首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mephedrone (4‐methylmethcathinone) is a synthetic cathinone designer drug that alters pre‐synaptic dopamine (DA) activity like many psychostimulants. However, little is known about the post‐synaptic dopaminergic impacts of mephedrone. The neuropeptide neurotensin (NT) provides inhibitory feedback for basal ganglia and limbic DA pathways, and post‐synaptic D1‐like and D2‐like receptor activity affects NT tissue levels. This study evaluated how mephedrone alters basal ganglia and limbic system NT content and the role of NT receptor activation in drug consumption behavior. Four 25 mg/kg injections of mephedrone increased NT content in basal ganglia (striatum, substantia nigra and globus pallidus) and the limbic regions (nucleus accumbens core), while a lower dosage (5 mg/kg/injection) only increased striatal NT content. Mephedrone‐induced increases in basal ganglia NT levels were mediated by D1‐like receptors in the striatum and the substantia nigra by both D1‐like and D2‐like receptors in the globus pallidus. Mephedrone increased substance P content, another neuropeptide, in the globus pallidus, but not in the dorsal striatum or substantia nigra. Finally, the NT receptor agonist PD149163 blocked mephedrone self‐administration, suggesting reduced NT release, as indicated by increased tissue levels, likely contributing to patterns of mephedrone consumption.

  相似文献   


2.
Monoamine oxidase (MAO) type A and type B were measured using kynuramine, 3,4-dihydroxyphenylethylamine (dopamine, DA), and 5-hydroxytryptamine (5-HT, serotonin) in 20 brain areas. The highest activities were found in the striatum (caudate nucleus, putamen, globus pallidus, and substantia nigra), hypothalamus, and c-mammilare. The ratio of DA to 5-HT deamination varied in the different regions, being in favor of DA in the striatum. With kynuramine as the substrate IC50 values of a number of inhibitors indicated that l-deprenyl was far more potent an inhibitor of human brain MAO than clorgyline or harmaline. N-Desmethylpropargylindane hydrochloride (AGN 1135) was also shown to have MAO-B inhibitory selectivity similar to that of l-deprenyl. Brains obtained at autopsy from l-deprenyl-treated Parkinsonian patients showed that, whereas MAO-B was fully inhibited by the therapeutic doses of l-deprenyl, substantial MAO-A activity was still evident. These results are matched by the significant increases of DA noted in caudate nucleus, globus pallidus, putamen, and substantia nigra and the unaltered 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the same regions. These data indicate that the therapeutic actions of l-deprenyl may lie in its selective inhibition of MAO-B resulting in increased brain levels of DA formed from L-dihydroxyphenylacetic acid (L-DOPA).  相似文献   

3.
R.D. Myers  T.F. Lee   《Peptides》1983,4(6):955-961
The functional effect of neurotensin on the kinetics of dopamine (DA) release in the substantia nigra of the freely moving rat was investigated. After guide tubes for push-pull perfusion were implanted stereotaxically just above the substantia nigra, endogenous stores of DA in this structure were labelled by micro-injection of 0.02–0.05 μCi of [14C]-DA. Then an artificial cerebrospinal fluid (CSF) was perfused within the site at a rate of 20 μl/min at successive 5 min intervals. Neurotensin added to the CSF perfusate in concentrations of 0.05–0.1 μg/μl evoked an immediate, Ca++ dependent release of DA from sites directly within the substantia nigra or a delayed efflux when the peptide was perfused at the edge of this structure. Neurotensin failed to affect the pattern of release of this monoamine at sites which were not within the substantia nigra. Further, the body temperature of the rat also was not altered by neurotensin at any of the sites of perfusions. A relatively inactive analogue of the peptide, [D-Arg]9 neurotensin, was essentially without effect on DA activity. In double isotope experiments in which the substantia nigra of the rat was labelled with both [3H]-5-HT and [14C]-DA, the perfusion with neurotensin failed to affect 5-HT efflux while the release of DA was enhanced. Chromatographic analysis of the metabolites of DA in samples of push-pull perfusates revealed that neurotensin enhanced significantly the level of DOPAC and HVA. Overall, these results demonstrate that in the unrestrained rat neurotensin acts selectively within the substantia nigra to alter the presynaptic, Ca++ dependent release of DA. It is suggested that the mechanism by which the tri-decapeptide functions within this brainstem structure is through its modulation of nigral dopaminergic neurons.  相似文献   

4.
ACTH peptide fragments demonstrate potent neurotrophic effects on peripheral nerves in situ, central neurons in culture, and have been implicated to have effects on central neurons in vivo. Neurotoxic lesioning of the nigrostriatal system, which depletes the striatum of dopamine, provides a feasible model of central regeneration in which to test these peptides. Male Sprague-Dawley rats were lesioned unilaterally with 6-hydroxydopamine (8 μg/4 μl), infused into the substantia nigra. They were subsequently treated with 10 μg/kg IP of Org 2766 [ACTH/MSH(4–9) analogue] or saline every 24 h starting immediately after the infusion and were observed for 2 weeks. Rotational behavior data indicate that Org 2766 significantly decreases ipsiversive turning (p < 0.05), induced by amphetamine (2 mg/kg), as well as accelerating the onset of denervation supersensitivity induced by apomorphine (0.05 mg/kg). Evaluation of dopamine immunohistochemistry, using an anti-tyrosine hydroxylase antibody, demonstrates an enhanced intensity of staining in the ORG 2766-treated tissue compared to its saline counterpart. This difference is confirmed and quantified through specific high-affinity dopamine uptake. Dopamine uptake is about 17% higher in the striata of animals treated with Org 2766. Higher dopamine uptake levels in these ACTH-treated animals correlate with greater fiber density in this group. Therefore, it appears that treatment with the ACTH/MSH(4–9) analogue Org 2766 (10 μg/kg/24 h) offers a protective effect from 6-OHDA lesions in the substantia nigra as well as accelerating various compensatory mechanisms involved in functional recovery.  相似文献   

5.

Background

The occurrence of Parkinson''s disease (PD) is known to be associated both with increased nigrostriatal iron content and with low serum cholesterol and PD, but there has been no study to determine a potential relationship between these two factors.

Methods

High-resolution MRI (T1-, T2, and multiple echo T2*-weighted imaging) and fasting lipid levels were obtained from 40 patients with PD and 29 healthy controls. Iron content was estimated from mean R2* values (R2* = 1/T2*) calculated for each nigrostriatal structure including substantia nigra, caudate, putamen, and globus pallidus. This was correlated with serum cholesterol levels after controlling for age, gender, and statin use.

Results

In patients with PD, higher serum cholesterol levels were associated with lower iron content in the substantia nigra (R = −0.43, p = 0.011 for total-cholesterol, R = −0.31, p = 0.080 for low-density lipoprotein) and globus pallidus (R = −0.38, p = 0.028 for total-cholesterol, R = −0.27, p = 0.127 for low-density lipoprotein), but only a trend toward significant association of higher total-cholesterol with lower iron content in the striatum (R = −0.34, p = 0.052 for caudate; R = −0.32, p = 0.061 for putamen). After adjusting for clinical measures, the cholesterol-iron relationships held or became even stronger in the substantia nigra and globus pallidus, but weaker in the caudate and putamen. There was no significant association between serum cholesterol levels and nigrostriatal iron content for controls.

Conclusions

The data show that higher serum total-cholesterol concentration is associated with lower iron content in substantia nigra and globus pallidus in Parkinson''s disease patients. Further studies should investigate whether this is mechanistic or epiphenomenological relationship.  相似文献   

6.
A Arregui  G R Barer  P C Emson 《Life sciences》1981,28(26):2925-2929
Exposure of 28 day old rats to moderate hypoxia (10% oxygen) for three weeks led to significant increases of immunoreactive levels of substance P and met-enkephalin in the substantia nigra but not in the corpus striatum, globus pallidus of hypothalamus.A similar group of animals exposed to hypoxia for three weeks showed decreased angiotensin converting enzyme activity in the corpus striatum and substantia nigra and decreased GABA levels in the substantia nigra. However, fifteen days after recovery from hypoxia these changes were no longer apparent.Exposure to chronic, moderate hypoxia can affect levels of putative neurotransmitters in the brain, and based on the present findings the substantia nigra or the striato-nigral pathways appear to be particularly vulnerable.  相似文献   

7.
Methylphenidate (MPD) is a psychostimulant widely used to treat behavioral problems such as attention deficit hyperactivity disorder. MPD competitively inhibits the dopamine (DA) transporter. Previous studies demonstrated that stimulants of abuse, such as cocaine (COC) and methamphetamine differentially alter rat brain neurotensin (NT) systems through DA mechanisms. As NT is a neuropeptide primarily associated with the regulation of the nigrostriatal and mesolimbic DA systems, the effect of MPD on NT-like immunoreactivity (NTLI) content in several basal ganglia regions was assessed. MPD, at doses of 2.0 or 10.0 mg/kg, s.c., significantly increased the NTLI contents in dorsal striatum, substantia nigra and globus pallidus; similar increases in NTLI were observed in these areas after administration of COC (30.0 mg/kg, i.p.). No changes in NTLI occurred within the nucleus accumbens, frontal cortex and ventral tegmental area following MPD treatment. In addition, the NTLI changes in basal ganglia regions induced by MPD were prevented when D(1) (SCH 23390) or D(2) (eticlopride) receptor antagonists were coadministered with MPD. MPD treatment also increased dynorphin (DYN) levels in basal ganglia structures. These findings provide evidence that basal ganglia, but not limbic, NT systems are significantly affected by MPD through D(1) and D(2) receptor mechanisms, and these NTLI changes are similar, but not identical to those which occurred with COC administration. In addition, the MPD effects on NT systems are mechanistically distinct from the effects of methamphetamine.  相似文献   

8.
Abstract: We investigated the effects of continuous intranigral perfusion of dopamine D1 and D2 receptor agonists and antagonists on the biotransformation of locally applied l -DOPA to dopamine in the substantia nigra of freely moving rats by means of in vivo microdialysis. The "dual-probe" mode was used to monitor simultaneously changes in extracellular dopamine levels in the substantia nigra and the ipsilateral striatum. Intranigral perfusion of 10 µ M l -DOPA for 20 min induced a significant 180-fold increase in extracellular nigral dopamine level. No effect of the intranigral l -DOPA administration was observed on dopamine levels in the ipsilateral striatum, suggesting a tight control of extracellular dopamine in the striatum after enhanced nigral dopamine levels. Continuous nigral infusion with the D1 receptor agonist CY 208243 (10 µ M ) and with the D2 receptor agonist quinpirole at 10 µ M (a nonselective concentration) attenuated the l -DOPA-induced increase in dopamine in the substantia nigra by 85 and 75%, respectively. However, perfusion of the substantia nigra with a lower concentration of quinpirole (1 µ M ) and the D1 antagonist SCH 23390 (10 µ M ) did not affect the nigral l -DOPA biotransformation. The D2 antagonist (−)-sulpiride (10 µ M ) also attenuated the l -DOPA-induced dopamine release in the substantia nigra to ∼10% of that of the control experiments. We confirm that there is an important biotransformation of l -DOPA to dopamine in the substantia nigra. The high concentrations of dopamine formed after l -DOPA administration may be the cause of dyskinesias or further oxidative stress in Parkinson's disease. Simultaneous administration of D1 receptor agonists with l -DOPA attenuates the biotransformation of l -DOPA to dopamine in the substantia nigra. The observed effects could occur via changes in nigral GABA release that in turn influence the firing rate of the nigral dopaminergic neurons.  相似文献   

9.
Noradrenaline (NA), 3,4-dihydroxyphenylethylamine (dopamine, DA), 5-hydroxytryptamine (serotonin, 5-HT), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in 22 regions of postmortem brains from four histologically verified cases with Alzheimer-type dementia (ATD) and nine histologically normal controls. Compared with the controls, concentrations of 5-HT and 5-HIAA in the ATD brains were significantly reduced in nine regions (superior frontal gyrus, insula, cingulate gyrus, amygdala, putamen, medial and lateral segments of globus pallidus, substantia nigra, lateral nucleus of thalamus) and in eight regions (amygdala, substantia innominata, caudate, putamen, medial and lateral segments of globus pallidus, medial and lateral nuclei of thalamus), respectively. NA concentrations of the ATD brains were significantly reduced in six regions (cingulate gyrus, substantia innominata, putamen, hypothalamus, medial nucleus of thalamus, raphe area). In contrast, significant reductions of DA and HVA concentrations in the ATD brains were found only in putamen and amygdala, respectively. The 5-HIAA/5-HT ratio in the ATD brains decreased significantly in locus coeruleus, while the HVA/DA ratio increased significantly in putamen and medial segment of globus pallidus. These findings suggest that the serotonergic and noradrenergic systems are affected, while the dopaminergic system is relatively unaffected in ATD brains.  相似文献   

10.
Nigrostriatal dopaminergic neurons release dopamine from dendrites in substantia nigra and axon terminals in striatum. The cellular mechanisms for somatodendritic and axonal dopamine release are similar, but somatodendritic and nerve terminal dopamine release may not always occur in parallel. The current studies used in vivo microdialysis to simultaneously measure changes in dendritic and nerve terminal dopamine efflux in substantia nigra and ipsilateral striatum respectively, following intranigral application of various drugs by reverse dialysis through the nigral probe. The serotonin releasers (+/-)-fenfluramine (100 micro m) and (+)-fenfluramine (100 micro m) significantly increased dendritic dopamine efflux without affecting extracellular dopamine in striatum. The non-selective serotonin receptor agonist 1-(m-chlorophenyl)-piperazine (100 micro m) elicited a similar pattern of dopamine release in substantia nigra and striatum. NMDA (33 micro m) produced an increase in nigral dopamine of a similar magnitude to mCPP or either fenfluramine drug. However, NMDA also induced a concurrent increase in striatal dopamine. The D2 agonist quinpirole (100 micro m) had a parallel inhibitory effect on dopamine release from dendritic and terminal sites as well. Taken together, these data suggest that serotonergic afferents to substantia nigra may evoke dendritic dopamine release through a mechanism that is uncoupled from the impulse-dependent control of nerve terminal dopamine release.  相似文献   

11.
In vivo release of transmitters in the cat basal ganglia   总被引:3,自引:0,他引:3  
The release of transmitters was studied in various structures of the basal ganglia in cats implanted with several push-pull cannulas. Local depolarization enhanced Met-enkephalin release in the globus pallidus. Activation of striatonigral substance P(SP) neutrons stimulated the transmitter release from terminals. Unilateral electrical stimulation of the caudate nucleus evoked GABA release in both substantia nigrae and pallidoentopeduncular nuclei. The unilateral facilitation or interruption of nigral SP transmission modified dopamine (DA) release in the ipsilateral caudate nucleus in contrast, modifications of GABAergic or glycinergic nigral transmissions induced bilateral symmetrical effects, whereas bilateral asymmetrical changes in DA release in the two caudate nuclei were seen during the unilateral modification of nigral DA transmission. Changes in the dendritic release of DA induced changes in serotonin release both in the substantia nigra and in the ipsilateral caudate nucleus. Finally, it will be shown that acetylcholinesterase can be released from the substantia nigra and the caudate nucleus through processes dependent on nerve activity.  相似文献   

12.
Abstract: The K+-induced release of amino acids and dopamine from synaptosomes of basal ganglia and substantia nigra of sheep was studied. K+ (56 mM) caused an increase in the release of GABA from caudate, putamen, globus pallidus, and substantia nigra, the increased release being 227, 171, 198, and 366%, respectively, compared with samples incubated without stimulation. The release of glutamate was also increased by 56 mM-K+ (136–183%) from all regions except the globus pallidus, and a significant release of aspartate was only seen in response to K+ stimulation of synaptosomes from putamen (50%). Veratrine (75 μM) also stimulated a similar pattern of amino acid release from these regions. Regional correlation was shown between the presence of an uptake system for an amino acid and its evoked release. [14C]Dopamine formed from L-[U-14C]tyrosine was released only from caudate and putamen synaptosomes by K+ stimulation, the increases being 105% and 74%, respectively. Synthesis of [14C]dopamine from L-[U-14C]tyrosine occurred only in synaptosomes prepared from these two regions and was not detected in synaptosomes from substantia nigra or globus pallidus although whole-tissue homogenates of substantia nigra were able to synthesise dopamine.  相似文献   

13.
Neurturin (NTN) is a member of the glial cell line-derived neurotrophic factor (GDNF) family; and, while GDNF has been shown to increase dopamine (DA) release in normal animals, the ability of NTN to alter DA release has not been previously reported. The purpose of the present study was to determine if NTN could alter striatal DA release, and to compare the effects of NTN to GDNF. Male Fischer-344 rats were given a single injection of vehicle or 5 μg NTN or GDNF into the right substantia nigra. Three weeks later microdialysis experiments were conducted to assess striatal DA release. Basal extracellular levels of striatal DA were not affected by either NTN or GDNF. However, both NTN and GDNF led to increases in amphetamine-evoked overflow of DA from the ipsilateral striatum, and there was a trend for potassium-evoked overflow to be augmented. Postmortem tissue levels of DA were decreased by approximately 20% in the striatum, and increased by approximately 100% in the substantia nigra, on the ipsilateral side of the brain compared to the contralateral side following both NTN and GDNF injection. Thus, NTN, like GDNF, can augment striatal DA release, and the magnitude of the NTN effects are similar to those of GDNF.  相似文献   

14.
The regional distribution of the dopamine and serotonin uptake sites in human brain have been assessed and compared with the distribution of the transmitters and their metabolites measured in the same brains and also with a limited regional distribution of the uptake sites in rat and sheep brain. The affinity of the uptake sites for both transmitters was determined and found to be c. 0.2 μ M in all 3 species. Most dopamine uptake in all species was in caudate and putamen samples. Many regions of the human brain showed no dopamine uptake and little dopamine uptake was seen in sheep cortex or nigral preparations. Dopamine and metabolite concentrations were highest in the caudate, putamen and substantia nigra. Most serotonin uptake was seen in the hypothalamus in all 3 species; less was observed in the striatal regions; the cortical and nigral preparations of sheep brain showed little serotonin uptake though cortical preparations of rat brain had high levels of uptake. In the human brain, other regions did not show serotonin uptake. Highest concentrations of serotonin were found in the substantia nigra and medulla, intermediate concentrations in the putamen, globus pallidus, hypothalamus, olfactory tubercle and thalamus; very low concentrations of serotonin were found in other regions. The use of the human uptake site for pharmacological studies and as a marker for monoaminergic afferents in human health and disease is discussed.  相似文献   

15.
Summary Although controversial, studies with methamphetamine and MPTP suggest a link between glutamate-mediated excitotoxicity and degeneration of dopamine cells. Both compounds are thonght to create a metabolic stress. To further explore glutamate actions in DA degeneration, we investigated the effects of other metabolic inhibitors. In mesencephalic cultures, DA cell loss produced by 3-NPA or malonate was potentiated by NMDA and prevented by MK-801. In vivo, striatal DA loss produced by intranigral infusions of malonate was also potentiated by intranigral NMDA and prevented by systemic MK-801. In contrast, systemic MK-801 did not prevent DA loss produced by intrastriatal malonate. Intrastriatal MK-801 or CGS 19755 did attenuate DA loss in METH-treated mice, but was confounded by the findings that METH-induced hyperthermia, an important component in toxicity, was also attenuated. Taken together, the data support the hypothesis of NMDA receptor involvement in degeneration of DA neurons. Furthermore, the data also suggest that this interaction is likely to occur in the substantia nigra rather than in the striatum.  相似文献   

16.
Calcitriol has been implicated as an agent that has neuroprotective effects in various animal models of diseases, possibly by upregulating glial cell line-derived neurotrophic factor (GDNF). The present study examined the neuroprotective effects of calcitriol in a model of early Parkinson’s disease. Rats were treated daily with calcitriol or saline for 7 days before an intraventricular injection of 6-hydroxydopamine (6-OHDA), and then for 1 day or daily for 3½ to 4 weeks after lesioning. Evoked overflow and tissue content of dopamine (DA) were determined 3½ to 4 weeks post lesion. The 8-day calcitriol treatment did not attenuate 6-OHDA-induced decreases in evoked overflow of DA, nor did it protect against 6-OHDA-induced reductions in tissue levels of DA in the striatum or substantia nigra. However, the long-term calcitriol treatment did significantly increase evoked overflow of DA, as well as the amount of DA in the striatum, compared to saline treated animals. GDNF was significantly increased in the substantia nigra, but not in the striatum, of non-lesioned, calcitriol treated rats. These results suggest that long-term treatment with calcitriol can provide partial protection for dopaminergic neurons against the effects of intraventricularly administered 6-OHDA.  相似文献   

17.

Background

Based upon the acquainted loss of dopaminergic neurons in the substantia nigra in Parkinson’s disease (PD), we hypothesised changes in magnetic resonance imaging signal intensities of the basal ganglia to be useful as an additional technical tool in the diagnostic work-up.

Methods

Region-of-interest analyses (substantia nigra and globus pallidus internus) of T2-weighted scans were performed in seventy subjects with PD, 170 age- and gender-matched controls and 38 patients with an atypical form of neurodegenerative Parkinsonian syndrome (N?=?11 multisystem atrophy, N?=?22 progressive supranuclear palsy, N?=?5 corticobasal syndrome).

Results

In patients with PD, significant changes in signal intensities within the substantia nigra were observed compared to controls at p?<?0.001. For the globus pallidus internus, signal alterations in PD and progressive supranuclear palsy were found to be significant (p?<?0.001) if compared to controls. Furthermore, signal changes of substantia nigra correlated with signal intensities of globus pallidus internus in the ipsilateral hemisphere in both groups. Sensitivity was 86% and specificity was 90% for the combined analysis of substantia nigra and globus pallidus internus in the complete patient sample versus controls.

Conclusions

Signal alterations of substantia nigra and globus pallidus internus in routine magnetic resonance imaging were useful to distinguish patients with PD from controls. In addition, signal changes in globus pallidus internus could be used to differentiate progressive supranuclear palsy patients from controls. These analyses have the potential to serve as an additional non-invasive technical tool to support the individual differential diagnosis of PD.
  相似文献   

18.
The peripheral administration of oxotremorine caused a significant increase in dihydroxyphenylacetic acid (DOPAC) in the striatum of rats, dopamine (DA) level was unaffected. Injection of oxotremorine into the substantia nigra failed to change the content of dopamine and its acid metabolites homovanillic acid (HVA) and DOPAC in striatum. Injection of oxotremorine or carbachol into the substantia nigra or into the caudate nucleus did not significantly influence the DA-turnover. The partly inconsistent results are discussed in connection with literature data in regard to the existence of excitatory as well as inhibitory cholinergic systems, which are located differently and are involved in the regulation of DA-turnover.  相似文献   

19.
We have evaluated the effect of N,N-bis (2-chloroethyl)-N-nitrosourea (BCNU), an inhibitor of glutathione reductase (GR), on the oxidative status along with the integrity of the nigrostriatal dopaminergic system of the rat. The oxidative status was studied by the quantification of carbonyl groups coupled to protein homogenates. Moreover, the specific oxidations in glial fibrillary acidic protein (GFAP) and neurofilament-200 (NF-200) were also measured. The results show that oxidative damage in proteins in the nigrostriatal system is confined to the striatum. Specific carbonyl groups coupled to native NF-200 and GFAP were also increased. These changes were accompanied by reactive astrocytosis in striatum but not in substantia nigra. In substantia nigra, decreased levels of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were observed following BCNU treatment. In contrast, DA levels were increased in the striatum along with an overall decrease in the ratios of DA metabolites to DA. We also studied the mRNA levels for tyrosine hydroxylase (TH) and the dopamine transporter (DAT) by in situ hybridization. TH mRNA but not DAT mRNA was significantly induced in substantia nigra following BCNU treatment, which was consistent with significant elevations in TH enzyme amount and activity and unchanged DA uptake in striatum. All these results support the DA free radical hypothesis and the key role of the striatal glutathione system in protecting the striatal system against oxidative stress.  相似文献   

20.
Calcitriol, the active metabolite of vitamin D, has been shown to have significant effects on the brain. These actions include reducing the severity of some central nervous system lesions, possibly by upregulating trophic factors such as glial cell line-derived neurotrophic factor (GDNF). GDNF has substantial effects on the nigrostriatal dopamine (DA) system of young adult, aged and lesioned animals. Thus, the administration of calcitriol may lead to significant effects on nigrostriatal DA neuron functioning. The present experiments were designed to examine the ability of calcitriol to alter striatal DA release, and striatal and nigral tissue levels of DA. Male Fischer-344 rats were administered vehicle or calcitriol (0.3, 1.0, or 3.0 μg/kg, s.c.) once daily for eight consecutive days. Three weeks later in vivo microdialysis experiments were conducted to measure basal and stimulus evoked overflow of DA from the striatum. Basal levels of extracellular DA were not significantly affected by the calcitriol treatments. However, the 1.0 and 3.0 μg/kg doses of calcitriol led to increases in both potassium and amphetamine evoked overflow of striatal DA. Although post-mortem tissue levels of striatal DA were not altered by the calcitriol injections, nigral tissue levels of DA and its main metabolites were increased by both the 1.0 and 3.0 μg/kg doses of calcitriol. In a separate group of animals GDNF levels were augmented in the striatum and substantia nigra after eight consecutive daily injections of calcitriol. These results suggest that systemically administered calcitriol can upregulate dopaminergic release processes in the striatum and DA levels in the substantia nigra. Increases in the levels of endogenous GDNF following calcitriol treatment may in part be responsible for these changes. The ability of calcitriol to lead to augmented DA release in the striatum suggests that calcitriol may be beneficial in disease processes involving dopaminergic dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号