iquitos, Peru, in 2010–2011, 15 years after the first outbreak of DENV-2 in the region.

Methodology/Principal Findings

We estimated the age-dependent prevalence of serotype-specific DENV antibodies from longitudinal cohort studies conducted between 1993 and 2010. During the 2010–2011 epidemic, active dengue cases were identified through active community- and clinic-based febrile surveillance studies, and acute inapparent DENV infections were identified through contact tracing studies. Based on the age-specific prevalence of DENV-2 neutralizing antibodies, the age distribution of DENV-2 cases was markedly older than expected. Homologous protection was estimated at 35.1% (95% confidence interval: 0%–65.2%). At the individual level, pre-existing DENV-2 antibodies were associated with an incomplete reduction in the frequency of symptoms. Among dengue cases, 43% (26/66) exhibited elevated DENV-2 neutralizing antibody titers for years prior to infection, compared with 76% (13/17) of inapparent infections (age-adjusted odds ratio: 4.2; 95% confidence interval: 1.1–17.7).

Conclusions/Significance

Our data indicate that protection from homologous DENV re-infection may be incomplete in some circumstances, which provides context for the limited vaccine efficacy against DENV-2 in recent trials. Further studies are warranted to confirm this phenomenon and to evaluate the potential role of incomplete homologous protection in DENV transmission dynamics.  相似文献   

20.
We previously reported that mice lacking alpha/beta and gamma interferon receptors (IFN-α/βR and -γR) uniformly exhibit paralysis following infection with the dengue virus (DENV) clinical isolate PL046, while only a subset of mice lacking the IFN-γR alone and virtually no mice lacking the IFN-α/βR alone develop paralysis. Here, using a mouse-passaged variant of PL046, strain S221, we show that in the absence of the IFN-α/βR, signaling through the IFN-γR confers approximately 140-fold greater resistance against systemic vascular leakage-associated dengue disease and virtually complete protection from dengue-induced paralysis. Viral replication in the spleen was assessed by immunohistochemistry and flow cytometry, which revealed a reduction in the number of infected cells due to IFN-γR signaling by 2 days after infection, coincident with elevated levels of IFN-γ in the spleen and serum. By 4 days after infection, IFN-γR signaling was found to restrict DENV replication systemically. Clearance of DENV, on the other hand, occurred in the absence of IFN-γR, except in the central nervous system (CNS) (brain and spinal cord), where clearance relied on IFN-γ from CD8+ T cells. These results demonstrate the roles of IFN-γR signaling in protection from initial systemic and subsequent CNS disease following DENV infection and demonstrate the importance of CD8+ T cells in preventing DENV-induced CNS disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号