首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bordetella bronchiseptica utilizes a type III secretion system (TTSS) for induction of non-apoptotic cytotoxicity in host cells and modulation of host immunity. The identity of Bordetella TTSS effectors, however, has remained elusive. Here we report a genome-wide screen for TTSS effectors based on shared biophysical and functional characteristics of class I chaperones and their frequent colocalization with TTSS effectors. When applied to B. bronchiseptica, the screen identified the first TTSS chaperone-effector locus, btcA-bteA, and we experimentally confirmed its function. Expression of bteA is co-ordinated with expression of TTSS apparatus genes, BteA is secreted through the TTSS of B. bronchiseptica, it is required for cytotoxicity towards mammalian cells, and it is highly conserved in the human-adapted subspecies B. pertussis and B. parapertussis. Transfection of bteA into epithlieal cells results in rapid cell death, indicating that BteA alone is sufficient to induce potent cytotoxicity. Finally, an in vitro interaction between BteA and BtcA was demonstrated. The search for TTSS chaperones and effectors was then expanded to other bacterial genomes, including mammalian and insect pathogens, where we identified a large number of novel candidate chaperones and effectors. Although the majority of putative effectors are proteins of unknown function, several have similarities to eukaryotic protein domains or previously identified effectors from other species.  相似文献   

2.
Bordetella type III secretion induces caspase 1-independent necrosis   总被引:4,自引:2,他引:2  
The Bordetella bronchiseptica type III (TIII) secretion system induces cytotoxicity in infected macrophages and epithelial cells. In this report we characterize the cell death phenotype and compare it to the TIII-dependent cytotoxicity induced by Yersinia enterocolitica and Shigella flexneri. Bordetella bronchiseptica strain RB58 was able to induce cell death in J774A.1 macrophages with the same efficiency as Shigella and Yersinia, but only B. bronchiseptica was able to kill epithelial cells in a TIII-dependent manner. Primary macrophages from caspase 1-/- mice were susceptible to RB58-mediated killing, suggesting that unlike Shigella and Salmonella, caspase 1 does not mediate cell death. RB58-induced cytotoxicity was not inhibited by addition of the pan-caspase inhibitor zVAD, and Western blot analyses of RB58-infected HeLa cells indicated that neither caspase 3 nor 7 was cleaved and PARP remained in its full-length active form. Morphologically the RB58-infected HeLa cells resembled necrotic rather than apoptotic cells, exhibiting cytoplasmic swelling and extensive membrane blebbing in the absence of nuclear changes. The addition of exogenous glycine, which has been shown to prevent necrotic cell death by blocking non-specific ion fluxes across the plasma membrane, blocked RB58-induced cytotoxicity. Addition of cyclosporin A which prevents the opening of the mitochondrial permeability pore, had no effect on RB58-infected cells. We conclude that the B. bronchiseptica TIII secretion system induces a mode of cell death consistent with necrosis that is distinct from that of Yersinia and Shigella.  相似文献   

3.
Bordetella bronchiseptica establishes persistent infection of the murine respiratory tract. We hypothesize that long-term colonization is mediated in part by bacteria-driven modulation of dendritic cells (DCs) leading to altered adaptive immune responses. Bone marrow-derived DCs (BMDCs) from C57BL/6 mice infected with live B. bronchiseptica exhibited high surface expression of MHCII, CD86, and CD80. However, B. bronchiseptica-infected BMDCs did not exhibit significant increases in CD40 surface expression and IL-12 secretion compared with BMDCs treated with heat-killed B. bronchiseptica. The B. bronchiseptica type III secretion system (TTSS) mediated the increase in MHCII, CD86, and CD80 surface expression, while the inhibition of CD40 and IL-12 expression was mediated by adenylate cyclase toxin (ACT). IL-6 secretion was independent of the TTSS and ACT. These phenotypic changes may result from differential regulation of MAPK signaling in DCs. Wild-type B. bronchiseptica activated the ERK 1/2 signaling pathway in a TTSS-dependent manner. Additionally, ACT was found to inhibit p38 signaling. These data suggest that B. bronchiseptica drive DC into a semimature phenotype by altering MAPK signaling. These semimature DCs may induce tolerogenic immune responses that allow the persistent colonization of B. bronchiseptica in the host respiratory tract.  相似文献   

4.
The cytotoxicity of Bordetella bronchiseptica to infected cells is known to be dependent on a B. bronchiseptica type III secretion system. Although the precise mechanism of the type III secretion system is unknown, BopN, BopD and Bsp22 have been identified as type III secreted proteins. In order to identify other proteins secreted via the type III secretion machinery in Bordetella, a type III mutant was generated, and its secretion profile was compared with that of the wild-type strain. The results showed that the wild-type strain, but not the type III mutant, secreted a 40-kDa protein into the culture supernatant. This protein was identified as BopB by the analysis of its N-terminal amino acid sequence. Severe cytotoxicity such as necrosis was induced in L2 cells by infection with the wild-type B. bronchiseptica. In contrast, this effect was not observed by the BopB mutant infection. The haemolytic activity of the BopB mutant was greatly impaired compared with that of the wild-type strain. The results of a digitonin assay strongly suggested that BopB was translocated into HeLa cells infected with the wild-type strain. Taken together, our results demonstrate that Bordetella secretes BopB via a type III secretion system during infection. BopB may play a role in the formation of pores in the host plasma membrane which serve as a conduit for the translocation of effector proteins into host cells.  相似文献   

5.
Chronic bacterial infection reflects a balance between the host immune response and bacterial factors that promote colonization and immune evasion. Bordetella bronchiseptica uses a type III secretion system (TTSS) to persist in the lower respiratory tract of mice. We hypothesize that colonization is facilitated by bacteria-driven modulation of dendritic cells (DCs), which leads to an immunosuppressive adaptive host response. Migration of DCs to the draining lymph nodes of the respiratory tract was significantly increased in mice infected with wild-type B. bronchiseptica compared with mice infected with TTSS mutant bacteria. Reduced colonization by TTSS-deficient bacteria was evident by 7 days after infection, whereas colonization by wild-type bacteria remained high. This decrease in colonization correlated with peak IFN-gamma production by restimulated splenocytes from infected animals. Wild-type bacteria also elicited peak IFN-gamma production on day 7, but the quantity was significantly lower than that elicited by TTSS mutant bacteria. Additionally, wild-type bacteria elicited higher levels of the immunosuppressive cytokine IL-10 compared with the TTSS mutant bacteria. B. bronchiseptica colonization in IL-10(-/-) mice was significantly reduced compared with infections in wild-type mice. These findings suggest that B. bronchiseptica use the TTSS to rapidly drive respiratory DCs to secondary lymphoid tissues where these APCs stimulate an immunosuppressive response characterized by increased IL-10 and decreased IFN-gamma production that favors bacterial persistence.  相似文献   

6.
Bordetella bronchiseptica is a Gram-negative bacterium equipped with several colonization factors that allow it to establish a persistent infection of the murine respiratory tract. Previous studies indicate that B. bronchiseptica adenylate cyclase toxin (ACT) and the type III secretion system (TTSS) synergize to drive dendritic cells into an altered phenotype to down-regulate the host immune response. In this study, we examined the effects of B. bronchiseptica ACT and TTSS on murine bone marrow-derived macrophages. We demonstrate that ACT and TTSS are required for the inhibition of Ag-driven CD4+ T cell proliferation by bacteria-infected macrophages. We identify PGE2 as the mediator of this inhibition, and we show that ACT and the TTSS synergize to increase macrophage production of PGE2. We further demonstrate that B. bronchiseptica can modulate normal macrophage function and drive the immune response toward a Th17 phenotype classified by the significant production of IL-17. In this study, we show that B. bronchiseptica-infected macrophages can induce IL-17 production from naive CD4+ splenocytes, and that lung tissues from B. bronchiseptica-infected mice exhibit a strong Th17 immune response. ACT inhibited surface expression of CD40 and CD86, suppressed TNF-alpha production, and up-regulated IL-6 production. TTSS also synergized with ACT to up-regulate IL-10 and PGE2 secretion. These findings indicate that persistent colonization by B. bronchiseptica may rely on the ability of the bacteria to differentially modulate both macrophage and dendritic cell function leading to an altered adaptive immune response and subsequent bacterial colonization.  相似文献   

7.
8.
Many plant pathogenic bacteria utilize a conserved type III secretion system (TTSS) to deliver effector proteins into the host tissue. Indirect evidence has suggested that at least some effector proteins are translocated from the bacterial cytoplasm into the plant cell. Using an immunocytochemical approach, we demonstrate that the type III effector AvrBs3 from Xanthomonas campestris pv. vesicatoria localizes to nuclei of infected pepper leaves. Importantly, AvrBs3 translocation was observed in situ in native tissues of susceptible and resistant plants. AvrBs3 was detected in the nucleus as soon as 4 h post infection, which was dependent on a functional TTSS and the putative translocator HrpF. N-terminal AvrBs3 deletion derivatives are no longer secreted by the TTSS in vitro and could not be detected inside the host cells, suggesting that the N-terminus of AvrBs3 is important for secretion. Deletion of the nuclear localization signals in the AvrBs3 C-terminus, which are required for the AvrBs3-mediated induction of the hypersensitive reaction in resistant pepper plants, abolished AvrBs3 localization to the nucleus. This is the first report on direct evidence for translocation of a native type III effector protein from a plant pathogenic bacterium into the host cell.  相似文献   

9.
The Bordetella type III secretion system (T3SS) effector protein BteA is necessary and sufficient for rapid cytotoxicity in a wide range of mammalian cells. We show that BteA is highly conserved and functionally interchangeable between Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis . The identification of BteA sequences required for cytotoxicity allowed the construction of non-cytotoxic mutants for localization studies. BteA derivatives were targeted to lipid rafts and showed clear colocalization with cortical actin, ezrin and the lipid raft marker GM1. We hypothesized that BteA associates with the cytoplasmic face of lipid rafts to locally modulate host cell responses to Bordetella attachment. B. bronchiseptica adhered to host cells almost exclusively to GM1-enriched lipid raft microdomains and BteA colocalized to these same sites following T3SS-mediated translocation. Disruption of lipid rafts with methyl-β-cyclodextrin protected cells from T3SS-induced cytotoxicity. Localization to lipid rafts was mediated by a 130-amino-acid lipid raft targeting domain at the N-terminus of BteA, and homologous domains were identified in virulence factors from other bacterial species. Lipid raft targeting sequences from a T3SS effector (Plu4750) and an RTX-type toxin (Plu3217) from Photorhabdus luminescens directed fusion proteins to lipid rafts in a manner identical to the N-terminus of BteA.  相似文献   

10.
We have devised a colorimetric method that monitors secretion of effector proteins into host cytoplasm through the bacterial type III secretion machinery. Here we used constructs of effectors fused with Bordetella adenylate cyclase as a reporter, but evaluated the effector translocation by quantifying cell viability, rather than by measuring the intracellular cAMP concentration. This is based on our findings that cells infected by a secretion-competent bacterium expressing the fusion protein lost their viability under our experimental conditions. Cell death was quantified using commercially available reagents and basic research equipment. An observation that cell death was potentiated when the infected cells were treated with 2-deoxyglucose and sodium azide suggests that the depletion of intracellular ATP is partly involved in the process. Using enteropathogenic Escherichia coli, we demonstrated that the method was applicable to at least three effectors of bacteria, Tir, EspF, and Map, and was useful for studying a secretion signal sequence for Tir. This technically simple and inexpensive method is a good alternative to the existing procedure for studying the mechanism by which effectors are secreted through the type III secretion system in a high-throughput format.  相似文献   

11.
The cytotoxicity of Bordetella bronchiseptica to infected cells is known to be dependent on a B. bronchiseptica type III secretion system. Although BopB, BopN, BopD, and Bsp22 have been identified as type III secreted proteins, these proteins remain to be characterized. In this study, in order to clarify the function of BopD during Bordetella infection, a BopD mutant was generated. Although secretion of BopD into the culture supernatant was completely abolished by the bopD mutation, the secretion of other type III secreted proteins was not affected by this mutation. It has been reported that severe cytotoxicity, including cell detachment from the substrata, and release of lactate dehydrogenase (LDH) into the supernatant are induced in L2 cells by wild-type B. bronchiseptica infection, and these phenotypes are dependent on the type III secretion system. In contrast, neither cell detachment nor LDH release was induced in L2 cells infected with the BopD mutant. Furthermore, the hemolytic activity of the BopD mutant was greatly impaired compared with that of the wild-type strain. On the basis of the results of coimmunoprecipitation assays with anti-BopB antibodies, we conclude that BopD has the ability to associate with BopB. Finally, we show that the BopD-BopB complex is responsible for the pore formation in the host plasma membrane that functions as the conduit for the transition of effector proteins into host cells.  相似文献   

12.
13.
Bordetella bronchiseptica establishes respiratory tract infections in laboratory animals with high efficiency. Colonization persists for the life of the animal and infection is usually asymptomatic in immunocompetent hosts. We hypothesize that this reflects a balance between immunostimulatory events associated with infection and immunomodulatory events mediated by the bacteria. We have identified 15 loci that are part of a type III secretion apparatus in B. bronchiseptica and three secreted proteins. The functions of the type III secretion system were investigated by comparing the phenotypes of wild-type bacteria with two strains that are defective in type III secretion using in vivo and in vitro infection models. Type III secretion mutants were defective in long-term colonization of the trachea in immunocompetent mice. The mutants also elicited higher titres of anti- Bordetella antibodies upon infection compared with wild-type bacteria. Type III secretion mutants also showed increased lethal virulence in immunodeficient SCID-beige mice. These observations suggest that type III-secreted products of B. bronchiseptica interact with components of both innate and adaptive immune systems of the host. B. bronchiseptica induced apoptosis in macrophages in vitro and inflammatory cells in vivo and type III secretion was required for this process. Infection of an epithelial cell line with high numbers of wild type, but not type III deficient B. bronchiseptica resulted in rapid aggregation of NF-κB into large complexes in the cytoplasm. NF-κB aggregation was dependent on type III secretion and aggregated NF-κB did not respond to TNFα activation, suggesting B. bronchiseptica may modulate host immunity by inactivating NF-κB. Based on these in vivo and in vitro results, we hypothesize that the Bordetella type III secretion system functions to modulate host immune responses during infection.  相似文献   

14.
Enteropathogenic Escherichia coli (EPEC) is a human-specific pathogen that causes severe diarrhoea in young children. The disease involves intimate interaction between the pathogen and the brush border of enterocytes. During infection, EPEC uses a type III secretion system (TTSS) to inject several proteins into the infected cells, and these effector proteins modify specific processes in the host cell. We show that, upon infection, EPEC induces detachment of the infected host cells from the substratum, modification of focal adhesions (FA) in the infected cells and specific dephosphorylation of focal adhesion kinase (FAK). We also show that EPEC-induced cell detachment is dependent on FAK expression by the infected cells. Finally, we demonstrate that cell detachment, FA modification and FAK dephosphorylation are dependent on functional TTSS in the infecting EPEC. These results suggest that EPEC is using its TTSS to inject protein(s) into the infected cells, which can induce FAK dephosphorylation, as well as FAK-dependent FA modification and cell detachment. These processes are specific and probably play an important role in EPEC virulence.  相似文献   

15.
Many Gram-negative plant and animal pathogenic bacteria use a specialized type III secretion system (TTSS) as a molecular syringe to inject effector proteins directly into the host cell. Protein translocation across the eukaryotic host cell membrane is presumably mediated by a bacterial translocon. The structure of this predicted transmembrane complex and the mechanism of transport are far from being understood. In bacterial pathogens of animals, several putative type III secretion translocon proteins (TTPs) have been identified. Interestingly, TTP sequences are not conserved among different bacterial species, however, there are structural similarities such as transmembrane segments and coiled-coil regions. Accumulating evidence suggests that TTPs are components of oligomeric protein channels that are inserted into the host cell membrane by the TTSS.  相似文献   

16.
17.
Type III secretion systems (TTSSs) are specialized protein transport systems in gram-negative bacteria which target effector proteins into the host cell. The TTSS of the plant pathogen Xanthomonas campestris pv. vesicatoria, encoded by the hrp (hypersensitive reaction and pathogenicity) gene cluster, is essential for the interaction with the plant. One of the secreted proteins is HrpF, which is required for pathogenicity but dispensable for type III secretion of effector proteins in vitro, suggesting a role in translocation. In this study, complementation analyses of an hrpF null mutant strain using various deletion derivatives revealed the functional importance of the C-terminal hydrophobic protein region. Deletion of the N terminus abolished type III secretion of HrpF. Employing the type III effector AvrBs3 as a reporter, we show that the N terminus of HrpF contains a signal for secretion but not a functional translocation signal. Experiments with lipid bilayers revealed a lipid-binding activity of HrpF as well as HrpF-dependent pore formation. These data indicate that HrpF presumably plays a role at the bacterial-plant interface as part of a bacterial translocon which mediates effector protein delivery across the host cell membrane.  相似文献   

18.
The type III secretion system (T3SS) is a sophisticated protein secretion machinery that delivers bacterial virulence proteins into host cells. A needle-tip protein, Bsp22 , is one of the secreted substrates of the T3SS and plays an essential role in the full function of the T3SS in Bordetella bronchiseptica. In this study, we found that BB1618 functions as a chaperone for Bsp22 . The deletion of BB1618 resulted in a dramatic impairment of Bsp22 secretion into the culture supernatants and Bsp22 stability in the bacterial cytosol. In contrast, the secretion of other type III secreted proteins was not affected by the BB1618 mutation. Furthermore, the BB1618 mutant strain could not induce cytotoxicity and displayed the same phenotypes as the Bsp22 mutant strain. An immunoprecipitation assay demonstrated that BB1618 interacts with Bsp22 , but not with BopB and BopD . Thus, we identified BB1618 as a specific type III chaperone for Bsp22 . Therefore, we propose that BB1618 be renamed Btc22 for the Bordetella type III chaperone for Bsp22 .  相似文献   

19.
The type III secretion system (T3SS) plays a key role in the exertion of full virulence by Bordetella bronchiseptica. However, little is known about the environmental stimuli that induce expression of T3SS genes. Here, it is reported that iron starvation is a signal for T3SS gene expression in B. bronchiseptica. It was found that, when B. bronchiseptica is cultured under iron-depleted conditions, secretion of type III secreted proteins is greater than that in bacteria grown under iron-replete conditions. Furthermore, it was confirmed that induction of T3SS-dependent host cell cytotoxicity and hemolytic activity is greatly enhanced by infection with iron-depleted Bordetella. In contrast, production of filamentous hemagglutinin is reduced in iron-depleted Bordetella. Thus, B. bronchiseptica controls the expression of virulence genes in response to iron starvation.  相似文献   

20.
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) strains are human and animal pathogens that inject effector proteins into host cells via a type III secretion system (TTSS). Cif is an effector protein which induces host cell cycle arrest and reorganization of the actin cytoskeleton. Cif is encoded by a lambdoid prophage present in most of the EPEC and EHEC strains. In this study, we analyzed the domain that targets Cif to the TTSS by using a new reporter system based on a translational fusion of the effector proteins with mature TEM-1 beta-lactamase. Translocation was detected directly in living host cells by using the fluorescent beta-lactamase substrate CCF2/AM. We show that the first 16 amino acids (aa) of Cif were necessary and sufficient to mediate translocation into the host cells. Similarly, the first 20 aa of the effector proteins Map, EspF, and Tir, which are encoded in the same region as the TTSS, mediated secretion and translocation in a type III-dependent but chaperone-independent manner. A truncated form of Cif lacking its first 20 aa was no longer secreted and translocated, but fusion with the first 20 aa of Tir, Map, or EspF restored both secretion and translocation. In addition, the chimeric proteins were fully able to trigger host cell cycle arrest and stress fiber formation. In conclusion, our results demonstrate that Cif is composed of a C-terminal effector domain and an exchangeable N-terminal translocation signal and that the TEM-1 reporter system is a convenient tool for the study of the translocation of toxins or effector proteins into host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号